Pere Clapes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/258860/publications.pdf Version: 2024-02-01

DEDE CIADES

#	Article	IF	CITATIONS
1	Unifying Scheme for the Biosynthesis of Acylâ€Branched Sugars: Extended Substrate Scope of Thiamineâ€Dependent Enzymes. Angewandte Chemie - International Edition, 2022, , e202113405.	13.8	2
2	Recent Advances in the Substrate Selectivity of Aldolases. ACS Catalysis, 2022, 12, 733-761.	11.2	22
3	An innovative route for the production of atorvastatin side-chain precursor by DERA-catalysed double aldol addition. Chemical Engineering Science, 2021, 231, 116312.	3.8	7
4	Chemoenzymatic Production of Enantiocomplementary 2â€Substituted 3â€Hydroxycarboxylic Acids from l â€Î±â€Amino Acids. Advanced Synthesis and Catalysis, 2021, 363, 2866-2876.	4.3	7
5	Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition–Transamination Reactions. ACS Catalysis, 2021, 11, 4660-4669.	11.2	25
6	Thermostability Engineering of a Class II Pyruvate Aldolase from <i>Escherichia coli</i> by <i>in Vivo</i> Folding Interference. ACS Sustainable Chemistry and Engineering, 2021, 9, 5430-5436.	6.7	14
7	A cascade reaction for the synthesis of d-fagomine precursor revisited: Kinetic insight and understanding of the system. New Biotechnology, 2021, 63, 19-28.	4.4	2
8	Cascade Synthesis of <scp>l</scp> -Homoserine Catalyzed by Lyophilized Whole Cells Containing Transaminase and Aldolase Activities: The Mathematical Modeling Approach. Industrial & Engineering Chemistry Research, 2021, 60, 13846-13858.	3.7	4
9	Enantioselective Reductive Oligomerization of Carbon Dioxide into <scp>l</scp> -Erythrulose via a Chemoenzymatic Catalysis. Journal of the American Chemical Society, 2021, 143, 16274-16283.	13.7	16
10	Convergent inâ€situ Generation of Both Transketolase Substrates via Transaminase and Aldolase Reactions for Sequential Oneâ€Pot, Threeâ€6tep Cascade Synthesis of Ketoses. ChemCatChem, 2020, 12, 812-817.	3.7	7
11	Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. Journal of the American Chemical Society, 2020, 142, 19754-19762.	13.7	10
12	Cascade enzymatic synthesis of <scp>l</scp> -homoserine – mathematical modelling as a tool for process optimisation and design. Reaction Chemistry and Engineering, 2020, 5, 747-759.	3.7	11
13	Model-based optimization of the enzymatic aldol addition of propanal to formaldehyde: A first step towards enzymatic synthesis of 3-hydroxybutyric acid. Chemical Engineering Research and Design, 2019, 150, 140-152.	5.6	6
14	Chemoenzymatic Hydroxymethylation of Carboxylic Acids by Tandem Stereodivergent Biocatalytic Aldol Reaction and Chemical Decarboxylation. ACS Catalysis, 2019, 9, 7568-7577.	11.2	15
15	Aldolaseâ€Catalyzed Asymmetric Synthesis of Nâ€Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes. Advanced Synthesis and Catalysis, 2019, 361, 2673-2687.	4.3	19
16	Reactor and microreactor performance and kinetics of the aldol addition of dihydroxyacetone to benzyloxycarbonyl- <i>N</i> -3-aminopropanal catalyzed by D-fructose-6-phosphate aldolase variant A129G. Chemical Engineering Communications, 2019, 206, 927-939.	2.6	3
17	Nucleophile Promiscuity of Natural and Engineered Aldolases. ChemBioChem, 2018, 19, 1353-1358.	2.6	13
18	Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> . Angewandte Chemie, 2018, 130, 3645-3649.	2.0	11

#	Article	IF	CITATIONS
19	Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> . Angewandte Chemie - International Edition, 2018, 57, 3583-3587.	13.8	22
