List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589918/publications.pdf Version: 2024-02-01

LOSE EACELL

#	Article	IF	CITATIONS
1	Invasive success of exotic wild oat depends on nutrient availability and competition in temperate grasslands of southern Australia. Plant and Soil, 2022, 472, 465-478.	3.7	3
2	Seed traits and fate support probable primary dispersal of a native hemi-parasitic vine <i>Cassytha pubescens</i> (Lauraceae) by <i>Isoodon obesulus</i> , an endangered marsupial, in southern Australia. Transactions of the Royal Society of South Australia, 2022, 146, 249-261.	0.4	2
3	Site preparation impacts on soil biotic and abiotic properties, weed control, and native grass establishment. Restoration Ecology, 2021, 29, e13297.	2.9	6
4	The effect of heat and smoke on the soil seed banks of heathlands on permanent freshwater swamps. Austral Ecology, 2021, 46, 39-51.	1.5	2
5	The combined effects of water and nitrogen on the relationship between a native hemiparasite and its invasive host. New Phytologist, 2021, 229, 1728-1739.	7.3	9
6	Does phosphorus influence performance of a native hemiparasite and its impact on a native legume?. Physiologia Plantarum, 2021, 173, 1889-1900.	5.2	5
7	Resource preâ€emption, rather than extending the growing season of native grass assemblages, reduces invasion by exotic species. Applied Vegetation Science, 2021, 24, e12613.	1.9	Ο
8	Endemic macrophyte is more plastic than two cosmopolitan species in fluctuating water levels and nutrient-enriched conditions. Transactions of the Royal Society of South Australia, 2021, 145, 25-44.	0.4	0
9	Defence responses of native and invasive plants to the native generalist vine parasite Cassytha pubescens – anatomical and functional studies. Australian Journal of Botany, 2020, 68, 300.	0.6	8
10	The impact of a native hemiparasite on a major invasive shrub is affected by host size at time of infection. Journal of Experimental Botany, 2020, 71, 3725-3734.	4.8	14
11	Native parasitic plants: Biological control for plant invasions?. Applied Vegetation Science, 2020, 23, 464-469.	1.9	22
12	Biological soil crust and vascular plant interactions in Western Myall (Acacia papyrocarpa) open woodland in South Australia. Journal of Vegetation Science, 2019, 30, 756-764.	2.2	1
13	Socio-Cultural Values of Ecosystem Services from Oak Forests in the Eastern Himalaya. Sustainability, 2019, 11, 2250.	3.2	33
14	Response of vegetation cover to climate variability in protected and grazed arid rangelands of South Australia. Journal of Arid Environments, 2019, 161, 64-71.	2.4	11
15	Ninety years of change on the TGB Osborn Vegetation Reserve, Koonamore: a unique research opportunity. Rangeland Journal, 2019, 41, 185.	0.9	0
16	Evidence for speciesâ€specific plant responses to soil microbial communities from remnant and degraded land provides promise for restoration. Austral Ecology, 2018, 43, 301-308.	1.5	13
17	A soil-borne generalist pathogen regulates complex plant interactions. Plant and Soil, 2018, 433, 101-109.	3.7	12
18	Interactions between soil properties, soil microbes and plants in remnant-grassland and old-field areas: a reciprocal transplant approach. Plant and Soil, 2018, 433, 127-145.	3.7	27

#	Article	IF	CITATIONS
19	A native parasitic plant affects the performance of an introduced host regardless of environmental variation across field sites. Functional Plant Biology, 2018, 45, 1128.	2.1	16
20	Plant-mycorrhizal fungi feedbacks: potential accomplices of Avena barbata's high invasiveness. Plant Ecology, 2018, 219, 1045-1052.	1.6	16
21	The potential for deep groundwater use by <scp><i>Acacia papyrocarpa</i></scp> (Western myall) in a waterâ€limited environment. Ecohydrology, 2017, 10, e1791.	2.4	5
22	Does nitrogen affect the interaction between a native hemiparasite and its native or introduced leguminous hosts?. New Phytologist, 2017, 213, 812-821.	7.3	26
23	High water availability increases the negative impact of a native hemiparasite on its non-native host. Journal of Experimental Botany, 2016, 67, 1567-1575.	4.8	18
24	Native faunal communities depend on habitat from non-native plants in novel but not in natural ecosystems. Biodiversity and Conservation, 2016, 25, 503-523.	2.6	26
25	Native hemiparasite and light effects on photoprotection and photodamage in a native host. Functional Plant Biology, 2015, 42, 1168.	2.1	11
26	Longâ€ŧerm influence of fallen logs on patch formation and their effects under contrasting grazing regimes. Austral Ecology, 2015, 40, 238-244.	1.5	0
27	The storage effect: definition and tests in two plant communities. , 2014, , 11-40.		11
28	Opening the black box: outcomes of interactions between arbuscular mycorrhizal (<scp>AM</scp>) and nonâ€host genotypes of <i><scp>M</scp>edicago</i> depend on fungal identity, interplay between <scp>P</scp> uptake pathways and external <scp>P</scp> supply. Plant, Cell and Environment, 2014, 37, 1382-1392.	5.7	27
29	Dormancy-breaking and germination requirements for seeds of Acacia papyrocarpa, Acacia oswaldii and Senna artemisioides ssp.×coriacea, three Australian arid-zone Fabaceae species. Australian Journal of Botany, 2014, 62, 546.	0.6	14
30	Do wide crowns in arid woodland trees reflect hydraulic limitation and reduction of self-shading?. Functional Plant Biology, 2014, 41, 1221.	2.1	4
31	Fallen logs as sources of patchiness in chenopod shrublands of South Australia. Journal of Arid Environments, 2013, 97, 66-72.	2.4	8
32	Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 2013, 23, 411-430.	2.8	280
33	Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.	7.3	124
34	Changes in seed dispersal processes and the potential for betweenâ€patch connectivity for an arid land daisy. Ecology, 2012, 93, 544-553.	3.2	11
35	Response of selected South Australian native plant species to <i>Phytophthora cinnamomi</i> . Plant Pathology, 2012, 61, 1165-1178.	2.4	10
36	The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant and Soil, 2012, 352, 143-156.	3.7	69

