Scott Gronert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bond strengths of ethylene and acetylene. Journal of the American Chemical Society, 1990, 112, 5750-5759.	13.7	387
2	Gas-phase SN2 and E2 reactions of alkyl halides. Journal of the American Chemical Society, 1990, 112, 8650-8655.	13.7	270
3	Mass Spectrometric Studies of Organic Ion/Molecule Reactions. Chemical Reviews, 2001, 101, 329-360.	47.7	246
4	Estimation of effective ion temperatures in a quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 1998, 9, 845-848.	2.8	234
5	Ab Initio Studies of Amino Acid Conformations. 1. The Conformers of Alanine, Serine, and Cysteine. Journal of the American Chemical Society, 1995, 117, 2071-2081.	13.7	211
6	The gas-phase acidities of the alkanes. Journal of the American Chemical Society, 1989, 111, 1968-1973.	13.7	158
7	Theoretical studies of proton transfers. 1. The potential energy surfaces of the identity reactions of the first- and second-row non-metal hydrides with their conjugate bases. Journal of the American Chemical Society, 1993, 115, 10258-10266.	13.7	126
8	Quadrupole ion trap studies of fundamental organic reactions. Mass Spectrometry Reviews, 2005, 24, 100-120.	5.4	120
9	Gas phase acidities of the α amino acids. International Journal of Mass Spectrometry and Ion Processes, 1992, 117, 23-36.	1.8	119
10	Deuterium isotope effects in gas-phase reactions of alkyl halides: distinguishing E2 and S(N)2 pathways. Journal of the American Chemical Society, 1991, 113, 4009-4010.	13.7	117
11	Gas Phase Studies of the Competition between Substitution and Elimination Reactions. Accounts of Chemical Research, 2003, 36, 848-857.	15.6	104
12	Stabilities of Carbenes: Independent Measures for Singlets and Triplets. Journal of the American Chemical Society, 2011, 133, 3381-3389.	13.7	98
13	Identification of specific protein carbonylation sites in model oxidations of human serum albumin. Journal of the American Society for Mass Spectrometry, 2006, 17, 1172-1180.	2.8	89
14	An Alternative Interpretation of the Câ^'H Bond Strengths of Alkanes. Journal of Organic Chemistry, 2006, 71, 1209-1219.	3.2	84
15	The mechanism of C-terminal fragmentations in alkali metal ion complexes of peptides. International Journal of Mass Spectrometry, 2003, 222, 117-134.	1.5	78
16	A reevaluation of computed proton affinities for the common α-amino acids. Journal of the American Society for Mass Spectrometry, 2009, 20, 2116-2123.	2.8	66
17	Theoretical studies of elimination reactions. 1. Reactions of F- and PH2- with CH3CH2Cl. Competition between SN2 and E2 mechanisms for first- and second-row nucleophiles. Journal of the American Chemical Society, 1991, 113, 6041-6048.	13.7	63
18	Experimental Validation of the α-Effect in the Gas Phase. Journal of the American Chemical Society, 2011, 133, 13894-13897.	13.7	62

#	Article	IF	CITATIONS
19	Charge transfers and polarizations in bonds to silicon. Organosilanes and the SN2(Si) reaction of silane with fluoride. An ab initio study. Journal of the American Chemical Society, 1989, 111, 3111-3117.	13.7	56
20	Substituent Effects in Gas-Phase Substitutions and Eliminations: β-Halo Substituents. Solvation Reverses SN2 Substituent Effects. Journal of the American Chemical Society, 2001, 123, 3081-3091.	13.7	55
21	The Gas-Phase Reactions of Dianions with Alkyl Bromides:Â Direct Identification of SN2 and E2 Products. Journal of the American Chemical Society, 1999, 121, 2627-2628.	13.7	54
22	Intrinsic Barriers and Transition State Structures in the Gas Phase Carbon-to-Carbon Identity Proton Transfers from Nitromethane to Nitromethide Anion and from Protonated Nitromethane toaci-Nitromethane. Anab InitioStudy. Journal of the American Chemical Society, 1997, 119, 4008-4020.	13.7	53
