Sven Ingebrandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588613/publications.pdf

Version: 2024-02-01

141 papers 4,383 citations

38 h-index 60 g-index

146 all docs

146 docs citations

146 times ranked 4641 citing authors

#	Article	IF	CITATIONS
1	The antioxidant Rutin counteracts the pathological impact of $\langle i \rangle \hat{l} \pm \langle j \rangle$ -synuclein on the enteric nervous system $\langle i \rangle$ in vitro $\langle j \rangle$. Biological Chemistry, 2022, 403, 103-122.	2.5	5
2	Delineating charge and capacitance transduction in system-integrated graphene-based BioFETs used as aptasensors for malaria detection. Biosensors and Bioelectronics, 2022, 208, 114219.	10.1	17
3	Realization of a PEDOT:PSS/Graphene Oxide On-Chip Pseudo-Reference Electrode for Integrated ISFETs. Sensors, 2022, 22, 2999.	3.8	6
4	Electrical SPR biosensor with thermal annealed graphene oxide: Concept of highly sensitive biomolecule detection. Biosensors and Bioelectronics: X, 2022, 11, 100152.	1.7	1
5	Review—Human-Body Powered Biosensing Textiles: Body-Power Generating Wearables Based on Textiles for Human Biomonitoring. Journal of the Electrochemical Society, 2022, 169, 067502.	2.9	2
6	Direct measurement of oxygen reduction reactions at neurostimulation electrodes. Journal of Neural Engineering, 2022, 19, 036045.	3.5	19
7	Microelectrode Combinations of Gold and Polypyrrole Enable Highly Stable Twoâ€electrode Electrochemical Impedance Spectroscopy Measurements under Turbulent Flow Conditions. Electroanalysis, 2021, 33, 197-207.	2.9	9
8	Innovative retinal interfaces for optimized artificial vision– a new DFG funded Research Training Group. Neuroforum, 2021, .	0.3	0
9	PEDOT:PSS organic electrochemical transistors for electrical cell-substrate impedance sensing down to single cells. Biosensors and Bioelectronics, 2021, 180, 113101.	10.1	23
10	Dry Film Resist Laminated Microfluidic System for Electrical Impedance Measurements. Micromachines, 2021, 12, 632.	2.9	11
11	PEDOT:PSSâ€Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Advanced Healthcare Materials, 2021, 10, e2100061.	7.6	92
12	Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays. Sensors, 2021, 21, 5153.	3.8	20
13	Sensitive impedimetric detection of troponin I with metal–organic framework composite electrode. RSC Advances, 2021, 11, 2167-2174.	3.6	19
14	Contactless, Battery-free, and Stretchable Wearable for Continuous Recording of Seismocardiograms. ACS Applied Electronic Materials, 2021, 3, 11-20.	4.3	15
15	Comprehensive Understanding of Silicon-Nanowire Field-Effect Transistor Impedimetric Readout for Biomolecular Sensing. Micromachines, 2021, 12, 39.	2.9	4
16	Self-Assembling Flexible 3D-MEAs for Cortical Implants. Current Directions in Biomedical Engineering, 2021, 7, 359-362.	0.4	1
17	Searching for a common origin of heat-transfer effects in bio- and chemosensors: A study on thiols as a model system. Sensors and Actuators B: Chemical, 2020, 310, 127627.	7.8	6
18	Point-of-care-ready nanoscale ISFET arrays for sub-picomolar detection of cytokines in cell cultures. Analytical and Bioanalytical Chemistry, 2020, 412, 6777-6788.	3.7	19

