Mariane B Melo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590496/publications.pdf

Version: 2024-02-01

28 3,095 25 29
papers citations h-index g-index

31 31 31 4419 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nature Biomedical Engineering, 2022, 6, 129-143.	22.5	56
2	Coâ€Anchoring of Engineered Immunogen and Immunostimulatory Cytokines to Alum Promotes Enhancedâ€Humoral Immunity. Advanced Therapeutics, 2022, 5, .	3.2	3
3	lgG-Engineered Protective Antigen for Cytosolic Delivery of Proteins into Cancer Cells. ACS Central Science, 2021, 7, 365-378.	11.3	8
4	Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Science Advances, 2021, 7, .	10.3	37
5	Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates. Biomaterials, 2021, 275, 120868.	11.4	16
6	A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Science Immunology, 2021, 6, eabf1152.	11.9	63
7	Regulatory T cells engineered with TCR signaling–responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Science Translational Medicine, 2020, 12, .	12.4	39
8	Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nature Medicine, 2020, 26, 430-440.	30.7	172
9	Immunogenicity of RNA Replicons Encoding HIV Env Immunogens Designed for Self-Assembly into Nanoparticles. Molecular Therapy, 2019, 27, 2080-2090.	8.2	58
10	Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell, 2019, 177, 1153-1171.e28.	28.9	293
11	Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomaterials Science, 2019, 7, 113-124.	5.4	67
12	Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes. Scientific Reports, 2018, 8, 16527.	3.3	69
13	Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Cancer Immunology Research, 2018, 6, 1025-1038.	3.4	58
14	Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6639-E6648.	7.1	286
15	Toxoplasma gondii Superinfection and Virulence during Secondary Infection Correlate with the Exact <i>ROP5/ROP18</i> Allelic Combination. MBio, 2015, 6, e02280.	4.1	78
16	Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants. Journal of Clinical Investigation, 2015, 125, 2532-2546.	8.2	306
17	Dual Role for Inflammasome Sensors NLRP1 and NLRP3 in Murine Resistance to Toxoplasma gondii. MBio, 2014, 5, .	4.1	244
18	Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains. BMC Genomics, 2013, 14, 467.	2.8	63

#	Article	IF	CITATION
19	Combined Action of Nucleic Acid-Sensing Toll-like Receptors and TLR11/TLR12 Heterodimers Imparts Resistance to Toxoplasma gondii in Mice. Cell Host and Microbe, 2013, 13, 42-53.	11.0	166
20	Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways. PLoS Pathogens, 2013, 9, e1003779.	4.7	111
21	The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response. PLoS Pathogens, 2012, 8, e1002784.	4.7	222
22	Admixture and recombination among <i>Toxoplasma gondii</i> lineages explain global genome diversity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13458-13463.	7.1	83
23	De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genomics, 2012, 13, 696.	2.8	38
24	Toxoplasma gondii effectors are master regulators of the inflammatory response. Trends in Parasitology, 2011, 27, 487-495.	3.3	187
25	Requirement of UNC93B1 Reveals a Critical Role for TLR7 in Host Resistance to Primary Infection with <i>Trypanosoma cruzi</i> . Journal of Immunology, 2011, 187, 1903-1911.	0.8	67
26	UNC93B1 Mediates Host Resistance to Infection with Toxoplasma gondii. PLoS Pathogens, 2010, 6, e1001071.	4.7	59
27	The endless race between <i>Trypanosoma cruzi</i> and host immunity: lessons for and beyond Chagas disease. Expert Reviews in Molecular Medicine, 2010, 12, e29.	3.9	158
28	Recruitment and Endo-Lysosomal Activation of TLR9 in Dendritic Cells Infected with <i>Trypanosoma cruzi </i> . Journal of Immunology, 2008, 181, 1333-1344.	0.8	74