#	Article	IF	CITATIONS
37	Multispecies interactions among a plant parasite, a pollinator and a seed predator affect the reproductive output of an invasive plant, <i>Cytisus scoparius</i> . Austral Ecology, 2011, 36, 167-175.	1.5	12
38	Seed viability in declining populations of <i>Caladenia rigida</i> (Orchidaceae): are small populations doomed?. Plant Biology, 2011, 13, 86-95.	3.8	13
39	Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189, 366-370.	7.3	149
40	Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytologist, 2011, 191, 777-788.	7.3	155
41	Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytologist, 2010, 185, 1050-1061.	7.3	98
42	Secondary seed dispersal of <i>Erodiophyllum elderi</i> , a patchily distributed shortâ€lived perennial in the arid lands of Australia. Austral Ecology, 2010, 35, 906-918.	1.5	15
43	The influence of the hemiparasitic angiosperm Cassytha pubescens on photosynthesis of its host Cytisus scoparius. Functional Plant Biology, 2010, 37, 14.	2.1	29
44	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
45	Impacts of a native parasitic plant on an introduced and a native host species: implications for the control of an invasive weed. Annals of Botany, 2009, 103, 107-115.	2.9	65
46	Why do some species in arid lands increase under grazing? Mechanisms that favour increased abundance of <i>Maireana pyramidata</i> in overgrazed chenopod shrublands of South Australia. Austral Ecology, 2009, 34, 588-597.	1.5	16
47	Grazing orchids: impact of florivory on two species of Caladenia (Orchidaceae). Australian Journal of Botany, 2009, 57, 361.	0.6	9
48	Bees and white spiders: unravelling the pollination syndrome of Caladenia rigida (Orchidaceae). Australian Journal of Botany, 2009, 57, 315.	0.6	21
49	Priority effects produced by plant litter result in non-additive competitive effects. Oecologia, 2008, 157, 687-696.	2.0	26
50	Cyclic dormancy, temperature and water availability control germination of <i>Carrichtera annua</i> , an invasive species in chenopod shrublands. Austral Ecology, 2008, 33, 324-328.	1.5	14
51	Desert shrubs have negative or neutral effects on annuals at two levels of water availability in arid lands of South Australia. Journal of Ecology, 2008, 96, 1230-1237.	4.0	25
52	Effects of neighbouring vegetation on eucalypt seedlings at two sites subject to different levels of abiotic stress. Austral Ecology, 2007, 32, 145-154.	1,5	2
53	Correlations between environmental factors, the biomass of exotic annual grasses and the frequency of native perennial grasses. Australian Journal of Botany, 2006, 54, 655.	0.6	12
54	Effects of competition, resource availability and invertebrates on tree seedling establishment. Journal of Ecology, 2005, 93, 968-977.	4.0	16