20	Titelbild: Nucleophile Promiscuity of Engineered Classâ€II Pyruvate Aldolase YfaU from <i>E.â€Coli</i> (Angew. Chem. 14/2018). Angewandte Chemie, 2018, 130, 3581-3581.	2.0	0
21	Efficient Asymmetric Synthesis of Carbohydrates by Aldolase Nano-Confined in Lipidic Cubic Mesophases. ACS Catalysis, 2018, 8, 5810-5815.	11.2	28
22	Determination of the Î ² -glycosylate fraction of contaminants of emerging concern in lettuce (Lactuca) Tj ETQq0 0 5715-5721.	0 rgBT /0 3.7	verlock 10 T 6
23	Biocatalytic Aldol Addition of Simple Aliphatic Nucleophiles to Hydroxyaldehydes. ACS Catalysis, 2018, 8, 8804-8809.	11.2	25
24	Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angewandte Chemie - International Edition, 2018, 57, 10153-10157.	13.8	33
25	Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angewandte Chemie, 2018, 130, 10310-10314.	2.0	9
26	Combining Aldolases and Transaminases for the Synthesis of 2-Amino-4-hydroxybutanoic Acid. ACS Catalysis, 2017, 7, 1707-1711.	11.2	60
27	Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructoseâ€6â€phosphate Aldolase. Chemistry - A European Journal, 2017, 23, 5005-5009.	3.3	29
28	Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I. Angewandte Chemie, 2017, 129, 5388-5391.	2.0	7
29	2â€Ketoâ€3â€Deoxyâ€ <scp>l</scp> â€Rhamnonate Aldolase (YfaU) as Catalyst in Aldol Additions of Pyruvate to Amino Aldehyde Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 2090-2100.	4.3	20
30	Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I. Angewandte Chemie - International Edition, 2017, 56, 5304-5307.	13.8	13
31	Microvesicle release and micellar attack as the alternative mechanisms involved in the red-blood-cell-membrane solubilization induced by arginine-based surfactants. RSC Advances, 2017, 7, 37549-37558.	3.6	13
32	Inhibitory properties of 1,4-dideoxy-1,4-imino- <scp>d</scp> -arabinitol (DAB) derivatives acting on glycogen metabolising enzymes. Organic and Biomolecular Chemistry, 2016, 14, 9105-9113.	2.8	8
33	Enzymatic CC Bond Formation. , 2016, , 285-337.		6
34	Minimalist Protein Engineering of an Aldolase Provokes Unprecedented Substrate Promiscuity. ACS Catalysis, 2016, 6, 1848-1852.	11.2	48
35	Inhibitor versus chaperone behaviour of d-fagomine, DAB and LAB sp2-iminosugar conjugates against glycosidases: A structure–activity relationship study in Gaucher fibroblasts. European Journal of Medicinal Chemistry, 2016, 121, 880-891.	5.5	33
36	Structureâ€Guided Engineering of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Improved Acceptor Tolerance in Biocatalytic Aldol Additions. Advanced Synthesis and Catalysis, 2015, 357, 1787-1807.	4.3	20

#	Article	IF	CITATIONS
37	<scp>L</scp> â€Rhamnuloseâ€1â€phosphate Aldolase from <i>Thermotoga maritima</i> in Organic Synthesis: Oneâ€Pot Multistep Reactions for the Preparation of Imino―and Nitrocyclitols. Advanced Synthesis and Catalysis, 2015, 357, 1951-1960.	4.3	18
38	Engineered <scp>L</scp> ‣erine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Đialkylâ€I±â€Amino Acids. Angewandte Chemie, 2015, 127, 3056-3060.	2.0	12
39	Expedient Synthesis of C â€Aryl Carbohydrates by Consecutive Biocatalytic Benzoin and Aldol Reactions. Chemistry - A European Journal, 2015, 21, 3335-3346.	3.3	13
40	Engineered <scp>L</scp> ‧erine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Ðialkylâ€i±â€Amino Acids. Angewandte Chemie - International Edition, 2015, 54, 3013	-3017.	35
41	Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants. Amino Acids, 2015, 47, 1465-1477.	2.7	20
