
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2589241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical oxidation of terbium(III) in aqueous media: influence of supporting electrolyte on oxidation potential and stability. Journal of Applied Electrochemistry, 2022, 52, 583-593.	1.5	4
2	Recovery of copper, zinc and lead from photovoltaic panel residue. RSC Advances, 2022, 12, 2351-2360.	1.7	9
3	Continuous Counter-Current Ionic Liquid Metathesis in Mixer-Settlers: Efficiency Analysis and Comparison with Batch Operation. ACS Sustainable Chemistry and Engineering, 2022, 10, 946-955.	3.2	4
4	Recovery of cobalt from lithium-ion battery cathode material by combining solvoleaching and solvent extraction. Green Chemistry, 2022, 24, 2839-2852.	4.6	24
5	Combined Hydro–Solvo–Bioleaching Approach toward the Valorization of a Sulfidic Copper Mine Tailing. Industrial & Engineering Chemistry Research, 2022, 61, 684-693.	1.8	1
6	Solvometallurgical Process for the Recovery of Tungsten from Scheelite. Industrial & Engineering Chemistry Research, 2022, 61, 754-764.	1.8	8
7	Separation of Rare Earths and Transition Metals Using Ionic-Liquid-Based Aqueous Biphasic Systems. Industrial & Engineering Chemistry Research, 2022, 61, 5927-5935.	1.8	5
8	Gamma radiolytic stability of the novel modified diglycolamide 2,2′-oxybis(<i>N</i> , <i>N</i> -didecylpropanamide) (mTDDGA) for grouped actinide extraction. RSC Advances, 2022, 12, 12416-12426.	1.7	9
9	Effect of polar molecular organic solvents on non-aqueous solvent extraction of rare-earth elements. Separation and Purification Technology, 2022, 294, 121197.	3.9	9
10	One-Step Solvometallurgical Process for Purification of Lithium Chloride to Battery Grade. Journal of Sustainable Metallurgy, 2022, 8, 893-899.	1.1	7
11	Separation of cobalt and nickel via solvent extraction with Cyanex-272: Batch experiments and comparison of mixer-settlers and an agitated column as contactors for continuous counter-current extraction. Separation and Purification Technology, 2022, 296, 121326.	3.9	21
12	Solvometallurgical process for the recovery of rare-earth elements from Nd–Fe–B magnets. Separation and Purification Technology, 2021, 258, 117800.	3.9	23
13	Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmCo magnets by a supported ionic liquid phase. RSC Advances, 2021, 11, 8207-8217.	1.7	8
14	Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation. Journal of Sustainable Metallurgy, 2021, 7, 78-86.	1.1	6
15	Synthesis of polyaramids in Î ³ -valerolactone-based organic electrolyte solutions. Green Chemistry, 2021, 23, 1228-1239.	4.6	6
16	Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Separation and Purification Technology, 2021, 255, 117711.	3.9	36
17	Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 15492-15502.	1.3	6
18	Opposite selectivities of triâ€ <i>n</i> â€butyl phosphate and Cyanex 923 in solvent extraction of lithium and magnesium. AICHE Journal, 2021, 67, e17219.	1.8	17

#	Article	IF	CITATIONS
19	Oxidative Dissolution of Metals in Organic Solvents. Chemical Reviews, 2021, 121, 4506-4530.	23.0	52
20	Antimony Recovery from Lead-Rich Dross of Lead Smelter and Conversion into Antimony Oxide Chloride (Sb ₄ O ₅ Cl ₂). ACS Sustainable Chemistry and Engineering, 2021, 9, 5074-5084.	3.2	6
21	Recovery of Copper from Ammoniacal Leachates by Ion Flotation. Journal of Sustainable Metallurgy, 2021, 7, 1552-1564.	1.1	10
22	Thermodynamic Modeling of Salting Effects in Solvent Extraction of Cobalt(II) from Chloride Media by the Basic Extractant Methyltrioctylammonium Chloride. ACS Omega, 2021, 6, 11355-11366.	1.6	6
23	Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry. ACS Omega, 2021, 6, 13620-13625.	1.6	5
24	Mechanism of Ferric Chloride Facilitating Efficient Lithium Extraction from Magnesium-Rich Brine with Tri- <i>n</i> -butyl Phosphate. Industrial & Engineering Chemistry Research, 2021, 60, 8538-8547.	1.8	15
25	Integrated Process for Recovery of Rare-Earth Elements from Lamp Phosphor Waste Using Methanesulfonic Acid. Industrial & Engineering Chemistry Research, 2021, 60, 10319-10326.	1.8	13
26	Selective extraction of trivalent actinides using CyMe ₄ BTPhen in the ionic liquid Aliquat-336 nitrate. RSC Advances, 2021, 11, 6014-6021.	1.7	9
27	Dissolution behavior of precious metals and selective palladium leaching from spent automotive catalysts by trihalide ionic liquids. RSC Advances, 2021, 11, 10110-10120.	1.7	18
28	Solvometallurgical Recovery of Platinum Group Metals from Spent Automotive Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 337-350.	3.2	44
29	Hard–Soft Interactions in Solvent Extraction with Basic Extractants: Comparing Zinc and Cadmium Halides. ACS Omega, 2021, 6, 27924-27935.	1.6	6
30	Dosimetry and methodology of gamma irradiation for degradation studies on solvent extraction systems. Radiochimica Acta, 2021, 109, 61-72.	0.5	7
31	Nonaqueous Solvent Extraction for Enhanced Metal Separations: Concept, Systems, and Mechanisms. Industrial & Engineering Chemistry Research, 2021, 60, 17285-17302.	1.8	24
32	Development of a solvometallurgical process for the separation of yttrium and europium by Cyanex 923 from ethylene glycol solutions. Separation and Purification Technology, 2020, 235, 116193.	3.9	26
33	Supported ionic liquid phases for the separation of samarium and europium in nitrate media: Towards purification of medical samarium-153. Separation and Purification Technology, 2020, 232, 115939.	3.9	13
34	Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments. RSC Advances, 2020, 10, 307-316.	1.7	43
35	Selective Roasting of Nd–Fe‒B Permanent Magnets as a Pretreatment Step for Intensified Leaching with an Ionic Liquid. Journal of Sustainable Metallurgy, 2020, 6, 91-102.	1.1	26
36	Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals. Green Chemistry, 2020, 22, 417-426.	4.6	42