#	Article	IF	CITATIONS
19	Development and in vitro validation of flexible intraretinal probes. Scientific Reports, 2020, 10, 19836.	3.3	7
20	Decomposition and modeling of signal shapes of single point cardiac monitoring. Current Directions in Biomedical Engineering, 2020, 6, 583-586.	0.4	2
21	Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays. Coordination Chemistry Reviews, 2019, 401, 213077.	18.8	122
22	Tuning Channel Architecture of Interdigitated Organic Electrochemical Transistors for Recording the Action Potentials of Electrogenic Cells. Advanced Functional Materials, 2019, 29, 1902085.	14.9	42
23	Reduced graphene-oxide transducers for biosensing applications beyond the Debye-screening limit. Biosensors and Bioelectronics, 2019, 130, 352-359.	10.1	15
24	Photothermal effects induced by surface plasmon resonance at graphene/gold nanointerfaces: A multiscale modeling study. Biosensors and Bioelectronics, 2019, 126, 470-477.	10.1	14
25	Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosensors and Bioelectronics, 2019, 126, 136-142.	10.1	43
26	Scalable fabrication and application of nanoscale IDE-arrays as multi-electrode platform for label-free biosensing. Sensors and Actuators B: Chemical, 2018, 265, 115-125.	7.8	14
27	Frontâ€Endâ€ofâ€Line Integration of Graphene Oxide for Grapheneâ€Based Electrical Platforms. Advanced Materials Technologies, 2018, 3, 1700318.	5.8	16
28	Silicon Nanowire Field-Effect Biosensors. Springer Series on Chemical Sensors and Biosensors, 2018, , 27-57.	0.5	9
29	Transistor-Based Impedimetric Monitoring of Single Cells. Bioanalytical Reviews, 2018, , 77-110.	0.2	1
30	Impedimetric Sensing of DNA with Silicon Nanowire Transistors as Alternative Transducer Principle. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700740.	1.8	14
31	Graphite oxide electrical sensors are able to distinguish single nucleotide polymorphisms in physiological buffers. FlatChem, 2018, 7, 1-9.	5.6	5
32	Intriguing electronic insensitivity and high carrier mobility in monolayer hexagonal YN. Journal of Materials Chemistry C, 2018, 6, 4943-4951.	5.5	28
33	ScFv-modified graphene-coated IDE-arrays for â€~label-free' screening of cardiovascular disease biomarkers in physiological saline. Biosensors and Bioelectronics, 2018, 102, 574-581.	10.1	20
34	Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids. Beilstein Journal of Organic Chemistry, 2018, 14, 2495-2509.	2.2	9
35	Wafer-scale fabrication of microelectrode arrays on optically transparent polymer foils for the integration of flexible nanoscale devices. Flexible and Printed Electronics, 2018, 3, 044001.	2.7	4
36	A Novel Modular Device for Biological Impedance Measurements: The Differential Impedimetric Sensor Cell (DISC). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1701029.	1.8	3

3

#	Article	IF	Citations
37	Waferâ€Scale Nanoimprint Lithography Process Towards Complementary Silicon Nanowire Fieldâ€Effect Transistors for Biosensor Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800234.	1.8	10
38	Top-Down Fabricated Silicon Nanowire Arrays for Field-Effect Detection of Prostate-Specific Antigen. ACS Omega, 2018, 3, 8471-8482.	3. 5	31
39	Silane Deposition via Gas-Phase Evaporation and High-Resolution Surface Characterization of the Ultrathin Siloxane Coatings. Langmuir, 2018, 34, 10217-10229.	3 . 5	42
40	Considering the spin–orbit coupling effect on the photocatalytic performance of AlN/MX ₂ nanocomposites. Journal of Materials Chemistry C, 2017, 5, 9412-9420.	5 . 5	36
41	Adsorption of Gas Molecules on Grapheneâ€Like ZnO Nanosheets: The Roles of Gas Concentration, Layer Number, and Heterolayer. Advanced Materials Interfaces, 2017, 4, 1700647.	3.7	33
42	PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosensors and Bioelectronics, 2017, 93, 132-138.	10.1	56
43	DNA detection with top–down fabricated silicon nanowire transistor arrays in linear operation regime. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1510-1519.	1.8	13
44	Influence of different chemical surface patterns on the dynamic wetting behaviour on flat and silanized silicon wafers during inclining-plate measurements: An experimental investigation with the high-precision drop shape analysis approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 274-285.	4.7	10
45	Selective comparison of gelling agents as neural cell culture matrices for long-term microelectrode array electrophysiology. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D117.	1.4	6
46	Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. Essays in Biochemistry, 2016, 60, 81-90.	4.7	96
47	On the Use of Scalable NanoISFET Arrays of Silicon with Highly Reproducible Sensor Performance for Biosensor Applications. ACS Omega, 2016, 1, 84-92.	3.5	30
48	Nano-fabricated memristive biosensors for biomedical applications with liquid and dried samples. , $2016, 2016, 295-298.$		1
49	Label-Free Ultrasensitive Memristive Aptasensor. Nano Letters, 2016, 16, 4472-4476.	9.1	87
50	Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging. Royal Society Open Science, 2015, 2, 150031.	2.4	29
51	Handheld readout system for fieldâ€effect transistor biosensor arrays for labelâ€free detection of biomolecules. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1313-1319.	1.8	12
52	Graphite oxide multilayers for device fabrication: Enzymeâ€based electrical sensing of glucose. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1335-1341.	1.8	7
53	Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1327-1334.	1.8	21
54	High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics. Applied Surface Science, 2015, 342, 11-25.	6.1	31