42	Disentangling Complex Mixtures of Compounds with Nearâ€ldentical ¹ H and ¹³ Câ€NMR Spectra using Pure Shift NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 7682-7685.	3.3	25
43	Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions. Nature Chemistry, 2015, 7, 724-729.	13.6	63
44	A new concept for production of (3S,4R)-6-[(benzyloxycarbonyl)amino]-5,6-dideoxyhex-2-ulose, a precursor of <scp>d</scp> -fagomine. RSC Advances, 2015, 5, 69819-69828.	3.6	10
45	<scp>d</scp> -Fagomine attenuates metabolic alterations induced by a high-energy-dense diet in rats. Food and Function, 2015, 6, 2614-2619.	4.6	16
46	Effect of <scp>d</scp> â€fagomine on excreted enterobacteria and weight gain in rats fed a highâ€fat highâ€sucrose diet. Obesity, 2014, 22, 976-979.	3.0	23
47	Efficient biocatalytic processes for highly valuable terminally phosphorylated C5 to C9 <scp>d</scp> -ketoses. Green Chemistry, 2014, 16, 1109-1113.	9.0	29
48	Engineering the Donor Selectivity of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Biocatalytic Asymmetric Crossâ€Aldol Additions of Glycolaldehyde. Chemistry - A European Journal, 2014, 20, 12572-12583.	3.3	35
49	Sequential Biocatalytic Aldol Reactions in Multistep Asymmetric Synthesis: Pipecolic Acid, Piperidine and Pyrrolidine (Homo)Iminocyclitol Derivatives from Achiral Building Blocks. Advanced Synthesis and Catalysis, 2014, 356, 3007-3024.	4.3	31
50	Aldolase-Catalyzed Synthesis of Conformationally Constrained Iminocyclitols: Preparation of Polyhydroxylated Benzopyrrolizidines and Cyclohexapyrrolizidines. Organic Letters, 2014, 16, 1422-1425.	4.6	17
51	Casuarine Stereoisomers from Achiral Substrates: Chemoenzymatic Synthesis and Inhibitory Properties. Journal of Organic Chemistry, 2014, 79, 5386-5389.	3.2	16
52	Mathematical model for aldol addition catalyzed by two d-fructose-6-phosphate aldolases variants overexpressed in E. coli. Journal of Biotechnology, 2013, 167, 191-200.	3.8	9
53	Syntheses of dipeptide alcohols and dipeptide aldehyde precursors catalyzed by plant cysteine peptidases. Journal of Molecular Catalysis B: Enzymatic, 2013, 89, 130-136.	1.8	3
54	Chemo-enzymatic synthesis and glycosidase inhibitory properties of DAB and LAB derivatives. Organic and Biomolecular Chemistry, 2013, 11, 2005.	2.8	25

#	Article	IF	CITATIONS
55	Aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalyzed by two aldolases variants in microreactors. Enzyme and Microbial Technology, 2013, 53, 38-45.	3.2	11
56	<scp>d</scp> -Fagomine lowers postprandial blood glucose and modulates bacterial adhesion. British Journal of Nutrition, 2012, 107, 1739-1746.	2.3	56
57	Chemoenzymatic synthesis, structural study and biological activity of novel indolizidine and quinolizidine iminocyclitols. Organic and Biomolecular Chemistry, 2012, 10, 6309.	2.8	30
58	In situ aldehyde generation for aldol addition reactions catalyzed by d-fructose-6-phosphate aldolase. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 102-107.	1.8	15
59	Carbon–Carbon Bond-Forming Enzymes for the Synthesis of Non-natural Amino Acids. Methods in Molecular Biology, 2012, 794, 73-85.	0.9	0
60	Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by l-rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolases in aqueous borate buffer. Organic and Biomolecular Chemistry, 2011, 9, 8430.	2.8	26
61	Structure-guided redesign of d-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation. Chemical Communications, 2011, 47, 5762.	4.1	41
62	Redesign of the Phosphate Binding Site of <scp>L</scp> â€Rhamnulose―1â€Phosphate Aldolase towards a Dihydroxyacetone Dependent Aldolase. Advanced Synthesis and Catalysis, 2011, 353, 89-99.	4.3	38