23	Identity Proton-Transfer Reactions from Câ^'H, Nâ^'H, and Oâ^'H Acids. An ab Initio, DFT, and CPCM-B3LYP Aqueous Solvent Model Study. Journal of the American Chemical Society, 2003, 125, 11730-11745.	13.7	52
24	Theoretical studies of elimination reactions. 3. Gas-phase reactions of fluoride ion with 2-chloropropane and 1-chloropropane. The effect of methyl substituents. Journal of the American Chemical Society, 1993, 115, 652-659.	13.7	50
25	The Mechanism of Orotidine 5â€~-Monophosphate Decarboxylase: Catalysis by Destabilization of the Substrateâ€. Biochemistry, 2000, 39, 1778-1783.	2.5	50
26	Carbon acidity. 73. Conductimetric study of lithium and cesium salts of hydrocarbon acids. A scale of free ion acidities in tetrahydrofuran. Revision of the ion pair scales. Journal of the American Chemical Society, 1988, 110, 2829-2835.	13.7	49
27	Aromatic Superhalogens. Chemistry - A European Journal, 2014, 20, 4736-4745.	3.3	49
28	Gas phase ion chemistry of the acetic acid enolate anion [CH2CO2H] Journal of the American Chemical Society, 1989, 111, 3105-3106.	13.7	48
29	Leaving Group Effects in Gas-Phase Substitutions and Eliminations. Journal of the American Chemical Society, 2004, 126, 12977-12983.	13.7	47
30	The Element Effect Revisited: Factors Determining Leaving Group Ability in Activated Nucleophilic Aromatic Substitution Reactions. Journal of Organic Chemistry, 2012, 77, 9535-9540.	3.2	47
31	The Lithium Cation Binding Energies of Gaseous Amino Acids. Journal of Physical Chemistry A, 2003, 107, 405-410.	2.5	46
32	Direct Measurements of Deuterium Kinetic Isotope Effects in Anionic, Gas-Phase Substitution and Elimination Reactions. Journal of the American Chemical Society, 2007, 129, 5330-5331.	13.7	45
33	Lithium and Sodium Ion Binding Energies ofN-Acetyl andN-Glycyl Amino Acids. Journal of the American Chemical Society, 1999, 121, 1365-1371.	13.7	43
34	The gas-phase conformations of valine: an ab initio study. Computational and Theoretical Chemistry, 1997, 397, 107-112.	1.5	42
35	Determining the gas-phase properties and reactivities of multiply charged ions. , 1999, 34, 787-796.		41
36	Identity Hydride-Ion Transfer from Câ^'H Donors to C Acceptor Sites. Enthalpies of Hydride Addition and Enthalpies of Activation. Comparison with C··Ĥ··ÂC Proton Transfer. An ab Initio Study. Journal of the American Chemical Society, 2005, 127, 2324-2333.	13.7	40

#	Article	IF	CITATIONS
37	Fluoride-Induced Elimination of Ethyl Fluoride. The Importance of High-Level Optimizations in ab Initio and DFT Studies. Journal of Organic Chemistry, 1995, 60, 488-489.	3.2	39
38	Gas-phase chemistry of the silaformyl anion, HSiO Journal of the American Chemical Society, 1990, 112, 997-1003.	13.7	38
39	Structural and Solvent Effects on the Mechanism of Base-Induced Rearrangement of Epoxides to Allylic Alcohols. Journal of Organic Chemistry, 2000, 65, 1461-1466.	3.2	38
40	The dehydrophenyl anion and the gas-phase ion chemistry of benzyne. Journal of the American Chemical Society, 1989, 111, 9253-9254.	13.7	37
41	The need for additional diffuse functions in calculations on small anions: the G2(DD) approach. Chemical Physics Letters, 1996, 252, 415-418.	2.6	37
42	Enantioselective gas-phase ion–molecule reactions in a quadrupole ion trap. International Journal of Mass Spectrometry, 2002, 219, 79-87.	1.5	36
43	Carbon acidity. 70. Equilibrium ion pair acidities in tetrahydrofuran of benzylic carbon acids stabilized by an adjacent cyano, carboalkoxy, and sulfonyl substituent. Delocalization and aggregation of ion pairs. Journal of the American Chemical Society, 1987, 109, 602-603.	13.7	35
44	Theoretical studies of elimination reactions. 2. The importance of periplanar transition states in E1cb-like eliminations. The gauche transition state of hydroxide + methoxyethane. Journal of the American Chemical Society, 1992, 114, 2349-2354.	13.7	35