#	Article	IF	CITATIONS
37	Solvent Extraction Studies for the Separation of Trivalent Actinides from Lanthanides with a Triazole-functionalized 1,10-phenanthroline Extractant. Solvent Extraction and Ion Exchange, 2020, 38, 719-734.	0.8	12
38	Selective Removal of Zinc from BOF Sludge by Leaching with Mixtures of Ammonia and Ammonium Carbonate. Journal of Sustainable Metallurgy, 2020, 6, 680-690.	1.1	21
39	Separation of precious metals by split-anion extraction using water-saturated ionic liquids. Green Chemistry, 2020, 22, 8375-8388.	4.6	41
40	Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review. Journal of Sustainable Metallurgy, 2020, 6, 505-540.	1.1	53
41	Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification. RSC Advances, 2020, 10, 39601-39610.	1.7	9
42	Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid–choline chloride. RSC Advances, 2020, 10, 28879-28890.	1.7	33
43	Stability of ionic liquids in BrÃ,nsted-basic media. Green Chemistry, 2020, 22, 5225-5252.	4.6	38
44	Separation of Scandium from Hydrochloric Acid–Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase. Industrial & Engineering Chemistry Research, 2020, 59, 15332-15342.	1.8	6
45	Selection criteria of diluents of tri-n-butyl phosphate for recovering neodymium(III) from nitrate solutions. Chemical Engineering Research and Design, 2020, 161, 304-311.	2.7	7
46	Non-aqueous solvent extraction of indium from an ethylene glycol feed solution by the ionic liquid Cyphos IL 101: speciation study and continuous counter-current process in mixer–settlers. RSC Advances, 2020, 10, 24595-24612.	1.7	19
47	Solvent Extraction of Gold(III) with Diethyl Carbonate. ACS Sustainable Chemistry and Engineering, 2020, 8, 13713-13723.	3.2	34
48	Ammoniacal Solvoleaching of Copper from High-Grade Chrysocolla. Journal of Sustainable Metallurgy, 2020, 6, 589-598.	1.1	6
49	Cation Effect of Chloride Salting Agents on Transition Metal Ion Hydration and Solvent Extraction by the Basic Extractant Methyltrioctylammonium Chloride. Inorganic Chemistry, 2020, 59, 13442-13452.	1.9	12
50	Separation of iron(<scp>iii</scp>), zinc(<scp>ii</scp>) and lead(<scp>ii</scp>) from a choline chloride–ethylene glycol deep eutectic solvent by solvent extraction. RSC Advances, 2020, 10, 33161-33170.	1.7	18
51	^{ĵ3} -Valerolactone-based organic electrolyte solutions: a benign approach to polyaramid dissolution and processing. Green Chemistry, 2020, 22, 6127-6136.	4.6	8
52	Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923. ACS Sustainable Chemistry and Engineering, 2020, 8, 19032-19039.	3.2	21
53	Image analysis data for the study of the reactivity of the phases in Nd-Fe-B magnets etched with HCl-saturated Cyphos IL 101. Data in Brief, 2020, 32, 106203.	0.5	1
54	Reversible electrodeposition and stripping of magnesium from solvate ionic liquid–tetrabutylammonium chloride mixtures. RSC Advances, 2020, 10, 42021-42029.	1.7	5

#	Article	IF	CITATIONS
55	Extraction Behavior and Separation of Precious and Base Metals from Chloride, Bromide, and Iodide Media Using Undiluted Halide Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2020, 8, 8223-8234.	3.2	23
56	Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resources, Conservation and Recycling, 2020, 160, 104919.	5.3	114
57	Effects of thiol substitution in deep-eutectic solvents (DESs) as solvents for metal oxides. RSC Advances, 2020, 10, 23484-23490.	1.7	15
58	One-pot synthesis of symmetric imidazolium ionic liquids <i>N</i> , <i>N</i> -disubstituted with long alkyl chains. RSC Advances, 2020, 10, 21071-21081.	1.7	7
59	Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. Green Chemistry, 2020, 22, 4210-4221.	4.6	149
60	Hydration counteracts the separation of lanthanides by solvent extraction. AICHE Journal, 2020, 66, e16545.	1.8	16
61	Physicochemical study of diethylmethylammonium methanesulfonate under anhydrous conditions. Journal of Chemical Physics, 2020, 152, 234504.	1.2	8
62	Highly Soluble 1,4-Diaminoanthraquinone Derivative for Nonaqueous Symmetric Redox Flow Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 3832-3843.	3.2	44
63	Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents. RSC Advances, 2020, 10, 7328-7335.	1.7	34
64	Selective Extraction of Americium from Curium and the Lanthanides by the Lipophilic Ligand CyMe ₄ BTPhen Dissolved in Aliquat-336 Nitrate Ionic Liquid. Solvent Extraction and Ion Exchange, 2020, 38, 194-211.	0.8	20
65	Gamma Radiolysis of TODGA and CyMe ₄ BTPhen in the Ionic Liquid Tri- <i>n</i> -Octylmethylammonium Nitrate. Solvent Extraction and Ion Exchange, 2020, 38, 212-235.	0.8	23
66	Selective removal of magnesium from lithiumâ€rich brine for lithium purification by synergic solvent extraction using βâ€diketones and Cyanex 923. AICHE Journal, 2020, 66, e16246.	1.8	32
67	Recycling of bonded NdFeB permanent magnets using ionic liquids. Green Chemistry, 2020, 22, 2821-2830.	4.6	28
68	Selective leaching of lead from lead smelter residues using EDTA. RSC Advances, 2020, 10, 42147-42156.	1.7	8
69	THE ROLE OF NATURAL CLAYS IN THE SUSTAINABILITY OF LANDFILL LINERS. Detritus, 2020, , 100-113.	0.4	6
70	Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Separation and Purification Technology, 2019, 210, 209-218.	3.9	72
71	Enhancing Metal Separations Using Hydrophilic Ionic Liquids and Analogues as Complexing Agents in the More Polar Phase of Liquid–Liquid Extraction Systems. Industrial & Engineering Chemistry Research, 2019, 58, 15628-15636.	1.8	27
72	Recovery of Gallium, Indium, and Arsenic from Semiconductors Using Tribromide Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 14451-14459.	3.2	42