#	Article	IF	CITATIONS
55	Electronic monitoring of single cell-substrate adhesion events with quasi-planar field-effect transistors. Sensors and Actuators B: Chemical, 2015, 210, 776-783.	7.8	4
56	The influence of medium conductivity on ECIS measurements with fieldâ€effect transistor arrays. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1260-1265.	1.8	2
57	Sensing beyond the limit. Nature Nanotechnology, 2015, 10, 734-735.	31.5	22
58	Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level. Lab on A Chip, 2015, 15, 668-679.	6.0	41
59	Statistical contact angle analyses: â€~slow moving' drops on inclining flat mono-aminopropylsiloxane surfaces. Journal of Adhesion Science and Technology, 2015, 29, 1796-1806.	2.6	13
60	Neurodegeneration through oxidative stress: Monitoring hydrogen peroxide induced apoptosis in primary cells from the subventricular zone of BALB/c mice using field-effect transistors. Biosensors and Bioelectronics, 2015, 67, 490-496.	10.1	24
61	Human T cells monitored by impedance spectrometry using field-effect transistor arrays: A novel tool for single-cell adhesion and migration studies. Biosensors and Bioelectronics, 2015, 67, 170-176.	10.1	22
62	Investigation of ISFET device parameters to optimize for impedimetric sensing of cellular adhesion (Phys. Status Solidi A 6â°•2014). Physica Status Solidi (A) Applications and Materials Science, 2014, 211, .	1.8	0
63	Reduced graphene oxideâ€based sensing platform for electric cell–substrate impedance sensing. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1404-1409.	1.8	8
64	Investigation of ISFET device parameters to optimize for impedimetric sensing of cellular adhesion. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1395-1403.	1.8	12
65	Statistical approach for contact angle determination on inclining surfaces: "slow-moving―analyses of non-axisymmetric drops on a flat silanized silicon wafer. International Journal of Adhesion and Adhesives, 2014, 55, 123-131.	2.9	19
66	Thermal detection of histamine with a graphene oxide based molecularly imprinted polymer platform prepared by reversible addition–fragmentation chain transfer polymerization. Sensors and Actuators B: Chemical, 2014, 203, 527-535.	7.8	59
67	Impedimetric Detection of Histamine in Bowel Fluids Using Synthetic Receptors with pH-Optimized Binding Characteristics. Analytical Chemistry, 2013, 85, 1475-1483.	6.5	54
68	<scp>PSPICE</scp> model for silicon nanowire fieldâ€effect transistor biosensors in impedimetric measurement mode. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 870-876.	1.8	12
69	Routine fabrication of reduced graphene oxide microarray devices via all solution processing (Phys.) Tj ETQq $1\ 1$	0.784314 1.8	rgBT /Overlo
70	Routine fabrication of reduced graphene oxide microarray devices via all solution processing. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 968-974.	1.8	10
71	Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosensors and Bioelectronics, 2013, 40, 50-56.	10.1	40
72	Monitoring nanoparticle induced cell death in H441 cells using field-effect transistors. Biosensors and Bioelectronics, 2013, 40, 89-95.	10.1	19

#	Article	IF	Citations
73	Functional peptides for capacitative detection of Ca ²⁺ ions. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1030-1037.	1.8	1
74	Reduced graphene oxide micropatterns as an interface for adherent cells. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 975-982.	1.8	9
75	Labelâ€free electrical detection of DNA by means of fieldâ€effect nanoplate capacitors: Experiments and modeling. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 925-934.	1.8	64
76	The Use of SU-8 Topographically Guided Microelectrode Array in Measuring Extracellular Field Potential Propagation. Annals of Biomedical Engineering, 2012, 40, 619-627.	2.5	5
77	The significance of chloride in the inhibitory action of disodium cromoglycate on immunologically-stimulated rat peritoneal mast cells. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 867-874.	2.4	4
78	An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing. Biosensors and Bioelectronics, 2011, 26, 3023-3028.	10.1	26
79	Rapid assessment of the stability of DNA duplexes by impedimetric real-time monitoring of chemically induced denaturation. Lab on A Chip, 2011, 11, 1656.	6.0	35
80	Top-Down Processed SOI Nanowire Devices for Biomedical Applications. ECS Transactions, 2011, 35, 3-15.	0.5	17
81	A Study of the Relationship Between Pharmacologic Preconditioning and Adenosine Triphosphate-Sensitive Potassium (KATP) Channels on Cultured Cardiomyocytes Using the Microelectrode Array. Journal of Cardiovascular Pharmacology, 2010, 56, 60-68.	1.9	6
82	Light induced stimulation and delay of cardiac activity. Lab on A Chip, 2010, 10, 2588.	6.0	32
83	Extracellular recording of glycine receptor chloride channel activity as a prototype for biohybrid sensors. Biosensors and Bioelectronics, 2010, 26, 155-161.	10.1	12
84	Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sensors and Actuators B: Chemical, 2010, 144, 354-360.	7.8	86
85	Customized impedance spectroscopy device as possible sensor platform for biosensor applications. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 919-923.	1.8	20
86	Fabrication and application of a microfluidicâ€embedded silicon nanowire biosensor chip. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 850-857.	1.8	37
87	A study of the relationship between pharmacologic preconditioning and adenosine triphosphate-sensitive potassium (KATP) channels on cultured cardiomyocytes using the microelectrode array. Journal of Cardiovascular Pharmacology, 2010, 56, 60-8.	1.9	0
88	Action potentials of HL-1 cells recorded with silicon nanowire transistors. Applied Physics Letters, 2009, 95, .	3.3	63
89	The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes. Physiological Measurement, 2009, 30, 155-167.	2.1	26
90	To establish a pharmacological experimental platform for the study of cardiac hypoxia using the microelectrode array. Journal of Pharmacological and Toxicological Methods, 2009, 59, 146-152.	0.7	16