45	An ab Initio Study of Proton Transfers from Gas-Phase Dications:  Complications in Kinetic Methods for Determining Acidities. Journal of the American Chemical Society, 1996, 118, 3525-3526.	13.7	34
46	Systematic Study of the Potential Energy Surface for the Base-Induced Elimination Reaction of Fluoride Ion with Ethyl Fluoride Using Density Functional Theory. Journal of Physical Chemistry A, 1997, 101, 208-218.	2.5	33
47	Electron flow into cytochrome c coupled with reactive oxygen species from the electron transport chain converts cytochrome c to a cardiolipin peroxidase: role during ischemia–reperfusion. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3199-3207.	2.4	32
48	Manipulating the fragmentation patterns of phosphopeptides via gas-phase boron derivatization: Determining phosphorylation sites in peptides with multiple serines. Journal of the American Society for Mass Spectrometry, 2005, 16, 1905-1914.	2.8	31
49	The Folly of Protobranching: Turning Repulsive Interactions into Attractive Ones and Rewriting the Strain/Stabilization Energies of Organic Chemistry. Chemistry - A European Journal, 2009, 15, 5372-5382.	3.3	31
50	Structures and energies of main-group metal formyl complexes. Mechanism of the reaction of lithium hydride with carbon monoxide Journal of the American Chemical Society, 1987, 109, 2553-2559.	13.7	30
51	Gas phase reactions of trimethyl borate with phosphates and their non-covalent complexes. Journal of the American Society for Mass Spectrometry, 2002, 13, 1088-1098.	2.8	30
52	Concerning the Regioselectivity of Gas Phase Reactions of Glycine with Electrophiles. The Cases of the Dimethylchlorinium Ion and the Methoxymethyl Cation. Journal of Organic Chemistry, 1995, 60, 1990-1998.	3.2	29
53	The gas phase acid/base properties of 1,3,-dimethyluracil, 1-methyl-2-pyridone, and 1-methyl-4-pyridone: relevance to the mechanism of orotidine-5′-monophosphate decarboxylase. International Journal of Mass Spectrometry, 2000, 195-196, 251-258.	1.5	29
54	Coulomb repulsion in multiply charged ions: a computational study of the effective dielectric constants of organic spacer groups. International Journal of Mass Spectrometry, 1999, 185-187, 351-357.	1.5	28

#	Article	IF	CITATIONS
55	Evidence that Alkyl Substitution Provides Little Stabilization to Radicals:Â The Câ^'C Bond Test and the Nonbonded Interaction Contradiction. Journal of Organic Chemistry, 2006, 71, 7045-7048.	3.2	28
56	Base-Catalyzed Dehydration of 3-Substituted Benzene cis-1,2-Dihydrodiols: Stabilization of a Cyclohexadienide Anion Intermediate by Negative Aromatic Hyperconjugation. Journal of the American Chemical Society, 2012, 134, 14056-14069.	13.7	28
57	Carbon acidity. 71. The indicator scale of lithium ion pairs in tetrahydrofuran. Journal of the American Chemical Society, 1986, 108, 7016-7022.	13.7	27
58	Can Cluster Structure Affect Kinetic Method Measurements? The Curious Case of Glutamic Acid's Gas-Phase Acidity. Journal of the American Society for Mass Spectrometry, 2008, 19, 1887-1896.	2.8	27
59	Gas phase hydrogen/deuterium exchange reactions of fluorophenyl anions. Journal of the American Society for Mass Spectrometry, 1999, 10, 840-847.	2.8	26
60	Experimental and theoretical proton affinities of methionine, methionine sulfoxide and their N- and C-terminal derivatives. International Journal of Mass Spectrometry, 2007, 267, 220-232.	1.5	25
61	The reactivity of human serum albumin toward <i>trans</i> â€4â€hydroxyâ€2â€nonenal. Journal of Mass Spectrometry, 2012, 47, 411-424.	1.6	25
62	Gas phase derivatization in peptide analysis I: the utility of trimethyl borate in identifying phosphorylation sites. International Journal of Mass Spectrometry, 2004, 231, 179-187.	1.5	24