63	Current Trends in Asymmetric Synthesis with Aldolases. Advanced Synthesis and Catalysis, 2011, 353, 2263-2283.	4.3	117
64	Cytotoxicity and enzymatic activity inhibition in cell lines treated with novel iminosugar derivatives. Glycoconjugate Journal, 2010, 27, 277-285.	2.7	21
65	A Mutant <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase (Ala129Ser) with Improved Affinity towards Dihydroxyacetone for the Synthesis of Polyhydroxylated Compounds. Advanced Synthesis and Catalysis, 2010, 352, 1039-1046.	4.3	90
66	Redesigning the Active Site of Transaldolase TalB from <i>Escherichia coli</i> : New Variants with Improved Affinity towards Nonphosphorylated Substrates. ChemBioChem, 2010, 11, 681-690.	2.6	38
67	Structureâ€Guided Minimalist Redesign of the <scp>L</scp> â€Fuculoseâ€1â€Phosphate Aldolase Active Site: Expedient Synthesis of Novel Polyhydroxylated Pyrrolizidines and their Inhibitory Properties Against Glycosidases and Intestinal Disaccharidases. Chemistry - A European Journal, 2010, 16, 10691-10706.	3.3	39
68	Recent progress in stereoselective synthesis with aldolases. Current Opinion in Chemical Biology, 2010, 14, 154-167.	6.1	192
69	Protein Flexibility and Metal Coordination Changes in DHAPâ€Dependent Aldolases. Chemistry - A European Journal, 2009, 15, 1422-1428.	3.3	16
70	<scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase in Organic Synthesis: Cascade Chemicalâ€Enzymatic Preparation of Sugarâ€Related Polyhydroxylated Compounds. Chemistry - A European Journal, 2009, 15, 3808-3816.	3.3	104
71	Dihydroxyacetone Phosphate Aldolase Catalyzed Synthesis of Structurally Diverse Polyhydroxylated Pyrrolidine Derivatives and Evaluation of their Glycosidase Inhibitory Properties. Chemistry - A European Journal, 2009, 15, 7310-7328.	3.3	49
72	Asymmetric Self―and Crossâ€Aldol Reactions of Glycolaldehyde Catalyzed by <scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase. Angewandte Chemie - International Edition, 2009, 48, 5521-5525.	13.8	116

#	Article	IF	CITATIONS
73	Screening of plant peptidases for the synthesis of arginine-based surfactants. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 177-182.	1.8	18
74	A dynamic view of enzyme catalysis. Journal of Molecular Modeling, 2008, 14, 735-746.	1.8	14
75	Serine Hydroxymethyl Transferase from <i>Streptococcus thermophilus</i> and <scp>L</scp> â€Threonine Aldolase from <i>Escherichia coli</i> as Stereocomplementary Biocatalysts for the Synthesis of βâ€Hydroxyâ€Î±,ï‰â€diamino Acid Derivatives. Chemistry - A European Journal, 2008, 14, 4647-4656.	3.3	53
76	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
77	Comparative evaluation of cytotoxicity and phototoxicity of mono and diacylglycerol amino acid-based surfactants. Food and Chemical Toxicology, 2008, 46, 3837-3841.	3.6	15
78	Interaction of Antioxidant Biobased Epicatechin Conjugates with Biomembrane Models. Journal of Agricultural and Food Chemistry, 2007, 55, 2901-2905.	5.2	9
79	Chemoenzymatic Synthesis and Inhibitory Activities of Hyacinthacines A ₁ and A ₂ Stereoisomers. Advanced Synthesis and Catalysis, 2007, 349, 1661-1666.	4.3	57
80	Influence of N-amino protecting group on aldolase-catalyzed aldol additions of dihydroxyacetone phosphate to amino aldehydes. Tetrahedron, 2006, 62, 2648-2656.	1.9	25
81	Fructose-6-phosphate Aldolase in Organic Synthesis:  Preparation ofd-Fagomine,N-Alkylated Derivatives, and Preliminary Biological Assays. Organic Letters, 2006, 8, 6067-6070.	4.6	136
