Sevil Gurgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2590325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of mechanical and optical properties of a newly marketed universal composite resin with contemporary universal composite resins: An in vitro study. Microscopy Research and Technique, 2022, 85, 1171-1179.	2.2	13
2	Antibacterial Activity and Biofilm Inhibition of New-Generation Hybrid/Fluoride-Releasing Restorative Materials. Applied Sciences (Switzerland), 2022, 12, 2434.	2.5	5
3	Shear bond strengths of two newly marketed selfâ€adhesive resin cements to different substrates: A light and scanning electron microscopy evaluation. Microscopy Research and Technique, 2022, 85, 1694-1702.	2.2	5
4	Sixty-month follow up of three different universal adhesives used with a highly-filled flowable resin composite in the restoration of non-carious cervical lesion. Clinical Oral Investigations, 2022, 26, 5377-5387.	3.0	5
5	Does a new formula have an input in the clinical success of posterior composite restorations? A chat study. Clinical Oral Investigations, 2021, 25, 1715-1727.	3.0	8
6	Effects of charcoal-based whitening toothpastes on human enamel in terms of color, surface roughness, and microhardness: an in vitro study. Clinical Oral Investigations, 2021, 25, 5977-5985.	3.0	40
7	Consensus on glass-ionomer cement thresholds for restorative indications. Journal of Dentistry, 2021, 107, 103609.	4.1	25
8	Commercially Available Ion-Releasing Dental Materials and Cavitated Carious Lesions: Clinical Treatment Options. Materials, 2021, 14, 6272.	2.9	6
9	Effects of Incorporation of Marine Derived Hydroxyapatite on the Microhardness, Surface Roughness, and Fluoride Release of Two Glass-Ionomer Cements. Applied Sciences (Switzerland), 2021, 11, 11027.	2.5	2
10	Comparison of laser- and bur-prepared class I cavities restored with two different low-shrinkage composite resins: a randomized, controlled 60-month clinical trial. Clinical Oral Investigations, 2020, 24, 357-368.	3.0	7
11	A randomized controlled 10 years follow up of a glass ionomer restorative material in class I and class II cavities. Journal of Dentistry, 2020, 94, 103175.	4.1	39
12	Twenty-four-month clinical performance of a glass hybrid restorative in non-carious cervical lesions of patients with bruxism: a split-mouth, randomized clinical trial. Clinical Oral Investigations, 2020, 24, 1229-1238.	3.0	15
13	Mechanical Properties of Glass Ionomer Cements after Incorporation of Marine Derived Hydroxyapatite. Materials, 2020, 13, 3542.	2.9	7
14	Clinical Evaluation of a Self-Adhering Flowable Resin Composite in Minimally Invasive Class I Cavities: 5-year Results of a Double Blind Randomized, Controlled Clinical Trial. Acta Stomatologica Croatica, 2020, 54, 10-21.	1.0	9
15	One-year evaluation of a new restorative glass ionomer cement for the restoration of non-carious cervical lesions in patients with systemic diseases: a randomized, clinical trial. Journal of Applied Oral Science, 2020, 28, e20200311.	1.8	6
16	Comparison of Resin Infiltration Technique with Conventional Preventive Applications on Occlusal Fissures: EDS and SEM Analyses. Acta Stomatologica Croatica, 2020, 54, 382-391.	1.0	3
17	An 18-month clinical evaluation of three different universal adhesives used with a universal flowable composite resin in the restoration of non-carious cervical lesions. Clinical Oral Investigations, 2019, 23, 1443-1452.	3.0	21
18	Mechanical properties and water sorption of two experimental glass ionomer cements with hydroxyapatite or calcium fluorapatite formulation. Dental Materials Journal, 2019, 38, 471-479.	1.8	12

SEVIL GURGAN

#	Article	IF	CITATIONS
19	Effects of in-office bleaching agent combined with different desensitizing agents on enamel. Journal of Applied Oral Science, 2019, 27, e20180233.	1.8	29
20	Compressive Strength of New Glass Ionomer Cement Technology based Restorative Materials after Thermocycling and Cyclic Loading. Acta Stomatologica Croatica, 2019, 53, 318-325.	1.0	9
21	Bond strength of three different universal adhesives after different thermal cycling protocols. Journal of Adhesion Science and Technology, 2018, 32, 2741-2752.	2.6	3
22	Comparison of Er,Cr:YSGG Laser Handpieces for Class II Preparation and Microleakage of Silorane- or Methacrylate-Based Composite Restorations. Photomedicine and Laser Surgery, 2018, 36, 499-505.	2.0	4
23	Comparison of different base materials on fracture strength of mesio-occlusal-distal composite restorations. European Journal of General Dentistry, 2018, 7, 25-30.	0.4	2
24	Microhardness and shear bond-strength of carious dentin after fluorescence-aided or conventionally excavation: (An in-vitro comparison). Journal of Clinical and Experimental Dentistry, 2018, 10, 0-0.	1.2	4
25	Clinical performance of a glass ionomer restorative system: a 6-year evaluation. Clinical Oral Investigations, 2017, 21, 2335-2343.	3.0	46
26	Comparison of two different methods of detecting residual caries. Restorative Dentistry & Endodontics, 2017, 42, 48.	1.5	8
27	Influence of extremely high irradiances on the micromechanical properties of a nano hybrid resin based composite. American Journal of Dentistry, 2017, 30, 9-15.	0.1	6
28	Guidance on posterior resin composites: Academy of Operative Dentistry - European Section. Journal of Dentistry, 2014, 42, 377-383.	4.1	167
29	Different light-activated in-office bleaching systems: a clinical evaluation. Lasers in Medical Science, 2010, 25, 817-822.	2.1	107
30	Effects of Ozone and ND:YAG Laser Pretreatment on Bond Strength of Self-Etch Adhesives to Coronal and Root Dentin. Photomedicine and Laser Surgery, 2010, 28, S-3-S-9.	2.0	10
31	Shear bond strength of composite bonded to erbium:yttrium-aluminum-garnet laser-prepared dentin. Lasers in Medical Science, 2009, 24, 117-122.	2.1	50
32	Effect of different adhesive systems and laser treatment on the shear bond strength of bleached enamel. Journal of Dentistry, 2009, 37, 527-534.	4.1	54
33	Shear Bond Strength of Composite Bonded to Er,Cr:YSGG Laser-Prepared Dentin. Photomedicine and Laser Surgery, 2008, 26, 495-500.	2.0	30
34	The effect of three different mouthrinses on the surface hardness, gloss and colour change of bleached nano composite resins. European journal of prosthodontics and restorative dentistry, The, 2008, 16, 104-8.	0.4	5
35	Effect of Carbamide Peroxide Treatments on the Metal-ion Release and Microstructure of Different Dental Amalgams. Operative Dentistry, 2007, 32, 476-481.	1.2	11
36	The effect of 2 different bleaching regimens on the surface roughness and hardness of tooth-colored restorative materials. Quintessence International, 2007, 38, e83-7.	0.1	11