63	Protonated Polycyclic Aromatic Nitrogen Heterocyclics: Proton Affinities, Polarizabilities, and Atomic and Ring Charges of 1–5-Ring Ions. Journal of Physical Chemistry A, 2015, 119, 127-139.	2.5	24
64	Reaction of anions with activated olefins in the gas phase. A flowing afterglow-selected ion flow tube study. Journal of the American Chemical Society, 1990, 112, 9044-9052.	13.7	23
65	Theoretical Studies of Eliminations. 6. The Regiochemistry and Stereochemistry of the Gas-Phase Reactions of 3-Halocyclohexenes with Fluoride. Anab InitioStudyâ€. Journal of Organic Chemistry, 1997, 62, 7991-8000.	3.2	23
66	Zwitterion formation in gas-phase cyclodextrin complexes. Journal of the American Society for Mass Spectrometry, 2005, 16, 166-175.	2.8	23
67	Concerted or Stepwise: How Much Do Free-Energy Landscapes Tell Us about the Mechanisms of Elimination Reactions?. Journal of Organic Chemistry, 2014, 79, 1280-1288.	3.2	23
68	Gas Phase Reactions of Methyloxirane with HO- and Methylthiirane with HO- and HS An Ab Initio Study of Addition and Elimination. Journal of Organic Chemistry, 1995, 60, 4488-4497.	3.2	22
69	Reactions of Gas-Phase Salts:Â Substitutions and Eliminations in Complexes Containing a Dianion and a Tetraalklylammonium Cation. Organic Letters, 1999, 1, 503-506.	4.6	22
70	Correlations between Carbene and Carbenium Stability: Ab Initio Calculations on Substituted Phenylcarbenes, Nonbenzenoid Arylcarbenes, Heteroatom-Substituted Carbenes, and the Corresponding Carbocations and Hydrogenation Products. Journal of Organic Chemistry, 2009, 74, 5250-5259.	3.2	21
71	Gasâ€Phase Dehydrogenation of Alkanes: Câ^H Activation by a Grapheneâ€Supported Nickel Singleâ€Atom Catalyst Model. Angewandte Chemie - International Edition, 2019, 58, 14906-14910.	13.8	21
72	Carbon acidity. 74. The effects of hetero-substituted pendant groups on carbanion reactivity. Solvent separated-contact ion pair equilibria and relative pKLi/THF's for 9-substituted fluorenyllithiums in tetrahydrofuran. The importance of internal chelation. Journal of the American Chemical Society, 1988, 110, 2836-2842.	13.7	20

#	Article	IF	CITATIONS
73	Theoretical Studies of Elimination Reactions. 4. Gas Phase Reactions of F- with Cyclopentyl and Cyclohexyl Chloride. Stereochemical Preferences of E2 Eliminations. Journal of Organic Chemistry, 1994, 59, 7046-7050.	3.2	20
74	An Epoxide Intermediate in Nucleophilic Acylations by Thiazolium Precursors. Organic Letters, 2007, 9, 3065-3068.	4.6	20
75	EPR Data Do Not Indicate That Hyperconjugation Stabilizes Alkyl Radicals. Organic Letters, 2007, 9, 2211-2214.	4.6	20
76	Ion/molecule reactions of the protonated serine octamerGas Phase Ion Chemistry of Biomolecules. Part 42.20. Chemical Communications, 2004, , 1944.	4.1	19
77	The Impact of Substituents on the Transition States of S _N 2 and E2 Reactions in Aliphatic and Vinylic Systems: Remarkably Facile Vinylic Eliminations. Journal of the American Chemical Society, 2012, 134, 9303-9310.	13.7	19
78	Formation and Reactivity of Gold Carbene Complexes in the Gas Phase. Organometallics, 2014, 33, 7135-7140.	2.3	19
79	The Protonation of Allene and Some Heteroallenes, a Computational Study. Journal of Organic Chemistry, 2007, 72, 6343-6352.	3.2	18
80	Strain-Free Transition States in the Formation of Strained Rings: An ab Initio Study of Thiirane, Thietan, and Tetrahydrothiophene. Journal of Organic Chemistry, 1995, 60, 6731-6736.	3.2	17
81	Cyclizations of 3-Chlorocarbanions to Cyclopropanes: "Strain-Free―Transition States for Forming Highly Strained Rings. Journal of the American Chemical Society, 1998, 120, 3220-3226.	13.7	17
82	Surprisingly Low Aqueous Acidity at the α-Positions of Pyridiniums and Pyrimidinium: The Role of Solvation. Organic Letters, 2008, 10, 2757-2760.	4.6	17