82	Comparative behaviour of proteinases from the latex of Carica papaya and Funastrum clausum as catalysts for the synthesis of Z-Ala-Phe-OMe. Journal of Molecular Catalysis B: Enzymatic, 2006, 41, 117-124.	1.8	18
83	Chemoenzymatic Synthesis and Antimicrobial and Haemolytic Activities of Amphiphilic Bis(phenylacetylarginine) Derivatives. ChemMedChem, 2006, 1, 1091-1098.	3.2	12
84	Biocatalyzed Synthesis and Structural Characterization of Monoglucuronides of Hydroxytyrosol, Tyrosol, Homovanillic Alcohol, and 3-(4′-Hydroxyphenyl)propanol. Advanced Synthesis and Catalysis, 2006, 348, 2155-2162.	4.3	35
85	Comparative study of the antimicrobial activity of bis(Nα-caproyl-l-arginine)-1,3-propanediamine dihydrochloride and chlorhexidine dihydrochloride against Staphylococcus aureus and Escherichia coli. Journal of Antimicrobial Chemotherapy, 2006, 57, 691-698.	3.0	52
86	Aldol Additions of Dihydroxyacetone Phosphate toN-Cbz-Amino Aldehydes Catalyzed byL-Fuculose-1-Phosphate Aldolase in Emulsion Systems: Inversion of Stereoselectivity as a Function of the Acceptor Aldehyde. Chemistry - A European Journal, 2005, 11, 1392-1401.	3.3	50
87	Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst. Applied Microbiology and Biotechnology, 2005, 68, 489-497.	3.6	32
88	Immobilization of fuculose-1-phosphate aldolase fromE. colito glyoxal-agarose gels by multipoint covalent attachment. Biocatalysis and Biotransformation, 2005, 23, 241-250.	2.0	9
89	The Effect of Molecular Shape on the Thermotropic Liquid Crystal Behavior of Monolauroylated Amino Acid Glyceride Conjugates. Journal of Physical Chemistry B, 2005, 109, 22899-22908.	2.6	11
90	Amino acid-based surfactants. Comptes Rendus Chimie, 2004, 7, 583-592.	0.5	138

#	Article	IF	CITATIONS
91	Lipase-Catalyzed Selective Monoacylation of 1,n-Diols with Vinyl Acetate ChemInform, 2004, 35, no.	0.0	0
92	Lipase-catalysed selective monoacylation of 1,n-diols with vinyl acetate. Tetrahedron Letters, 2004, 45, 5031-5033.	1.4	22
93	Assessment of primary eye and skin irritants by in vitro cytotoxicity and phototoxicity models: an in vitro approach of new arginine-based surfactant-induced irritation. Toxicology, 2004, 197, 229-237.	4.2	60
94	Assessment of the potential irritation and photoirritation of novel amino acid-based surfactants by in vitro methods as alternative to the animal tests. Toxicology, 2004, 201, 87-93.	4.2	39
95	Enzymatic synthesis and physicochemical characterization of glycero arginine-based surfactants. Comptes Rendus Chimie, 2004, 7, 169-176.	0.5	15
96	Lipase-catalysed selective monoacylation of 1,n-diols with vinyl acetate. Tetrahedron Letters, 2004, 45, 5031-5031.	1.4	2
97	Interaction of Antimicrobial Arginine-Based Cationic Surfactants with Liposomes and Lipid Monolayers. Langmuir, 2004, 20, 3379-3387.	3.5	88
98	"Green―amino acid-based surfactants. Green Chemistry, 2004, 6, 233-240.	9.0	227
99	Investigation of the Thermotropic Behavior of Isomer Mixtures of Diacyl Arginine-Based Surfactants. Comparison of Polarized Light Microscopy, DSC, and SAXS Observations. Journal of Physical Chemistry B, 2004, 108, 11080-11088.	2.6	12
100	Low potential ocular irritation of arginine-based gemini surfactants and their mixtures with nonionic and zwitterionic surfactants. Pharmaceutical Research, 2003, 20, 1697-1701.	3.5	34
101	Langmuir Monolayers of Diacyl Glycerol Amino Acid-Based Surfactants. Effect of the Substitution Pattern of the Glycerol Backbone. Langmuir, 2003, 19, 10878-10884.	3.5	13
