Pere Clapes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/258860/publications.pdf

Version: 2024-02-01

166 4,516 35
papers citations h-index

35 57
h-index g-index

187 187 all docs citations

187 times ranked 3156 citing authors

#	Article	IF	CITATIONS
1	"Green―amino acid-based surfactants. Green Chemistry, 2004, 6, 233-240.	9.0	227
2	Recent progress in stereoselective synthesis with aldolases. Current Opinion in Chemical Biology, 2010, 14, 154-167.	6.1	192
3	Amino acid-based surfactants. Comptes Rendus Chimie, 2004, 7, 583-592.	0.5	138
4	Fructose-6-phosphate Aldolase in Organic Synthesis:  Preparation ofd-Fagomine,N-Alkylated Derivatives, and Preliminary Biological Assays. Organic Letters, 2006, 8, 6067-6070.	4.6	136
5	Amino Acid-based Surfactants: Enzymatic Synthesis, Properties and Potential Applications. Biocatalysis and Biotransformation, 2002, 20, 215-233.	2.0	119
6	Current Trends in Asymmetric Synthesis with Aldolases. Advanced Synthesis and Catalysis, 2011, 353, 2263-2283.	4.3	117
7	Asymmetric Self―and Crossâ€Aldol Reactions of Glycolaldehyde Catalyzed by <scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase. Angewandte Chemie - International Edition, 2009, 48, 5521-5525.	13.8	116
8	<scp>D</scp> â€Fructoseâ€6â€phosphate Aldolase in Organic Synthesis: Cascade Chemicalâ€Enzymatic Preparation of Sugarâ€Related Polyhydroxylated Compounds. Chemistry - A European Journal, 2009, 15, 3808-3816.	3.3	104
9	Chemical Structure/Property Relationship in Single-Chain Arginine Surfactants. Langmuir, 2001, 17, 5071-5075.	3.5	95
10	A Mutant <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase (Ala129Ser) with Improved Affinity towards Dihydroxyacetone for the Synthesis of Polyhydroxylated Compounds. Advanced Synthesis and Catalysis, 2010, 352, 1039-1046.	4.3	90
11	Stereoselective Aldol Additions Catalyzed by Dihydroxyacetone Phosphate-Dependent Aldolases in Emulsion Systems: Preparation and Structural Characterization of Linear and Cyclic Iminopolyols from Aminoaldehydes. Chemistry - A European Journal, 2003, 9, 4887-4899.	3.3	88
12	Interaction of Antimicrobial Arginine-Based Cationic Surfactants with Liposomes and Lipid Monolayers. Langmuir, 2004, 20, 3379-3387.	3 . 5	88
13	Enzymatic peptide synthesis in organic media: a comparative study of water-miscible and water-immiscible solvent systems. Journal of Biotechnology, 1990, 15, 323-338.	3.8	74
14	Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions. Nature Chemistry, 2015, 7, 724-729.	13.6	63
15	Assessment of primary eye and skin irritants by in vitro cytotoxicity and phototoxicity models: an in vitro approach of new arginine-based surfactant-induced irritation. Toxicology, 2004, 197, 229-237.	4.2	60
16	Combining Aldolases and Transaminases for the Synthesis of 2-Amino-4-hydroxybutanoic Acid. ACS Catalysis, 2017, 7, 1707-1711.	11.2	60
17	Chemoenzymatic Synthesis and Inhibitory Activities of Hyacinthacines A ₁ and A ₂ Stereoisomers. Advanced Synthesis and Catalysis, 2007, 349, 1661-1666.	4.3	57
18	<scp>d</scp> -Fagomine lowers postprandial blood glucose and modulates bacterial adhesion. British Journal of Nutrition, 2012, 107, 1739-1746.	2.3	56