#	Article	IF	CITATIONS
73	Isolation of molybdenum(<scp>vi</scp>) from simulated leachates of irradiated uranium-aluminum targets using diluted and undiluted sulfate ionic liquids. Green Chemistry, 2019, 21, 3948-3960.	4.6	6
74	Metal Recovery from Spent Samarium–Cobalt Magnets Using a Trichloride Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2019, 7, 2578-2584.	3.2	63
75	Efficient and Sustainable Removal of Magnesium from Brines for Lithium/Magnesium Separation Using Binary Extractants. ACS Sustainable Chemistry and Engineering, 2019, 7, 19225-19234.	3.2	51
76	Recovery of Lead and Silver from Zinc Leaching Residue Using Methanesulfonic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 19807-19815.	3.2	32
77	Methanesulfonic acid: a sustainable acidic solvent for recovering metals from the jarosite residue of the zinc industry. Green Chemistry, 2019, 21, 5394-5404.	4.6	46
78	Model for Metal Extraction from Chloride Media with Basic Extractants: A Coordination Chemistry Approach. Inorganic Chemistry, 2019, 58, 12289-12301.	1.9	52
79	Effect of Magnetic Susceptibility Gradient on the Magnetomigration of Rare-Earth Ions. Journal of Physical Chemistry C, 2019, 123, 23131-23139.	1.5	8
80	Integrated process for the recovery of yttrium and europium from CRT phosphor waste. RSC Advances, 2019, 9, 1378-1386.	1.7	14
81	A Study of the Occurrence of Selected Rare-Earth Elements in Neutralized–Leached Bauxite Residue and Comparison with Untreated Bauxite Residue. Journal of Sustainable Metallurgy, 2019, 5, 57-68.	1.1	14
82	<i>p</i> -Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Solubilizing Metal Oxides. ACS Sustainable Chemistry and Engineering, 2019, 7, 3940-3948.	3.2	100
83	Selective Metal Recovery from Jarosite Residue by Leaching with Acid-Equilibrated Ionic Liquids and Precipitation-Stripping. ACS Sustainable Chemistry and Engineering, 2019, 7, 4239-4246.	3.2	40
84	Recovery of cobalt from dilute aqueous solutions using activated carbon–alginate composite spheres impregnated with Cyanex 272. RSC Advances, 2019, 9, 18734-18746.	1.7	10
85	Separation of GaCl ₃ from AlCl ₃ by Solid–Liquid Extraction and Stripping Using Anhydrous <i>n</i> -Dodecane and NaCl. Industrial & Engineering Chemistry Research, 2019, 58, 12459-12464.	1.8	3
86	Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 11521-11528.	3.2	179
87	Enhancing Metal Separations by Liquid–Liquid Extraction Using Polar Solvents. Chemistry - A European Journal, 2019, 25, 9197-9201.	1.7	33
88	Removal of metallic coatings from rare-earth permanent magnets by solutions of bromine in organic solvents. RSC Advances, 2019, 9, 14910-14915.	1.7	8
89	Enhancing rare-earth recovery from lamp phosphor waste. Hydrometallurgy, 2019, 187, 38-44.	1.8	56
90	Tuning Solvent Miscibility: A Fundamental Assessment on the Example of Induced Methanol/ <i>n</i> -Dodecane Phase Separation. Journal of Physical Chemistry B, 2019, 123, 4400-4407.	1.2	8

#	Article	IF	CITATIONS
91	Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Separation and Purification Technology, 2019, 219, 281-289.	3.9	40
92	Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids. RSC Advances, 2019, 9, 4876-4883.	1.7	28
93	Electrodeposition of indium from the ionic liquid trihexyl(tetradecyl)phosphonium chloride. Green Chemistry, 2019, 21, 1517-1530.	4.6	26
94	Recovery of Rare Earths from Bauxite Residue (Red Mud). World Scientific Series in Current Energy Issues, 2019, , 343-356.	0.1	3
95	Synthesis of Guerbet ionic liquids and extractants as β-branched biosourceable hydrophobes. Organic and Biomolecular Chemistry, 2019, 17, 9778-9791.	1.5	6
96	Selective ion-exchange separation of scandium(III) over iron(III) by crystalline α-zirconium phosphate platelets under acidic conditions. Separation and Purification Technology, 2019, 215, 81-90.	3.9	30
97	Studies on the Thoria Fuel Recycling Loop Using Triflic Acid: Effects of Powder Characteristics, Solution Acidity, and Radium Behavior. Journal of Sustainable Metallurgy, 2019, 5, 118-126.	1.1	3
98	Selective recovery of indium from iron-rich solutions using an Aliquat 336 iodide supported ionic liquid phase (SILP). Separation and Purification Technology, 2019, 212, 843-853.	3.9	35
99	Methodologies and Developments in the Analysis of REEs. , 2019, , 365-373.		2
100	Metal coordination in the high-temperature leaching of roasted NdFeB magnets with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. RSC Advances, 2018, 8, 9299-9310.	1.7	30
101	Rare Earths and the Balance Problem: How to Deal with Changing Markets?. Journal of Sustainable Metallurgy, 2018, 4, 126-146.	1.1	194
102	Selective Substitution of POCl3 with Organometallic Reagents: Synthesis of Phosphinates and Phosphonates. Synthesis, 2018, 50, 2019-2026.	1.2	6
103	Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. Minerals Engineering, 2018, 119, 82-92.	1.8	117
104	Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature. Green Chemistry, 2018, 20, 1065-1073.	4.6	50
105	Solvation Structure of Sodium Bis(fluorosulfonyl)imide-Glyme Solvate Ionic Liquids and Its Influence on Cycling of Na-MNC Cathodes. Journal of Physical Chemistry B, 2018, 122, 275-289.	1.2	42
106	Ionic liquids with trichloride anions for oxidative dissolution of metals and alloys. Chemical Communications, 2018, 54, 475-478.	2.2	61
107	Ethylenediaminetriacetic Acid-Functionalized Activated Carbon for the Adsorption of Rare Earths from Aqueous Solutions. Industrial & Engineering Chemistry Research, 2018, 57, 1487-1497.	1.8	55
108	Efficient separation of rare earths recovered by a supported ionic liquid from bauxite residue leachate. RSC Advances, 2018, 8, 11886-11893.	1.7	27