#	Article	IF	Citations
91	Diamond Transistor Array for Extracellular Recording From Electrogenic Cells. Advanced Functional Materials, 2009, 19, 2915-2923.	14.9	86
92	Nanoplate field-effect capacitive (bio-)chemical sensor array based on SOI structure. Procedia Chemistry, 2009, 1, 670-673.	0.7	3
93	Topâ€down processed silicon nanowire transistor arrays for biosensing. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 426-434.	1.8	58
94	Impedimetric detection of covalently attached biomolecules on fieldâ€effect transistors. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 417-425.	1.8	18
95	Time-dependent observation of individual cellular binding events to field-effect transistors. Biosensors and Bioelectronics, 2009, 24, 1201-1208.	10.1	48
96	Field-effect devices for detecting cellular signals. Seminars in Cell and Developmental Biology, 2009, 20, 41-48.	5.0	94
97	Modulatory action of potassium channel openers on field potential and histamine release from rat peritoneal mast cells. Canadian Journal of Physiology and Pharmacology, 2009, 87, 624-632.	1.4	3
98	CMOS sensor array for bi-directional communication with electrically active cells., 2009,,.		1
99	Iridium oxide microelectrode arrays for in-vitro stimulation of individual rat neurons from dissociated cultures. Frontiers in Neuroengineering, 2009, 2, 16.	4.8	39
100	Label-Free, Fully Electronic Detection of DNA with a Field-Effect Transistor Array. Nanostructure Science and Technology, 2009, , 103-129.	0.1	0
101	Membrane allocation profiling: A method to characterize three-dimensional cell shape and attachment based on surface reconstruction. Biomaterials, 2008, 29, 3927-3935.	11.4	18
102	Novel postâ€process for the passivation of a CMOS biosensor. Physica Status Solidi - Rapid Research Letters, 2008, 2, 4-6.	2.4	27
103	Transmission electron microscopy study of the cell–sensor interface. Journal of the Royal Society Interface, 2008, 5, 213-222.	3.4	72
104	The Use of Microelectrode Array (MEA) to Study Rat Peritoneal Mast Cell Activation. Journal of Pharmacological Sciences, 2008, 107, 201-212.	2.5	11
105	High-k Dielectric Layers for Bioelectronic Applications. IEICE Transactions on Electronics, 2008, E91-C, 1894-1898.	0.6	0
106	Markierungsfreie DNA-Detektion mit Silizium-Feldeffekt-Sensoren – Messeffekte oder Artefakte? (Label-free DNA Detection with Silicon Field-Effect Sensors – Real Effects or Artefacts?). TM Technisches Messen, 2007, 74, 466-474.	0.7	1
107	Probing the Adhesion and Viability of Individual Cells with Field-Effect Transistors. , 2007, , .		2
108	Design and Function Principle of a Large Scale Sensor Array for the Bi-Directional Coupling to Electrogenic Cells., 2007,,.		0