102	Enzymatic Carbonâ^'Carbon Bond Formation in Water-in-Oil Highly Concentrated Emulsions (Gel) Tj ETQq0 0 0 r	rgB <u>T</u> [Over	\log_{42}^{10} Tf 50
103	Stereoselective Aldol Additions Catalyzed by Dihydroxyacetone Phosphate-Dependent Aldolases in Emulsion Systems: Preparation and Structural Characterization of Linear and Cyclic Iminopolyols from Aminoaldehydes. Chemistry - A European Journal, 2003, 9, 4887-4899.	3.3	88
104	Novel Chemoenzymatic Strategy for the Synthesis of Enantiomerically Pure Secondary Alcohols with Sterically Similar Substituents. Journal of Organic Chemistry, 2003, 68, 5351-5356.	3.2	10
105	Stereospecificity of an Enzymatic Monoene 1,4-Dehydrogenation Reaction:Â Conversion of (Z)-11-Tetradecenoic Acid into (E,E)-10,12-Tetradecadienoic Acid. Journal of Organic Chemistry, 2002, 67, 2228-2233.	3.2	19
106	Synthesis of glycero amino acid-based surfactants. Part 2.1 Lipase-catalysed synthesis of 1-O-lauroyl-rac-glycero-3-O-(Nα-acetyl-L-amino acid) and 1,2-di-O-lauroyl-rac-glycero-3-O-(Nα-acetyl-L-amino acid) derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2002. , 1124-1134.	1.3	23
107	Amino Acid-based Surfactants: Enzymatic Synthesis, Properties and Potential Applications. Biocatalysis and Biotransformation, 2002, 20, 215-233.	2.0	119
108	Synthesis and biological properties of dicationic arginine–diglycerides. New Journal of Chemistry, 2002, 26, 1221-1227.	2.8	45

Pere Clapes

#	Article	IF	CITATIONS
109	Integrated Process for the Enzymatic Synthesis of the Octapeptide PhAcCCK-8. Biotechnology Progress, 2002, 18, 1214-1220.	2.6	12
110	Chemical Structure/Property Relationship in Single-Chain Arginine Surfactants. Langmuir, 2001, 17, 5071-5075.	3.5	95
111	Highly concentrated water-in-oil emulsions as novel reaction media for protease-catalysed kinetically controlled peptide synthesis. Perkin Transactions II RSC, 2001, , 1394-1399.	1.1	16
112	Synthesis of glycero amino acid-based surfactants. Part 1. Enzymatic preparation of rac-1-O-(Nα-acetyl-l-aminoacyl)glycerol derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2063-2070.	1.3	29
113	PURIFICATION OF NON-TOXIC, BIODEGRADABLE ARGININE-BASED GEMINI SURFACTANTS, BIS(ARGS), BY ION EXCHANGE CHROMATOGRAPHY. Preparative Biochemistry and Biotechnology, 2001, 31, 259-274.	1.9	6
114	Chemo-enzymatic synthesis of arginine-based gemini surfactants. Biotechnology and Bioengineering, 2000, 70, 323-331.	3.3	54
115	A Novel Activity of Immobilized Penicillin G Acylase: Removal of Benzyloxycarbonyl Amino Protecting Group. Biocatalysis and Biotransformation, 2000, 18, 253-258.	2.0	8
116	Peptide Synthesis in Non-Aqueous Media. , 2000, , 110-132.		5
117	Qualitative and quantitative analysis of new alkyl amide arginine surfactants by high-performance liquid chromatography and capillary electrophoresis. Journal of Chromatography A, 1999, 852, 499-506.	3.7	7
118	Enzymatic synthesis of arginine-based cationic surfactants. , 1999, 63, 333-343.		42
119	Useful Methods in Enzymatic Synthesis of Peptides: A Comparative Study Focussing on Kinetically Controlled Synthesis of Ac-Phe-Ala-NH2Catalyzed by α-Chymotrypsin. Biocatalysis and Biotransformation, 1999, 17, 319-345.	2.0	12
120	Reactivity of easily removable protecting groups for glycine in peptide synthesis using papain as catalyst. Enzyme and Microbial Technology, 1998, 23, 199-203.	3.2	12
121	Reaction medium engineering in enzymatic peptide fragment condensation: synthesis of Eledoisin and LH-RH. Bioorganic and Medicinal Chemistry, 1998, 6, 891-901.	3.0	11