7

#	Article	IF	CITATIONS
109	Cobalt(<scp>ii</scp>) liquid metal salts for high current density electrodeposition of cobalt. Dalton Transactions, 2018, 47, 4975-4986.	1.6	9
110	Low-Temperature Oxidation of Fine UO2 Powders: Thermochemistry and Kinetics. Inorganic Chemistry, 2018, 57, 4196-4204.	1.9	8
111	Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336. Separation and Purification Technology, 2018, 201, 318-326.	3.9	57
112	Effect of the diluent on the solvent extraction of neodymium(III) by bis(2-ethylhexyl)phosphoric acid (D2EHPA). Hydrometallurgy, 2018, 177, 146-151.	1.8	36
113	Purification of crude In(OH)3 using the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Green Chemistry, 2018, 20, 412-424.	4.6	21
114	Synthesis of Poly-p-phenylene Terephthalamide (PPTA) in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 1362-1369.	3.2	28
115	Solvent Extraction of Am(III), Cm(III), and Ln(III) Ions from Simulated Highly Active Raffinate Solutions by TODGA Diluted in Aliquat-336 Nitrate Ionic Liquid. Solvent Extraction and Ion Exchange, 2018, 36, 519-541.	0.8	26
116	Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids. RSC Advances, 2018, 8, 34754-34763.	1.7	19
117	Magnetophoretic Sprinting: A Study on the Magnetic Properties of Aqueous Lanthanide Solutions. Journal of Physical Chemistry C, 2018, 122, 23675-23682.	1.5	13
118	Speciation of lanthanide ions in the organic phase after extraction from nitrate media by basic extractants. RSC Advances, 2018, 8, 32044-32054.	1.7	33
119	Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Room-Temperature Electrolysis Pretreatment Step. ACS Sustainable Chemistry and Engineering, 2018, 6, 9375-9382.	3.2	47
120	Multiâ€Gram Scale Synthesis of 1,2,3â€Triazolium Ionic Liquids and Assay of Their Resistance towards Bases. European Journal of Organic Chemistry, 2018, 2018, 4850-4856.	1.2	14
121	Trihalide ionic liquids as non-volatile oxidizing solvents for metals. Green Chemistry, 2018, 20, 3327-3338.	4.6	56
122	Combined multi-step precipitation and supported ionic liquid phase chromatography for the recovery of rare earths from leach solutions of bauxite residues. Hydrometallurgy, 2018, 180, 229-235.	1.8	26
123	Recovery of rare earths from the green lamp phosphor LaPO ₄ :Ce ³⁺ ,Tb ³⁺ (LAP) by dissolution in concentrated methanesulphonic acid. RSC Advances, 2018, 8, 26349-26355.	1.7	38
124	Mechanism for Solvent Extraction of Lanthanides from Chloride Media by Basic Extractants. Journal of Solution Chemistry, 2018, 47, 1351-1372.	0.6	16
125	Separation of samarium and europium by solvent extraction with an undiluted quaternary ammonium ionic liquid: towards high-purity medical samarium-153. RSC Advances, 2018, 8, 20077-20086.	1.7	27
126	Docusate Ionic Liquids: Effect of Cation on Water Solubility and Solvent Extraction Behavior. ChemPlusChem, 2017, 82, 458-466.	1.3	18

#	Article	IF	CITATIONS
127	Manganese-containing ionic liquids: synthesis, crystal structures and electrodeposition of manganese films and nanoparticles. Dalton Transactions, 2017, 46, 2497-2509.	1.6	11
128	Solvometallurgy: An Emerging Branch of Extractive Metallurgy. Journal of Sustainable Metallurgy, 2017, 3, 570-600.	1.1	178
129	Recovery of Rare Earths and Major Metals from Bauxite Residue (Red Mud) by Alkali Roasting, Smelting, and Leaching. Journal of Sustainable Metallurgy, 2017, 3, 393-404.	1.1	65
130	Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids. Dalton Transactions, 2017, 46, 5269-5278.	1.6	20
131	Direct Analysis of Metal Ions in Solutions with High Salt Concentrations by Total Reflection X-ray Fluorescence. Analytical Chemistry, 2017, 89, 4595-4603.	3.2	32
132	Polymerization of PPTA in Ionic Liquid/Cosolvent Mixtures. Macromolecules, 2017, 50, 3089-3100.	2.2	15
133	Speciation of indium(<scp>iii</scp>) chloro complexes in the solvent extraction process from chloride aqueous solutions to ionic liquids. Dalton Transactions, 2017, 46, 4412-4421.	1.6	38
134	Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. Separation and Purification Technology, 2017, 176, 208-219.	3.9	85
135	Recovery of scandium(<scp>iii</scp>) from diluted aqueous solutions by a supported ionic liquid phase (SILP). RSC Advances, 2017, 7, 49664-49674.	1.7	34
136	Titanium alkylphosphate functionalised mesoporous silica for enhanced uptake of rare-earth ions. Journal of Materials Chemistry A, 2017, 5, 23805-23814.	5.2	17
137	Magnetomigration of Rare-Earth Ions Triggered by Concentration Gradients. Journal of Physical Chemistry Letters, 2017, 8, 5301-5305.	2.1	21
138	Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. RSC Advances, 2017, 7, 45351-45362.	1.7	31
139	Cobalt(ii)/nickel(ii) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid. RSC Advances, 2017, 7, 35992-35999.	1.7	46
140	Electrodeposition of bismuth telluride thin films containing silica nanoparticles for thermoelectric applications. Electrochimica Acta, 2017, 253, 554-562.	2.6	5
141	Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. Minerals Engineering, 2017, 112, 92-102.	1.8	37
142	Closed-loop solvometallurgical process for recovery of lead from iron-rich secondary lead smelter residues. RSC Advances, 2017, 7, 49999-50005.	1.7	16
143	Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets. RSC Advances, 2017, 7, 32100-32113.	1.7	107
144	Multifunctional Alginate–Sulfonate–Silica Sphere-Shaped Adsorbent Particles for the Recovery of Indium(III) from Secondary Resources. Industrial & Engineering Chemistry Research, 2017, 56, 8677-8688.	1.8	14