83	Effect of Ring Size and Migratory Groups on [1, <i>n</i>] Suprafacial Shift Reactions. Confirmation of Aromatic and Antiaromatic Transition-State Character by Ring-Current Analysis. Journal of Organic Chemistry, 2016, 81, 8777-8788.	3.2	17
84	Gas-phase chemistry of the silaacetylide anion, HCSi Journal of the American Chemical Society, 1988, 110, 2005-2006.	13.7	16
85	Structural Effects on the Gas Phase Reactivity of Organic Salt Complexes: Substitution versus Hofmann Elimination. Australian Journal of Chemistry, 2003, 56, 379.	0.9	16
86	Resolving the α-effect in gas phase SN2 reactions: A Marcus theory approach. International Journal of Mass Spectrometry, 2012, 316-318, 244-250.	1.5	16
87	How does isotopic substitution affect the gas-phase proton affinity of glycine? a combined experimental andAb Initio study. Organic Mass Spectrometry, 1994, 29, 151-152.	1.3	15
88	Accuracy of G2 Calculations for the Reactions of Hydroxyl Radicals with Alkanes. Journal of Physical Chemistry A, 1998, 102, 2609-2612.	2.5	15
89	Primary Semiclassical Kinetic Hydrogen Isotope Effects in Identity Carbon-to-Carbon Proton- and Hydride-Transfer Reactions, an ab Initio and DFT Computational Study. Journal of Organic Chemistry, 2006, 71, 5959-5968.	3.2	15
90	Carbonylation of mitochondrial aconitase with 4-hydroxy-2-(E)-nonenal: Localization and relative reactivity of addition sites. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1144-1154.	2.3	15

#	Article	IF	CITATIONS
91	Carbon acidity. 76. The remarkably low second pKa of 1-naphthylacetic acid. Lithium ion pair acidity in tetrahydrofuran. Journal of the American Chemical Society, 1988, 110, 4418-4419.	13.7	14
92	Dehalogenation of Arenes via S _N 2 Reactions at Bromine: Competition with Nucleophilic Aromatic Substitution Journal of Organic Chemistry, 2014, 79, 11020-11028.	3.2	14
93	Protonation Energies of 1–5-Ring Polycyclic Aromatic Nitrogen Heterocyclics: Comparing Experiment and Theory. Journal of Physical Chemistry A, 2015, 119, 118-126.	2.5	14
94	Gas-phase negative-ion chemistry of diazomethane. Journal of Organic Chemistry, 1989, 54, 1846-1850.	3.2	13
95	Gas phase reactions of dianions. 2. The effect of a second charge on SN2 potential energy surfaces: an ab initio study. International Journal of Mass Spectrometry, 1999, 192, 185-190.	1.5	13
96	Modest catalysis of the decarboxylation of orotate by hydrogen bonding: a theoretical model for orotidine-5′-monophosphate decarboxylase. Bioorganic Chemistry, 2004, 32, 76-81.	4.1	13
97	Mechanistic Insights into the Reactions of Co(III) Salens with Diazoacetates. Organic Letters, 2010, 12, 676-679.	4.6	13
98	The Stability of Aryl Carbanions Derived from Pyridine <i>N</i> Oxide: The Role of Resonance in Stabilizing Aryl Anions. Journal of the American Chemical Society, 2010, 132, 390-395.	13.7	13
99	Calculated stabilities and structures for carbocations and singlet carbenes bearing electronâ€withdrawing groups. Journal of Physical Organic Chemistry, 2013, 26, 1023-1031.	1.9	13
100	Imidazolidin-4-ones via (3+2) cycloadditions of aza-oxyallyl cations onto (E)-N-arylideneanilines. Tetrahedron Letters, 2018, 59, 3674-3677.	1.4	13
101	Effect of Allylic Groups on SN2 Reactivity. Journal of Organic Chemistry, 2014, 79, 6410-6418.	3.2	12
102	Chapter 10. Gas phase organic ion–molecule reaction chemistry. Annual Reports on the Progress of Chemistry Section B, 1999, 95, 349-372.	0.9	11
103	Ab initio insights into amide bond cleavage reactions of formamide with substituted methyl cations XCH2+ (X = OH, F, and Cl). International Journal of Mass Spectrometry, 2000, 195-196, 303-317.	1.5	11
104	Comparing the efficiencies of hydrazide labels in the study of protein carbonylation in human serum albumin. Analytical and Bioanalytical Chemistry, 2012, 404, 1399-1411.	3.7	11
105	The gas-phase reactions of metal porphyrins with diazoacetate esters. International Journal of Mass Spectrometry, 2012, 316-318, 68-75.	1.5	11