#	Article	IF	CITATIONS
19	Chemo-enzymatic synthesis of arginine-based gemini surfactants. Biotechnology and Bioengineering, 2000, 70, 323-331.	3.3	54
20	Serine Hydroxymethyl Transferase from <i>Streptococcus thermophilus</i> and <scp>L</scp> â€Threonine Aldolase from <i>Escherichia coli</i> as Stereocomplementary Biocatalysts for the Synthesis of βâ€Hydroxyâ€Î±,ωâ€diamino Acid Derivatives. Chemistry - A European Journal, 2008, 14, 4647-4656.	3.3	53
21	Comparative study of the antimicrobial activity of bis(Nα-caproyl-l-arginine)-1,3-propanediamine dihydrochloride and chlorhexidine dihydrochloride against Staphylococcus aureus and Escherichia coli. Journal of Antimicrobial Chemotherapy, 2006, 57, 691-698.	3.0	52
22	Aldol Additions of Dihydroxyacetone Phosphate toN-Cbz-Amino Aldehydes Catalyzed byL-Fuculose-1-Phosphate Aldolase in Emulsion Systems: Inversion of Stereoselectivity as a Function of the Acceptor Aldehyde. Chemistry - A European Journal, 2005, 11, 1392-1401.	3.3	50
23	Dihydroxyacetone Phosphate Aldolase Catalyzed Synthesis of Structurally Diverse Polyhydroxylated Pyrrolidine Derivatives and Evaluation of their Glycosidase Inhibitory Properties. Chemistry - A European Journal, 2009, 15, 7310-7328.	3.3	49
24	Minimalist Protein Engineering of an Aldolase Provokes Unprecedented Substrate Promiscuity. ACS Catalysis, 2016, 6, 1848-1852.	11.2	48
25	Enzymatic peptide synthesis in low water content systems: Preparative enzymatic synthesis of [Leu]-and [Met]-enkephalin derivatives. Bioorganic and Medicinal Chemistry, 1995, 3, 245-255.	3.0	46
26	Synthesis and biological properties of dicationic arginine–diglycerides. New Journal of Chemistry, 2002, 26, 1221-1227.	2.8	45
27	Enzymatic synthesis of arginine-based cationic surfactants. , 1999, 63, 333-343.		42
28	Enzymatic Carbonâ^'Carbon Bond Formation in Water-in-Oil Highly Concentrated Emulsions (Gel) Tj ETQq0 0 0 rş	gBŢ ¦Over	lock 10 Tf 50
29	Structure-guided redesign of d-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation. Chemical Communications, 2011, 47, 5762.	4.1	41
30	Assessment of the potential irritation and photoirritation of novel amino acid-based surfactants by in vitro methods as alternative to the animal tests. Toxicology, 2004, 201, 87-93.	4.2	39
31	Structureâ€Guided Minimalist Redesign of the <scp>L</scp> â€Fuculoseâ€1â€Phosphate Aldolase Active Site: Expedient Synthesis of Novel Polyhydroxylated Pyrrolizidines and their Inhibitory Properties Against Glycosidases and Intestinal Disaccharidases. Chemistry - A European Journal, 2010, 16, 10691-10706.	3.3	39
32	Redesigning the Active Site of Transaldolase TalB from <i>Escherichia coli</i> Improved Affinity towards Nonphosphorylated Substrates. ChemBioChem, 2010, 11, 681-690.	2.6	38
33	Redesign of the Phosphate Binding Site of <scp>L</scp> â€Rhamnulose―1â€Phosphate Aldolase towards a Dihydroxyacetone Dependent Aldolase. Advanced Synthesis and Catalysis, 2011, 353, 89-99.	4.3	38
34	Synthesis and biological activity of O-glycosylated morphiceptin analogues. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1755-1759.	0.9	36
35	Biocatalyzed Synthesis and Structural Characterization of Monoglucuronides of Hydroxytyrosol, Tyrosol, Homovanillic Alcohol, and 3-(4′-Hydroxyphenyl)propanol. Advanced Synthesis and Catalysis, 2006, 348, 2155-2162.	4.3	35
36	Engineering the Donor Selectivity of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Biocatalytic Asymmetric Crossâ€Aldol Additions of Glycolaldehyde. Chemistry - A European Journal, 2014, 20, 12572-12583.	3.3	35

