
Janis Kuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2591352/publications.pdf Version: 2024-02-01

IANIS KIIKA

#	Article	IF	CITATIONS
1	Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacological Reviews, 2022, 74, 506-551.	16.0	106
2	Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	4.0	3
3	Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage. Free Radical Biology and Medicine, 2021, 177, 370-380.	2.9	8
4	Antibacterial activity of apramycin at acidic pH warrants wide therapeutic window in the treatment of complicated urinary tract infections and acute pyelonephritis. EBioMedicine, 2021, 73, 103652.	6.1	15
5	Skull Fractures Induce Neuroinflammation and Worsen Outcomes after Closed Head Injury in Mice. Journal of Neurotrauma, 2020, 37, 295-304.	3.4	17
6	Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 11903-11911.	3.6	11
7	Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice. Scientific Reports, 2020, 10, 14555.	3.3	22
8	<i>trans</i> -Fluorine Effect in Cyclopropane: Diastereoselective Synthesis of Fluorocyclopropyl Cabozantinib Analogs. ACS Medicinal Chemistry Letters, 2020, 11, 2146-2150.	2.8	7
9	Empagliflozin Protects Cardiac Mitochondrial Fatty Acid Metabolism in a Mouse Model of Diet-Induced Lipid Overload. Cardiovascular Drugs and Therapy, 2020, 34, 791-797.	2.6	20
10	Excretion of the Polymyxin Derivative NAB739 in Murine Urine. Antibiotics, 2020, 9, 143.	3.7	1
11	Decrease in Longâ€Chain Acylcarnitine Tissue Content Determines the Duration of and Correlates with the Cardioprotective Effect of Methylâ€ <scp>GBB</scp> . Basic and Clinical Pharmacology and Toxicology, 2017, 121, 106-112.	2.5	3
12	Acute and longâ€ŧerm administration of palmitoylcarnitine induces muscleâ€specific insulin resistance in mice. BioFactors, 2017, 43, 718-730.	5.4	25
13	Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Scientific Reports, 2017, 7, 17528.	3.3	112
14	Diabetes is Associated with Higher Trimethylamine N-oxide Plasma Levels. Experimental and Clinical Endocrinology and Diabetes, 2016, 124, 251-256.	1.2	175
15	Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria. Biochemical Journal, 2016, 473, 1191-1202.	3.7	77
16	Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Pharmacological Research, 2016, 113, 771-780.	7.1	68
17	Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacological Research, 2016, 113, 788-795.	7.1	34
18	Methyl-Î ³ -butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis. Vascular Pharmacology, 2015, 72, 101-107.	2.1	13

Janis Kuka

#	Article	IF	CITATIONS
19	Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae. Journal of Biological Chemistry, 2015, 290, 21732-21740.	3.4	70
20	Inhibition of Lâ€carnitine biosynthesis and transport by methylâ€Î³â€butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction. British Journal of Pharmacology, 2015, 172, 1319-1332.	5.4	24
21	Selective inhibition of OCTN2 is more effective than inhibition of gamma-butyrobetaine dioxygenase to decrease the availability of l-carnitine and to reduce myocardial infarct size. Pharmacological Research, 2014, 85, 33-38.	7.1	15
22	The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism: Clinical and Experimental, 2014, 63, 127-136.	3.4	56
23	Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sciences, 2014, 117, 84-92.	4.3	76
24	Expression and purification of active, stabilized trimethyllysine hydroxylase. Protein Expression and Purification, 2014, 104, 1-6.	1.3	14
25	Targeting Carnitine Biosynthesis: Discovery of New Inhibitors against Î ³ -Butyrobetaine Hydroxylase. Journal of Medicinal Chemistry, 2014, 57, 2213-2236.	6.4	41
26	Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria. Molecular and Cellular Biochemistry, 2014, 395, 1-10.	3.1	44
27	Magnesium nitrate attenuates blood pressure rise in SHR rats. Magnesium Research, 2014, 27, 16-24.	0.5	8
28	Troubleshooting digital macro photography for image acquisition and the analysis of biological samples. Journal of Pharmacological and Toxicological Methods, 2013, 67, 98-106.	0.7	14
29	Activated peroxisomal fatty acid metabolism improves cardiac recovery in ischemia-reperfusion. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 541-550.	3.0	34
30	A short-term high-dose administration of sodium pivalate impairs pyruvate metabolism without affecting cardiac function. Cardiovascular Toxicology, 2012, 12, 298-303.	2.7	5
31	The Cardioprotective Effect of Mildronate is Diminished After Co-Treatment With <scp>l</scp> -Carnitine. Journal of Cardiovascular Pharmacology and Therapeutics, 2012, 17, 215-222.	2.0	44
32	Administration of L-carnitine and mildronate improves endothelial function and decreases mortality in hypertensive Dahl rats. Pharmacological Reports, 2011, 63, 752-762.	3.3	19
33	Mildronate treatment alters <i>γ</i> -butyrobetaine and <scp> </scp> -carnitine concentrations in healthy volunteers. Journal of Pharmacy and Pharmacology, 2011, 63, 1195-1201.	2.4	42
34	Crystal structure of human gamma-butyrobetaine hydroxylase. Biochemical and Biophysical Research Communications, 2010, 398, 634-639.	2.1	30
35	Myocardial Infarct Size-Limiting and Anti-Arrhythmic Effects of Mildronate Orotate in the Rat Heart. Cardiovascular Drugs and Therapy, 2009, 23, 281-288.	2.6	25
36	Effects of Longâ€Term Mildronate Treatment on Cardiac and Liver Functions in Rats. Basic and Clinical Pharmacology and Toxicology, 2009, 105, 387-394.	2.5	27

Janis Kuka

#	Article	IF	CITATIONS
37	Protective effects of mildronate in an experimental model of type 2 diabetes in Gotoâ€Kakizaki rats. British Journal of Pharmacology, 2009, 157, 1549-1556.	5.4	63
38	Inhibition of carnitine acetyltransferase by mildronate, a regulator of energy metabolism. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1269-1275.	5.2	27
39	Mildronate decreases carnitine availability and up-regulates glucose uptake and related gene expression in the mouse heart. Life Sciences, 2008, 83, 613-619.	4.3	60