122	Peptide bond formation by the industrial protease, neutrase, in organic media. Biotechnology Letters, 1997, 19, 1023-1026.	2.2	22
123	Neoglycopeptide Synthesis and Purification in Multi-gram Scale: Preparation ofO-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-Nα-fluoren-9-yl-methoxycarbonyl-hydroxyproline and Its Use in the Pilot-scale Synthesis of the Potent Analgesic GlycopeptideO1.5-β-D-galactopyranosyl[DMet2, Hyp5]enkephalinamide. , 1997, 3, 99-109.		2
124	Enzymatic condensation of cholecystokinin CCK-8 (4–6) and CCK-8 (7–8) peptide fragments in organic media. , 1997, 56, 456-463.		23
125	lodination of aromatic residues in peptides by reaction with IPy2BF4. Chemical Communications, 1996, , 1505-1506.	4.1	33
126	Enzymatic Peptide Synthesis in Organic Media. Synthesis of CCK-8 Dipeptide Fragments. Biocatalysis and Biotransformation, 1996, 13, 201-216.	2.0	7

#	Article	IF	CITATIONS
127	N-Protection of Amino Acid Derivatives Catalyzed by Immobilized Penicillin G Acylase. Biocatalysis and Biotransformation, 1996, 14, 317-332.	2.0	7
128	Enzymatic synthesis of a CCK-8 tripeptide fragment in organic media. , 1996, 50, 700-708.		31
129	Enzymatic resolution of Z-γ,γ′-di-tert-butyl-D,L-carboxyglutamic acid methyl ester. Tetrahedron Letters, 1996, 37, 417-418.	1.4	13
130	Enzymatic synthesis of carboxyglutamic acid containing peptides in organic media. Tetrahedron Letters, 1996, 37, 3609-3612.	1.4	5
131	Rapid and efficient preparative purification of building blocks suitable for solid-phase synthesis of neoglycopeptides: Synthesis and purification of O-(2,3,4,6-tetra-O-acetyl-?-d-) Tj ETQq1 1 0.784314 rgBT /Overloc	k 10 Tf 50	5482 Td (ga
132	Synthesis of sulfated bioactive peptides using immobilized arylsulfotransferase from Eubacterium sp Biotechnology Letters, 1996, 18, 609-614.	2.2	3
133	Influence of Water Activity and Support Material on the Enzymatic Synthesis of a Cck-8 Tripeptide Fragment. Biocatalysis and Biotransformation, 1996, 13, 165-178.	2.0	16
134	A Spreadsheet Simulation of a Differential Reactor for Estimating Kinetic Constants. , 1996, , 419-433.		1
135	Ethyl acetate modified AOT water-in-oil microemulsions for the α-chymotrypsin catalyzed synthesis of a model dipeptide derivative. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96, 47-52.	4.7	6
136	Enzymatic peptide synthesis in low water content systems: Preparative enzymatic synthesis of [Leu]- and [Met]-enkephalin derivatives. Bioorganic and Medicinal Chemistry, 1995, 3, 245-255.	3.0	46
137	Enzymatic synthesis of X-Phe-Leu-NH2 in low water content systems: Influence of the N-α protecting group and the reaction medium composition. BBA - Proteins and Proteomics, 1993, 1164, 189-196.	2.1	17
138	Solid-phase synthesis of carboxyamidomethyl peptide esters: Application to enzymatic fragment condensation. , 1993, , 423-424.		1
139	Influence of solvent and water activity on kinetically controlled peptide synthesis. Enzyme and Microbial Technology, 1992, 14, 575-580.	3.2	33
140	Optimization and kinetic studies of the enzymatic synthesis of Ac-Phe-Leu-NH2 in reversed micelles. Enzyme and Microbial Technology, 1992, 14, 117-124.	3.2	31
141	Enzymatic peptide fragment condensation. Choice of reaction media for the synthesis of an insect neuropeptide derivative. Biotechnology Letters, 1992, 6, 69-72.	0.5	3
142	Application of empirical design methodologies to the study of the influence of reaction conditions andN-α-protecting group structure on the enzymatic X-Phe-Leu-NH2dipeptide synthesis in buffer/dimethylformamide solvents systems. Biotechnology and Bioengineering, 1992, 39, 539-549.	3.3	8