#	Article	IF	CITATIONS
145	Use of Triflic Acid in the Recycling of Thoria from Nuclear Fuel Production Scrap. Journal of Sustainable Metallurgy, 2017, 3, 659-667.	1.1	7
146	Separation of Rare Earths by Solvent Extraction with an Undiluted Nitrate Ionic Liquid. Journal of Sustainable Metallurgy, 2017, 3, 73-78.	1.1	34
147	REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. Journal of Sustainable Metallurgy, 2017, 3, 122-149.	1.1	365
148	The EURARE Project: Development of a Sustainable Exploitation Scheme for Europe's Rare Earth Ore Deposits. Johnson Matthey Technology Review, 2017, 61, 142-153.	0.5	27
149	Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid. Physical Chemistry Chemical Physics, 2016, 18, 16039-16045.	1.3	49
150	New metal extractants and super-acidic ionic liquids derived from sulfamic acid. Chemical Communications, 2016, 52, 7032-7035.	2.2	22
151	Purification of indium by solvent extraction with undiluted ionic liquids. Green Chemistry, 2016, 18, 4116-4127.	4.6	69
152	Alkylsulfuric acid ionic liquids: a promising class of strongly acidic room-temperature ionic liquids. Chemical Communications, 2016, 52, 4640-4643.	2.2	25
153	Ionic Liquid Crystals: Versatile Materials. Chemical Reviews, 2016, 116, 4643-4807.	23.0	617
154	Biobased Ionic Liquids: Solvents for a Green Processing Industry?. ACS Sustainable Chemistry and Engineering, 2016, 4, 2917-2931.	3.2	195
155	Magnetomigration of rare-earth ions in inhomogeneous magnetic fields. Physical Chemistry Chemical Physics, 2016, 18, 27342-27350.	1.3	26
156	Electro-precipitation via oxygen reduction: a new technique for thin film manganese oxide deposition. Journal of Materials Chemistry A, 2016, 4, 13555-13562.	5.2	2
157	Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. Journal of Sustainable Metallurgy, 2016, 2, 365-386.	1.1	231
158	Practical guidelines for best practice on Total Reflection X-ray Fluorescence spectroscopy: Analysis of aqueous solutions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 124, 109-115.	1.5	36
159	Assessment of the U3O7 Crystal Structure by X-ray and Electron Diffraction. Inorganic Chemistry, 2016, 55, 9923-9936.	1.9	24
160	Guanidinium nonaflate as a solid-state proton conductor. Journal of Materials Chemistry A, 2016, 4, 12241-12252.	5.2	43
161	Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue. Jom, 2016, 68, 2958-2962.	0.9	18
162	Crystal structure of apatite type Ca _{2.49} Nd _{7.51} (SiO ₄) ₆ O _{1.75} . Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 209-211.	0.2	5

#	Article	IF	CITATIONS
163	Liquid Nickel Salts: Synthesis, Crystal Structure Determination, and Electrochemical Synthesis of Nickel Nanoparticles. Chemistry - A European Journal, 2016, 22, 1010-1020.	1.7	17
164	Halogen-free synthesis of symmetrical 1,3-dialkylimidazolium ionic liquids using non-enolisable starting materials. RSC Advances, 2016, 6, 8848-8859.	1.7	23
165	Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chemistry, 2016, 18, 2005-2013.	4.6	95
166	Low-Temperature Oxidation of Fine UO ₂ Powders: A Process of Nanosized Domain Development. Inorganic Chemistry, 2016, 55, 3915-3927.	1.9	26
167	Lime mortar-compacted bentonite–magnetite interfaces: An experimental study focused on the understanding of the EBS long-term performance for high-level nuclear waste isolation DGR concept. Applied Clay Science, 2016, 124-125, 79-93.	2.6	20
168	On the electrochemical deposition of metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 3914-3925.	5.2	138
169	Antimony Recovery from End-of-Life Products and Industrial Process Residues: A Critical Review. Journal of Sustainable Metallurgy, 2016, 2, 79-103.	1.1	110
170	Activated sintering of ThO 2 with Al 2 O 3 under reducing and oxidizing conditions. Journal of Nuclear Materials, 2016, 470, 34-43.	1.3	14
171	Ionic liquids as solvents for PPTA oligomers. Green Chemistry, 2016, 18, 1639-1652.	4.6	54
172	Antimony recovery from the halophosphate fraction in lamp phosphor waste: a zero-waste approach. Green Chemistry, 2016, 18, 176-185.	4.6	17
173	Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. Journal of Sustainable Metallurgy, 2016, 2, 28-37.	1.1	126
174	Shaping of Alginate–Silica Hybrid Materials into Microspheres through Vibrating-Nozzle Technology and Their Use for the Recovery of Neodymium from Aqueous Solutions. Industrial & Engineering Chemistry Research, 2015, 54, 12836-12846.	1.8	43
175	Selective Singleâ€Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionicâ€Liquid–Water–Ionicâ€Liquid Solvent Extraction System. Chemistry - A European Journal, 2015, 21, 11757-11766.	1.7	20
176	Separation of rare earths by split-anion extraction. Hydrometallurgy, 2015, 156, 206-214.	1.8	70
177	Overview of the Effect of Salts on Biphasic Ionic Liquid/Water Solvent Extraction Systems: Anion Exchange, Mutual Solubility, and Thermomorphic Properties. Journal of Physical Chemistry B, 2015, 119, 6747-6757.	1.2	140
178	Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 2015, 76, 20-27.	1.8	368
179	Photophysical Property of <i>catena</i> -Bis(thiocyanato)aurate(I) Complexes in Ionic Liquids. Crystal Growth and Design, 2015, 15, 1422-1429.	1.4	10
180	Recovery of Scandium(III) from Aqueous Solutions by Solvent Extraction with the Functionalized Ionic Liquid Betainium Bis(trifluoromethylsulfonyl)imide. Industrial & Engineering Chemistry Research, 2015, 54, 1887-1898.	1.8	113