106	Impact of Alkyl Substituents on the Gas-Phase Competition between Substitution and Elimination. Journal of Organic Chemistry, 2013, 78, 8606-8613.	3.2	11
107	Investigating reduced metal species via sequential ion/ion and ion/molecule reactions: The reactions of transition metal phenanthrolines with allyl iodide. International Journal of Mass Spectrometry, 2017, 418, 73-78.	1.5	11
108	Substitution Reactions on lodine and Bromine: Mechanisms for Facile Halogenations of Heterocycles. Journal of Organic Chemistry, 2019, 84, 5757-5762.	3.2	11

#	Article	IF	CITATIONS
109	Theoretical Studies of Eliminations. 5. Intermolecular vs Intramolecular Eliminations:Â An ab Initio Study of the Gas-Phase Reaction of NH2-with CH3CH2SCH3. Journal of Organic Chemistry, 1996, 61, 9430-9433.	3.2	10
110	A cleavable biotin tagging reagent that enables the enrichment and identification of carbonylation sites in proteins. Analytical and Bioanalytical Chemistry, 2016, 408, 865-874.	3.7	10
111	Stereoselectivity in 1,2-Elimination Reactions. The Gas-Phase Reactivity of Deuterium-Labeled 1-Methoxy-1-tert-butyl-4,4-dimethyl-2-cyclohexene and 1-Methoxy-3-tert-butyl-6,6-dimethyl-3-cyclohexene. Journal of the American Chemical Society, 1994, 116, 3133-3134.	13.7	9
112	Stereoselectivity in the collision-activated reactions of gas phase salt complexes. Journal of the American Society for Mass Spectrometry, 2004, 15, 1509-1516.	2.8	9
113	Carbon acidity. 75. The effects of hetero-substituted pendant groups on carbanion reactivity. Kinetic acidities of 9-substituted fluorenes in tetrahydrofuran. The importance of free ions in the reactions of delocalized carbanion salts. Journal of the American Chemical Society, 1988, 110, 2843-2847.	13.7	8
114	A Strong Preference for a Salt-Bridge Structure in the Gas Phase:Â Reactions of Deprotonated Amino Acids with Borane. Journal of the American Chemical Society, 2001, 123, 8606-8607.	13.7	8
115	Catalysis of decarboxylation by an adjacent negative charge: a theoretical approach. Bioorganic Chemistry, 2003, 31, 271-277.	4.1	8
116	Gas-Phase Stereoselective Binding to Mn/Salen Catalysts. Organic Letters, 2008, 10, 1771-1773.	4.6	8
117	Reactivity in the nucleophilic aromatic substitution reactions of pyridinium ions. Organic and Biomolecular Chemistry, 2014, 12, 6175-6180.	2.8	8
118	Gasâ€Phase Dehydrogenation of Alkanes: Câ^'H Activation by a Grapheneâ€Supported Nickel Singleâ€Atom Catalyst Model. Angewandte Chemie, 2019, 131, 15048-15052.	2.0	8
119	10 Gas phase organic ion–molecule reaction chemistry. Annual Reports on the Progress of Chemistry Section B, 2000, 96, 445-475.	0.9	7
120	Nucleophilic Aromatic Substitution with Dianions: Reactions Driven by the Release of Coulomb Repulsion. Journal of the American Society for Mass Spectrometry, 2014, 25, 10-17.	2.8	7
121	Unusual hydroxyl effect on fulvene endoperoxide decompositions. Tetrahedron Letters, 2016, 57, 2190-2193.	1.4	7
122	Gold(I)-Induced Rearrangements of Propargyl Derivatives: A Gas-Phase Study. Organometallics, 2016, 35, 3844-3851.	2.3	7
123	Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2016, 27, 339-343.	2.8	7
124	Stabilities of uracil and pyridone-based carbanions: a systematic study in the gas phase and solution and implications for the mechanism of orotidine-5′-monophosphate decarboxylase. Tetrahedron, 2013, 69, 5287-5292.	1.9	6
125	Pyrrolidine catalyzed reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds: 1,2- versus 1,4-additions. Tetrahedron, 2015, 71, 2636-2642.	1.9	6
126	A Robust Analytical Approach for the Identification of Specific Protein Carbonylation Sites: Metal-Catalyzed Oxidations of Human Serum Albumin. Analytical Letters, 2017, 50, 567-579.	1.8	6