#	Article	IF	CITATIONS
55	The role of seed limitation and resource availability in the recruitment of native perennial grasses and exotics in a South Australian grassland. Austral Ecology, 2005, 30, 684-694.	1.5	42
56	DIFFERENCES IN SEED BIOLOGY OF ANNUAL PLANTS IN ARID LANDS: A KEY INGREDIENT OF THE STORAGE EFFECT. Ecology, 2005, 86, 2998-3006.	3.2	149
57	Interactive effects of drought and shade on three arid zone chenopod shrubs with contrasting distributions in relation to tree canopies. Functional Ecology, 2004, 18, 67-76.	3.6	51
58	Title is missing!. Plant Ecology, 2003, 167, 19-29.	1.6	15
59	Differing effects of shade-induced facilitation on growth and survival during the establishment of a chenopod shrub. Journal of Ecology, 2003, 91, 941-950.	4.0	93
60	Direct and indirect effects of exotic annual grasses on species composition of a South Australian grassland. Austral Ecology, 2003, 28, 23-32.	1.5	63
61	Shade facilitates an invasive stem succulent in a chenopod shrubland in South Australia. Austral Ecology, 2003, 28, 480-490.	1.5	45
62	Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia, 2002, 133, 54-61.	2.0	81
63	Multiple effects of shrubs on annual plant communities in arid lands of South Australia. Austral Ecology, 2002, 27, 422-432.	1.5	111
64	Effects of Casuarina pauper litter and grove soil on emergence and growth of understorey species in arid lands of South Australia. Journal of Arid Environments, 2001, 49, 569-579.	2.4	36
65	Patch dynamics in arid lands: localized effects of <i>Acacia papyrocarpa</i> on soils and vegetation of open woodlands of south Australia. Ecography, 2000, 23, 479-491.	4.5	93
66	Effects of leaf litter on woody seedlings in xeric successional communities. Plant Ecology, 2000, 148, 225-231.	1.6	14
67	Patch dynamics in arid lands: localized effects of Acacia papyrocarpa on soils and vegetation of open woodlands of south Australia. Ecography, 2000, 23, 479-491.	4.5	25
68	Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability onTrifolium subterraneumcv. Mt. Barker. New Phytologist, 1999, 141, 535-547.	7.3	84
69	Establishment and growth of seedlings ofEucalyptus obliqua: Interactive effects of litter, water, and pathogens. Austral Ecology, 1999, 24, 484-494.	1.5	73
70	Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs. , 1999, 144, 27-35.		109
71	The impact of a novel invasive species,Orbea variegata(African carrion flower), on the chenopod shrublands of South Australia. Journal of Arid Environments, 1999, 41, 37-48.	2.4	26
72	Effects of sheep exclusion on the soil seed bank and annual vegetation in chenopod shrublands of South Australia. Journal of Arid Environments, 1999, 42, 117-128.	2.4	74

#	Article	IF	CITATIONS
73	Effects of ash and four types of litter on the establishment of <i>Eucalyptus obliqua</i> . Ecoscience, 1996, 3, 319-324.	1.4	19
74	Germination requirements and responses to leaf litter of four species of eucalypt. Oecologia, 1996, 107, 441-445.	2.0	48
75	Multiple Indirect Effects of Plant Litter Affect the Establishment of Woody Seedlings in Old Fields. Ecology, 1994, 75, 1727-1735.	3.2	201
76	Experimental evaluation of the foliar flag hypothesis using fruits of Rhus glabra (L.). Oecologia, 1993, 93, 70-72.	2.0	19
77	Interactions after death: plant litter controls priority effects in a successional plant community. Oecologia, 1993, 95, 277-282.	2.0	94
78	CONTRASTING GERMINATION AND SEEDLING GROWTH OF BETULA ALLEGHANIENSIS AND RHUS TYPHINA SUBJECTED TO VARIOUS AMOUNTS AND TYPES OF PLANT LITTER. American Journal of Botany, 1992, 79, 1209-1216.	1.7	99
79	Contrasting Germination and Seedling Growth of Betula alleghaniensis and Rhus typhina Subjected to Various Amounts and Types of Plant Litter. American Journal of Botany, 1992, 79, 1209.	1.7	40
80	Indirect Effects of Litter on Woody Seedlings Subject to Herb Competition. Oikos, 1991, 62, 129.	2.7	82
81	Plant litter: Its dynamics and effects on plant community structure. Botanical Review, The, 1991, 57, 1-32.	3.9	1,210
82	Disturbance effects on plant community diversity: spatial scales and dominance hierarchies. Plant Ecology, 1991, 93, 143-155.	1.2	155
83	Plant Litter: Light Interception and Effects on an Old-Field Plant Community. Ecology, 1991, 72, 1024-1031.	3.2	242
84	Heterogeneity of Plant Litter Accumulation in Successional Communities. Bulletin of the Torrey Botanical Club, 1991, 118, 62.	0.6	33
85	Microdisturbances in Oldfields and Forests: Implications for Woody Seedling Establishment. Oikos, 1990, 58, 55.	2.7	45
86	Directionality, convergence, and rate of change during early succession in the Inland Pampa, Argentina. Journal of Vegetation Science, 1990, 1, 255-260.	2.2	30
87	Community Structure in Grazed and Ungrazed Grassland Sites in the Flooding Pampa, Argentina. American Midland Naturalist, 1989, 121, 125.	0.4	81
88	Floristic Changes Induced by Flooding on Grazed and Ungrazed Lowland Grasslands in Argentina. Journal of Range Management, 1988, 41, 495.	0.3	59
89	Effect of Different Disturbance Regimen on Seminatural Grasslands from the Subhumid Pampa. Flora: Morphology, Distribution, Functional Ecology of Plants, 1988, 180, 241-249.	1.2	27
90	Diversity Changes During Pioneer Stages in a Subhumid Pampean Grassland Succession. American Midland Naturalist, 1987, 117, 17.	0.4	15

#	Article	IF	CITATIONS
91	Specialized seedling strategies I: seedlings in stressful environments. , 0, , 56-78.		10