#	Article	IF	CITATIONS
181	1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells. Energy and Environmental Science, 2015, 8, 1276-1291.	15.6	134
182	Rare Earths and the Balance Problem. Journal of Sustainable Metallurgy, 2015, 1, 29-38.	1.1	140
183	Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 2015, 295, 1-45.	9.5	2,104
184	Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf ₂ N]. Green Chemistry, 2015, 17, 2150-2163.	4.6	142
185	Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. Journal of Cleaner Production, 2015, 99, 17-38.	4.6	463
186	Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chemistry, 2015, 17, 2931-2942.	4.6	181
187	Crystal structures of hydrated rare-earth bis(trifluoromethylsulfonyl)imide salts. CrystEngComm, 2015, 17, 7142-7149.	1.3	14
188	Metal Recovery from Nickel Metal Hydride Batteries Using Cyanex 923 in Tricaprylylmethylammonium Nitrate from Chloride Aqueous Media. Journal of Sustainable Metallurgy, 2015, 1, 161-167.	1.1	22
189	Metal–organic framework deposition on dealloyed substrates. Journal of Materials Chemistry A, 2015, 3, 19747-19753.	5.2	13
190	Containment and attenuating layers: An affordable strategy that preserves soil and water from landfill pollution. Waste Management, 2015, 46, 408-419.	3.7	30
191	Solvent Extraction of Scandium(III) by an Aqueous Biphasic System with a Nonfluorinated Functionalized Ionic Liquid. Industrial & Engineering Chemistry Research, 2015, 54, 8988-8996.	1.8	66
192	Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y ₂ O ₃ :Eu ³⁺ from lamp phosphor waste. Green Chemistry, 2015, 17, 856-868.	4.6	189
193	Lignin solubility in nonâ€imidazolium ionic liquids. Journal of Chemical Technology and Biotechnology, 2015, 90, 1821-1826.	1.6	62
194	Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein Journal of Organic Chemistry, 2014, 10, 2484-2500.	1.3	150
195	Decarboxylation of a Wide Range of Amino Acids with Electrogenerated Hypobromite. European Journal of Organic Chemistry, 2014, 2014, 6649-6652.	1.2	26
196	From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. RSC Advances, 2014, 4, 64099-64111.	1.7	149
197	Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase. Hydrometallurgy, 2014, 144-145, 27-33.	1.8	86
198	Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. Journal of Materials Chemistry A, 2014, 2, 1530-1540.	5.2	166

#	Article	IF	CITATIONS
199	Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chemistry, 2014, 16, 1594-1606.	4.6	188
200	Base stable quaternary ammonium ionic liquids. RSC Advances, 2014, 4, 4472-4477.	1.7	33
201	Liquid–liquid extraction of europium(<scp>iii</scp>) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. Dalton Transactions, 2014, 43, 1862-1872.	1.6	115
202	Determination of Halide Impurities in Ionic Liquids by Total Reflection X-ray Fluorescence Spectrometry. Analytical Chemistry, 2014, 86, 3931-3938.	3.2	45
203	Electrodeposition of Lithium from Lithium-Containing Solvate Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 20152-20162.	1.5	29
204	Separation of rare earths and nickel by solvent extraction with two mutually immiscible ionic liquids. RSC Advances, 2014, 4, 5753.	1.7	66
205	Selective extraction of metals using ionic liquids for nickel metal hydride battery recycling. Green Chemistry, 2014, 16, 4595-4603.	4.6	110
206	Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths. Journal of Materials Chemistry A, 2014, 2, 19415-19426.	5.2	151
207	Solvent extraction of europium(<scp>iii</scp>) to a fluorine-free ionic liquid phase with a diglycolamic acid extractant. RSC Advances, 2014, 4, 11899-11906.	1.7	42
208	Solvent Extraction of Neodymium(III) by Functionalized Ionic Liquid Trioctylmethylammonium Dioctyl Diglycolamate in Fluorine-free Ionic Liquid Diluent. Industrial & Engineering Chemistry Research, 2014, 53, 6500-6508.	1.8	124
209	Determination of Halide Ions in Solution by Total Reflection X-ray Fluorescence (TXRF) Spectrometry. Analytical Chemistry, 2014, 86, 1391-1394.	3.2	20
210	Homogeneous Liquid–Liquid Extraction of Metal Ions with a Functionalized Ionic Liquid. Journal of Physical Chemistry Letters, 2013, 4, 1659-1663.	2.1	194
211	How safe are protic ionic liquids? Explosion of pyrrolidinium nitrate. Green Chemistry, 2013, 15, 3484.	4.6	33
212	Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 2013, 108, 788-794.	2.6	48
213	A continuous ionic liquid extraction process for the separation of cobalt from nickel. Green Chemistry, 2013, 15, 3160.	4.6	100
214	Electrochemical dicarboxylation of conjugated fatty acids as an efficient valorization of carbon dioxide. RSC Advances, 2013, 3, 4634.	1.7	31
215	Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013, 51, 1-22.	4.6	1,704
216	Processes and impacts of acid discharges on a natural substratum under a landfill. Science of the Total Environment, 2013, 463-464, 1049-1059.	3.9	14