143	Racemization free coupling of peptide segments. International Journal of Peptide and Protein Research, 1992, 39, 528-532.	0.1	7
144	Synthesis and biological activity of O-glycosylated morphiceptin analogues. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1755-1759.	0.9	36

#	Article	IF	CITATIONS
145	Substrate specificity of $\hat{l}\pm$ -chymotrypsin-catalyzed esterification in organic media. BBA - Proteins and Proteomics, 1991, 1118, 70-76.	2.1	26
146	Synthesis and activity of new N,N-dialkyl-morphiceptin analogs. , 1991, , 623-625.		0
147	Solid-phase synthesis of new glycosyl enkephalinamides. , 1991, , 416-417.		0
148	Solid-Phase Synthesis of Glycopeptide Amides under Mild Conditions: Morphiceptin Analogues. Angewandte Chemie International Edition in English, 1990, 29, 291-292.	4.4	21
149	Festphasenâ€5ynthese von Glycopeptidamiden unter milden Bedingungen: Morphiceptinâ€Analoga. Angewandte Chemie, 1990, 102, 311-313.	2.0	14
150	Improved method for the synthesis of o-glycosylated fmoc amino acids to be used in solid-phase glycopeptide synthesis (Fmoc = fluoren-9-ylmethoxycarbonyl). Journal of the Chemical Society Chemical Communications, 1990, , 965-967.	2.0	30
151	Enzymatic peptide synthesis in organic media: a comparative study of water-miscible and water-immiscible solvent systems. Journal of Biotechnology, 1990, 15, 323-338.	3.8	74
152	Enzymatic Peptide Synthesis in Organic Media. Annals of the New York Academy of Sciences, 1990, 613, 517-520.	3.8	7
153	Hydrolysis of N-protected amino acid allyl esters by enzymatic catalysis. Biotechnology Letters, 1989, 11, 393-396.	2.2	8
154	New enzymatic approach to the synthesis of convenient aspartic acid intermediates in peptide chemistry. Synthesis of n-benzyloxycarbonyl-l-aspartic acid I²-allyl ester Tetrahedron, 1989, 45, 7421-7426.	1.9	15
155	Influence of the contact model and support characteristics on the partition constant for kinetically controlled synthesis of peptides. Journal of Chemical Technology and Biotechnology, 1989, 45, 271-278.	3.2	1
156	Continuous enzymatic synthesis of <i>Z</i> â€kyotorphin amide in an enzymeâ€immobilized fixedâ€bed reactor. Journal of Chemical Technology and Biotechnology, 1989, 45, 191-202.	3.2	6
157	Chromatographic behaviour and purification of N1.5-glycosyl enkephalins. Chromatographia, 1988, 25, 891-894.	1.3	2
158	Kinetic study of α-chymotrypsin-catalyzed synthesis of kyotorphin. BBA - Proteins and Proteomics, 1988, 953, 157-163.	2.1	15
159	A Comparative Study of the Performance of Solid Supported and Soluble α-Chymotrypsin for the Enzymatic Synthesis of Kyotorphin. Biocatalysis, 1988, 2, 19-28.	0.9	7
160	Use of spreadsheets in biotechnology. Trends in Biotechnology, 1987, 5, 294-296.	9.3	1
161	Kinetically Controlled Enzyme-Catalyzed Synthesis of Kyotorphin. Applied Biochemistry and Biotechnology, 1987, 15, 89-96.	2.9	10
162	Degradation of MCPA by photochemical methods. Chemosphere, 1986, 15, 395-401.	8.2	17

#	Article	IF	CITATIONS
163	Kinetic Study of 4-Chloro-2-methylphenoxyacetic Acid Photodegeneration. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 645-649.	0.5	12
164	Novel Strategies in Aldolase-Catalyzed Synthesis of Iminosugars. , 0, , 299-311.		1
165	Glycerolipid arginine-based surfactants: synthesis and surface active properties. , 0, , 210-216.		2
166	Unifying Scheme for the Biosynthesis of Acylâ€Branched Sugars: Extended Substrate Scope of Thiamineâ€Dependent Enzymes. Angewandte Chemie, 0, , .	2.0	0