#	Article	IF	Citations
109	Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosensors and Bioelectronics, 2007, 22, 2834-2840.	10.1	111
110	Influence of the first amplifier stage in MEA systems on extracellular signal shapes. Biosensors and Bioelectronics, 2007, 22, 1092-1096.	10.1	15
111	Field-effect sensors with charged macromolecules: Characterisation by capacitance–voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. Biosensors and Bioelectronics, 2007, 22, 2100-2107.	10.1	68
112	Solution of the Poisson-Nernst-Planck equations in the cell-substrate interface. European Physical Journal E, 2007, 24, 1-8.	1.6	31
113	Drug profiling using planar microelectrode arrays. Analytical and Bioanalytical Chemistry, 2007, 387, 2673-2680.	3.7	33
114	Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation. Applied Physics A: Materials Science and Processing, 2007, 87, 517-524.	2.3	56
115	Advanced CMOS process for floating gate field-effect transistors in bioelectronic applications. Sensors and Actuators B: Chemical, 2007, 128, 208-217.	7.8	19
116	Detection of DNA hybridization by a field-effect transistor with covalently attached catcher molecules. Surface and Interface Analysis, 2006, 38, 176-181.	1.8	42
117	Label-free detection of DNA using field-effect transistors. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3399-3411.	1.8	45
118	Field-effect sensors for monitoring the layer-by-layer adsorption of charged macromolecules. Sensors and Actuators B: Chemical, 2006, 118, 163-170.	7.8	57
119	Surface activation of thin silicon oxides by wet cleaning and silanization. Thin Solid Films, 2006, 510, 175-180.	1.8	124
120	N-Channel field-effect transistors with floating gates for extracellular recordings. Biosensors and Bioelectronics, 2006, 21, 1037-1044.	10.1	48
121	Cell-Transistor Hybrid Systems. , 2006, , 99-113.		1
122	Towards Label-free Detection of Charged Macromolecules Using Field-effect-based Structures: Scaling Down from Capacitive EIS Sensor over ISFET to Nano-scale Devices. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	0
123	A Semiconductor-based Field-effect Platform for (Bio-)Chemical and Physical sensors: From Capacitive EIS Sensors and LAPS over ISFETs to Nano-scale Devices. Materials Research Society Symposia Proceedings, 2006, 952, 2.	0.1	1
124	Single cell recordings with pairs of complementary transistors. Applied Physics Letters, 2006, 89, 013901.	3.3	17
125	Neuron?transistor coupling: interpretation of individual extracellular recorded signals. European Biophysics Journal, 2005, 34, 144-154.	2.2	52
126	Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B: Chemical, 2005, 111-112, 470-480.	7.8	238

#	Article	IF	CITATIONS
127	Interfacing Biology with Electronic Devices. Solid State Phenomena, 2005, 108-109, 789-796.	0.3	2
128	Recording of cell action potentials with AlGaN∕GaN field-effect transistors. Applied Physics Letters, 2005, 86, 033901.	3.3	112
129	Cell-Transistor Coupling: Investigation of Potassium Currents Recorded with p- and n-Channel FETs. Biophysical Journal, 2005, 89, 3628-3638.	0.5	63
130	Membrane on a Chip: A Functional Tethered Lipid Bilayer Membrane on Silicon Oxide Surfaces. Biophysical Journal, 2005, 89, 1780-1788.	0.5	170
131	Electronic Detection of Nucleic Acid Molecules with a Field-Effect Transistor. Materials Research Society Symposia Proceedings, 2004, 828, 276.	0.1	4
132	Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics, 2004, 19, 1723-1731.	10.1	245
133	64-Channel extended gate electrode arrays for extracellular signal recording. Electrochimica Acta, 2003, 48, 3355-3362.	5.2	48
134	Backside contacted field effect transistor array for extracellular signal recording. Biosensors and Bioelectronics, 2003, 18, 429-435.	10.1	39
135	Cardiomyocyte-transistor-hybrids for sensor application. Biosensors and Bioelectronics, 2001, 16, 565-570.	10.1	100
136	Aligned microcontact printing of biomolecules on microelectronic device surfaces. IEEE Transactions on Biomedical Engineering, 2001, 48, 838-842.	4.2	48
137	Validation of the use of field effect transistors for extracellular signal recording in pharmacological bioassays. Journal of Pharmacological and Toxicological Methods, 2001, 45, 207-214.	0.7	52
138	Extended gate electrode arrays for extracellular signal recordings. Sensors and Actuators B: Chemical, 2000, 70, 101-107.	7.8	37
139	Multi-electrode arrays (meas) with guided network for cell-to-cell communication transduction. , 0, ,		0
140	Investigation of Extracellular Signal Shapes Recorded by Planar Metal Microelectrodes and Field-Effect Transistors. , 0 , , .		1
141	Bioelectronic Detection Schemes for Biomedical and Environmental Sensing. Advances in Science and Technology, 0, , .	0.2	1