#	Article	IF	CITATIONS
217	Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chemistry, 2013, 15, 919.	4.6	312
218	Ionic Liquids Based on the 7â€Azabicyclo[2.2.1]heptane Skeleton: Synthesis and Properties. European Journal of Organic Chemistry, 2013, 2013, 3741-3750.	1.2	3
219	High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. Journal of Materials Chemistry A, 2013, 1, 5827.	5.2	167
220	Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System. International Journal of Molecular Sciences, 2013, 14, 21353-21377.	1.8	87
221	Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligands. CrystEngComm, 2012, 14, 4902.	1.3	37
222	Quinolinium and isoquinolinium ionic liquid crystals. RSC Advances, 2012, 2, 8061.	1.7	48
223	Phenolate platform for anion exchange in ionic liquids. RSC Advances, 2012, 2, 11936.	1.7	23
224	Pollution profiles and physicochemical parameters in old uncontrolled landfills. Waste Management, 2012, 32, 482-497.	3.7	60
225	Diffusion of landfill leachate through compacted natural clays containing small amounts of carbonates and sulfates. Applied Geochemistry, 2012, 27, 1202-1213.	1.4	15
226	An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chemistry, 2012, 14, 1657.	4.6	202
227	Electrodeposition of luminescent composite metal coatings containing rare-earth phosphor particles. Journal of Materials Chemistry, 2012, 22, 5514.	6.7	29
228	Synthesis of glucose esters from cellulose in ionic liquids. Holzforschung, 2012, 66, .	0.9	11
229	Direct-on-barrier copper electroplating on ruthenium from the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. Journal of Materials Science: Materials in Electronics, 2012, 23, 945-951.	1.1	16
230	Improvement of attenuation functions of a clayey sandstone for landfill leachate containment by bentonite addition. Science of the Total Environment, 2012, 419, 81-89.	3.9	20
231	The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates. Journal of Environmental Management, 2012, 95, S175-S181.	3.8	43
232	Influence of Non-traditional Teaching Techniques on the Learning Process of University Students. International Journal for Cross-Disciplinary Subjects in Education, 2012, 2, 943-950.	0.1	0
233	A Modular Approach towards the Synthesis of Targetâ€Specific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2011, 2011, 3577-3585.	1.0	19
234	Synthesis, Structure, and Spectroscopic Properties of the New Lanthanum(III) Fluoride Oxomolybdate(VI) La ₃ FMo ₄ O ₁₆ . European Journal of Inorganic Chemistry, 2010, 2010, 1626-1632.	1.0	11

#	Article	IF	CITATIONS
235	Symmetry and electronic states of Mn2+ in ZnS nanowires with mixed hexagonal and cubic stacking. Applied Physics Letters, 2010, 97, 041918.	1.5	6
236	Europium(iii)-doped liquid-crystalline physical gels. Journal of Materials Chemistry, 2010, 20, 8571.	6.7	26
237	Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Transactions, 2010, 39, 8377.	1.6	223
238	Cellulose conversion into alkylglycosides in the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2010, 12, 1790.	4.6	44
239	(Tetracycline)europium(III) Complex as Luminescent Probe for Hydrogen Peroxide Detection. Helvetica Chimica Acta, 2009, 92, 2387-2397.	1.0	11
240	Lanthanide-Based Luminescent Hybrid Materials. Chemical Reviews, 2009, 109, 4283-4374.	23.0	2,989
241	Luminescence of metallomesogens in the liquid crystal state. Journal of Materials Chemistry, 2009, 19, 448-453.	6.7	147
242	Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chemistry, 2009, 11, 1357.	4.6	169
243	Liquidâ€Crystalline Ternary Rareâ€Earth Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 756-761.	1.0	38
244	Polynuclear Metal Complexes Obtained from the Task-Specific Ionic Liquid Betainium Bistriflimide. Crystal Growth and Design, 2008, 8, 1353-1363.	1.4	93
245	Imidazo[4,5- <i>f</i>]-1,10-phenanthrolines: Versatile Ligands for the Design of Metallomesogens. Chemistry of Materials, 2008, 20, 1278-1291.	3.2	91
246	Rigid tetracatenar liquid crystals derived from 1,10-phenanthroline. Soft Matter, 2008, 4, 2172.	1.2	34
247	Lanthanides and Actinides in Ionic Liquids. Chemical Reviews, 2007, 107, 2592-2614.	23.0	616
248	Rare-Earth Nitroquinolinates: Visible-Light-Sensitizable Near-Infrared Emitters in Aqueous Solution. European Journal of Inorganic Chemistry, 2007, 2007, 302-305.	1.0	31
249	Bis(phenylethylamide) Derivatives of Gd-DTPA as Potential Receptor-Specific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2007, 2007, 2061-2067.	1.0	23
250	Speciation of Uranyl Nitrato Complexes in Acetonitrile and in the Ionic Liquid 1â€Butylâ€3â€methylimidazolium Bis(trifluoromethylsulfonyl)imide. European Journal of Inorganic Chemistry, 2007, 2007, 5120-5126.	1.0	57
251	Task-Specific Ionic Liquid for Solubilizing Metal Oxides. Journal of Physical Chemistry B, 2006, 110, 20978-20992.	1.2	412
252	Dinuclear Lanthanide Schiff-Base Complexes Forming a Rectangular Columnar Mesophase. European Journal of Inorganic Chemistry, 2006, 2006, 150-157.	1.0	40