#	Article	IF	CITATIONS
127	New insights into the gas-phase anion chemistry of nitrous oxide. European Journal of Mass Spectrometry, 1995, 1, 429.	0.7	5
128	High-Level Computational Studies of Nonidentity Proton Transfer Reactions:  Variations in Their Gas Phase Potential Energy Surfaces. Journal of Physical Chemistry A, 2003, 107, 8932-8938.	2.5	5
129	Gas-phase ligand binding to Jacobsen's manganese salen catalyst: Functional group and steric effects. International Journal of Mass Spectrometry, 2011, 305, 40-44.	1.5	5
130	Temperature-dependent, competitive 1,3-acyl shift versus decarbonylation of a cyclopropanone intermediate. Tetrahedron, 2013, 69, 5044-5047.	1.9	5
131	Carbanions. , 2005, , 69-119.		4
132	Polarization in the structures of uracil and thiouracils: Implication for binding with orotidine 5′-monophosphate decarboxylase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6341-6342.	2.2	4
133	Electron Delocalization Is Not a Satisfactory Explanation for the Preference for Branching in the Alkanes. Chemistry - A European Journal, 2013, 19, 11090-11092.	3.3	4
134	Paraquat exposure and <i>Sod2</i> knockdown have dissimilar impacts on the <i>Drosophila melanogaster</i> carbonylated protein proteome. Proteomics, 2014, 14, 2566-2577.	2.2	4
135	Are Copper(I) Carbenes Capable Intermediates for Cyclopropanations? The Case for Ylide Intermediates. Chemistry - A European Journal, 2015, 21, 12702-12708.	3.3	4
136	Intermolecular Cï£;H Bond Activation by a Cationic Iridium(III) Dichloride Phenanthroline Complex. Angewandte Chemie - International Edition, 2015, 54, 6475-6478.	13.8	4
137	The gas-phase reactions of localized and delocalized carbanions with aryl halides: Competition between attack on the l̃€-system and the periphery. International Journal of Mass Spectrometry, 2015, 378, 31-37.	1.5	4
138	Singlet oxygenation of triquinacene, barrelene, and homobarrelene. Tetrahedron Letters, 2020, 61, 151779.	1.4	4
139	Gas-phase acidities of acrolein and methyl acrylate. Journal of Physical Organic Chemistry, 1990, 3, 346-348.	1.9	3
140	Two ways to transfer a proton. An ab initio study of the identity reaction of silyl (1-) + silane and comparisons to the reactions of aluminum hydride (AlH3) and phosphine. Organometallics, 1993, 12, 3805-3807.	2.3	3
141	The Competition between Elimination Pathways in the Reactions of a Wide Variety of Bases with 2-Fluoro- and 2-Chlorobutane in the Gas Phase. Journal of Organic Chemistry, 2015, 80, 10787-10793.	3.2	3
142	Cyclopentadienones via a Tandem C â€Cyclopropylnitrone Cyclizationâ€Cycloreversion Sequence. European Journal of Organic Chemistry, 2017, 2017, 5147-5153.	2.4	3
143	The mechanisms of the gas phase reactions of HOâ^' with oxirane and HSâ^' with thiirane. An ab initio study. International Journal of Mass Spectrometry and Ion Processes, 1992, 117, 115-128.	1.8	1

AB INITIO STUDIES OF ELIMINATION REACTION MECHANISMS. , 1997, , 33-88.

#	Article	IF	CITATIONS
145	A mass spectrometric method for rapidly assaying the chiral selectivities of the copper(I) complexes of C 2 â€symmetric ligands. Journal of Mass Spectrometry, 2015, 50, 1279-1287.	1.6	1
146	Gas Phase Studies of the Competition Between Substitution and Elimination Reactions. ChemInform, 2004, 35, no.	0.0	0
147	Quadrupole Ion Trap Studies of Fundamental Organic Reactions. ChemInform, 2005, 36, no.	0.0	Ο
148	Diverse Modes of Reactivity of 6â€(Chloromethyl)â€6â€methylfulvene. European Journal of Organic Chemistry, 2017, 2017, 2925-2931.	2.4	0
149	An Oxyâ€Anion Accelerated [1,5]â€∢i>oâ€Quinone Methide Shift During the Nucleophilic Epoxidation of Salicylfulvene. European Journal of Organic Chemistry, 2020, 2020, 362-366.	2.4	0
150	Remote functional group directed C–H activation by an Ir(iii) phenanthroline complex. Chemical Communications, 2020, 56, 15569-15572.	4.1	0