#	Article	IF	CITATIONS
253	Mandelohydroxamic Acid as Ligand for Copper(II) 15-Metallacrown-5 Lanthanide(III) and Copper(II) 15-Metallacrown-5 Uranyl Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1466-1474.	1.0	22
254	Study of Thermodynamic and Kinetic Stability of Transition Metal and Lanthanide Complexes of DTPA Analogues with a Phosphorus Acid Pendant Arm. European Journal of Inorganic Chemistry, 2006, 2006, 1976-1986.	1.0	31
255	Alkali-Metal Salts of Aromatic Carboxylic Acids: Liquid Crystals without Flexible Chains. European Journal of Inorganic Chemistry, 2005, 2005, 563-571.	1.0	31
256	Mixed f-d Metallomesogens with an Extended Rigid Core. European Journal of Inorganic Chemistry, 2005, 2005, 1506-1513.	1.0	24
257	Lanthanide(III)-Induced Conversion of 12-Metallacrown-4 to 5-Metallacrown-5 Complexes in Solution. European Journal of Inorganic Chemistry, 2005, 2005, 3303-3310.	1.0	29
258	Lanthanide(III) Tosylates as New Acylation Catalysts. European Journal of Organic Chemistry, 2005, 2005, 1810-1815.	1.2	22
259	Ionic Liquid Crystals. Chemical Reviews, 2005, 105, 4148-4204.	23.0	1,072
260	A luminescent tris(2-thenoyltrifluoroacetonato)europium(iii) complex covalently linked to a 1,10-phenanthroline-functionalised sol–gel glass. Journal of Materials Chemistry, 2004, 14, 191-195.	6.7	328
261	Gadolinium DTPA-Monoamide Complexes Incorporated into Mixed Micelles as Possible MRI Contrast Agents. European Journal of Inorganic Chemistry, 2004, 2004, 3538-3543.	1.0	59
262	Lanthanide(III) Nitrobenzenesulfonates as New Nitration Catalysts: The Role of the Metal and of the Counterion in the Catalytic Efficiency. European Journal of Organic Chemistry, 2004, 2004, 4560-4566.	1.2	16
263	Spectroscopic properties of uranyl crown ether complexes in non-aqueous solvents. Physical Chemistry Chemical Physics, 2004, 6, 2946-2950.	1.3	17
264	Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. Physical Chemistry Chemical Physics, 2004, 6, 3292-3298.	1.3	53
265	Near-Infrared Luminescence of Lanthanide Calcein and Lanthanide Dipicolinate Complexes Doped into a Silicaâ^'PEG Hybrid Material. Chemistry of Materials, 2004, 16, 1531-1535.	3.2	110
266	Judd–Ofelt analysis of lanthanide doped silica–PEG hybrid sol–gels. Physical Chemistry Chemical Physics, 2003, 5, 198-202.	1.3	23
267	Potential MRI Contrast Agents Based on Micellar Incorporation of Amphiphilic Bis(alkylamide) Derivatives of [(Gdâ^'DTPA)(H2O)]2â^'. European Journal of Inorganic Chemistry, 2003, 2003, 3021-3027.	1.0	67
268	Adducts of Schiff Bases with Tris(β-diketonato)lanthanide(III) Complexes: Structure and Liquid-Crystalline Behaviour. European Journal of Inorganic Chemistry, 2003, 2003, 3028-3033.	1.0	23
269	Title is missing!. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2003, 629, 975-980.	0.6	7
270	Influence of the Chain Length on the Thermal Behavior of Lanthanide(III) 4-Alkoxybenzoates. Chemistry of Materials, 2003, 15, 212-217.	3.2	18

#	Article	IF	CITATIONS
271	Structure and Mesomorphic Behavior of Alkoxy-Substituted Bis(phthalocyaninato)lanthanide(III) Complexes. Chemistry of Materials, 2003, 15, 3930-3938.	3.2	77
272	Halogen substitution as an efficient tool to increase the near-infrared photoluminescence intensity of erbium(iii) quinolinates in non-deuterated DMSO. Physical Chemistry Chemical Physics, 2003, 5, 2754-2757.	1.3	59
273	Near-infrared photoluminescence of lanthanide-doped liquid crystals. Journal of Materials Chemistry, 2003, 13, 1520-1522.	6.7	104
274	Liquid-crystalline azines formed by the rare-earth promoted decomposition of hydrazide "habbe― ligands: structural and thermal properties. Journal of Materials Chemistry, 2003, 13, 1639-1645.	6.7	32
275	Mesophase behaviour and thermal stability of octa-alkoxy substituted phthalocyaninatocobalt (II) complexes. Liquid Crystals, 2003, 30, 143-148.	0.9	7
276	Influence of the ligand structure on the liquid crystalline properties of lanthanide-containing salicylaldimine mesogens. Liquid Crystals, 2003, 30, 479-486.	0.9	8
277	Narrow band photoluminescence of europium-doped liquid crystals. Journal of Materials Chemistry, 2002, 12, 3374-3376.	6.7	73
278	Influence of heat treatment on the intensities of f–f transitions in lanthanide-doped sol–gel glasses. Physical Chemistry Chemical Physics, 2002, 4, 552-555.	1.3	25
279	Lanthanide-Containing Liquid Crystals and Surfactants. Chemical Reviews, 2002, 102, 2303-2346.	23.0	491
280	Nature of equilibrium shifts in racemic praseodymium(iii) tris(2,2′-oxydiacetate) induced by interaction with chiral probes. Dalton Transactions RSC, 2002, , 1602-1606.	2.3	18
281	Mixed Copper–Lanthanide Metallomesogens. Chemistry - A European Journal, 2002, 8, 1101.	1.7	64
282	Room-temperature magnetic anisotropy of lanthanide complexes: A model study for various coordination polyhedra. Journal of Chemical Physics, 2002, 116, 4673-4685.	1.2	98
283	Rare-earth complexes of mesomorphic Schiff's base ligands. Liquid Crystals, 2001, 28, 279-285.	0.9	20
284	Thermal behaviour of lanthanum(III) alkanoates. Liquid Crystals, 2001, 28, 1727-1733.	0.9	29
285	Mesomorphic Complexes of the Lanthanide Elements. Molecular Crystals and Liquid Crystals, 2001, 364, 745-752.	0.3	9
286	Lanthanide(III) Dodecanoates: Structure, Thermal Behaviour, and Ion-Size Effects on the Mesomorphism. European Journal of Inorganic Chemistry, 2000, 2000, 1429-1436.	1.0	47
287	Rare-Earth-Containing Magnetic Liquid Crystals. Journal of the American Chemical Society, 2000, 122, 4335-4344.	6.6	252
288	On the mesomorphism of lanthanum (III) alkanoates. Liquid Crystals, 1999, 26, 1717-1721.	0.9	22

#	Article	IF	CITATIONS
289	Closing the Loop in Ion Flotation: Recovery of Copper, Regeneration and Reuse of Collector from the Foam Phase by a Solvometallurgical Process. Journal of Sustainable Metallurgy, 0, , 1.	1.1	2
290	Extraction Behavior and Purification of Germanium Using an Undiluted Quaternary Ammonium Ionic Liquid in Combination with a Complexing Agent. Industrial & Engineering Chemistry Research, 0, , .	1.8	1