#	Article	IF	CITATIONS
37	Engineered <scp>L</scp> â€Serine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Dialkylâ€Î±â€Amino Acids. Angewandte Chemie - International Edition, 2015, 54, 3013	- 3 8187.	35
38	Low potential ocular irritation of arginine-based gemini surfactants and their mixtures with nonionic and zwitterionic surfactants. Pharmaceutical Research, 2003, 20, 1697-1701.	3.5	34
39	Influence of solvent and water activity on kinetically controlled peptide synthesis. Enzyme and Microbial Technology, 1992, 14, 575-580.	3.2	33
40	lodination of aromatic residues in peptides by reaction with IPy2BF4. Chemical Communications, 1996, , 1505-1506.	4.1	33
41	Inhibitor versus chaperone behaviour of d-fagomine, DAB and LAB sp2-iminosugar conjugates against glycosidases: A structure–activity relationship study in Gaucher fibroblasts. European Journal of Medicinal Chemistry, 2016, 121, 880-891.	5.5	33
42	Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angewandte Chemie - International Edition, 2018, 57, 10153-10157.	13.8	33
43	Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst. Applied Microbiology and Biotechnology, 2005, 68, 489-497.	3.6	32
44	Optimization and kinetic studies of the enzymatic synthesis of Ac-Phe-Leu-NH2 in reversed micelles. Enzyme and Microbial Technology, 1992, 14, 117-124.	3.2	31
45	Enzymatic synthesis of a CCK-8 tripeptide fragment in organic media. , 1996, 50, 700-708.		31
46	Sequential Biocatalytic Aldol Reactions in Multistep Asymmetric Synthesis: Pipecolic Acid, Piperidine and Pyrrolidine (Homo)Iminocyclitol Derivatives from Achiral Building Blocks. Advanced Synthesis and Catalysis, 2014, 356, 3007-3024.	4.3	31
47	Improved method for the synthesis of o-glycosylated fmoc amino acids to be used in solid-phase glycopeptide synthesis (Fmoc = fluoren-9-ylmethoxycarbonyl). Journal of the Chemical Society Chemical Communications, 1990, , 965-967.	2.0	30
48	Chemoenzymatic synthesis, structural study and biological activity of novel indolizidine and quinolizidine iminocyclitols. Organic and Biomolecular Chemistry, 2012, 10, 6309.	2.8	30
49	Synthesis of glycero amino acid-based surfactants. Part 1. Enzymatic preparation of rac-1-O-($N\hat{l}_{\pm}$ -acetyl-l-aminoacyl)glycerol derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2063-2070.	1.3	29
50	Efficient biocatalytic processes for highly valuable terminally phosphorylated C5 to C9 <scp>d</scp> -ketoses. Green Chemistry, 2014, 16, 1109-1113.	9.0	29
51	Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructoseâ€6â€phosphate Aldolase. Chemistry - A European Journal, 2017, 23, 5005-5009.	3.3	29
52	Efficient Asymmetric Synthesis of Carbohydrates by Aldolase Nano-Confined in Lipidic Cubic Mesophases. ACS Catalysis, 2018, 8, 5810-5815.	11.2	28
53	Substrate specificity of $\hat{l}\pm$ -chymotrypsin-catalyzed esterification in organic media. BBA - Proteins and Proteomics, 1991, 1118, 70-76.	2.1	26
54	Highly efficient aldol additions of DHA and DHAP to N-Cbz-amino aldehydes catalyzed by l-rhamnulose-1-phosphate and l-fuculose-1-phosphate aldolases in aqueous borate buffer. Organic and Biomolecular Chemistry, 2011, 9, 8430.	2.8	26

#	Article	IF	CITATIONS
55	Influence of N-amino protecting group on aldolase-catalyzed aldol additions of dihydroxyacetone phosphate to amino aldehydes. Tetrahedron, 2006, 62, 2648-2656.	1.9	25
56	Chemo-enzymatic synthesis and glycosidase inhibitory properties of DAB and LAB derivatives. Organic and Biomolecular Chemistry, 2013, 11, 2005.	2.8	25
57	Disentangling Complex Mixtures of Compounds with Nearâ€Identical ¹ H and ¹³ Câ€NMR Spectra using Pure Shift NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 7682-7685.	3.3	25
58	Biocatalytic Aldol Addition of Simple Aliphatic Nucleophiles to Hydroxyaldehydes. ACS Catalysis, 2018, 8, 8804-8809.	11.2	25
59	Synthesis of γ-Hydroxy-α-amino Acid Derivatives by Enzymatic Tandem Aldol Addition–Transamination Reactions. ACS Catalysis, 2021, 11, 4660-4669.	11.2	25
60	Enzymatic condensation of cholecystokinin CCK-8 ($4\hat{a}\in$ 6) and CCK-8 ($7\hat{a}\in$ 8) peptide fragments in organic media., 1997, 56, 456-463.		23
61	Synthesis of glycero amino acid-based surfactants. Part 2.1 Lipase-catalysed synthesis of 1-O-lauroyl-rac-glycero-3-O-(Nα-acetyl-L-amino acid) and 1,2-di-O-lauroyl-rac-glycero-3-O-(Nα-acetyl-L-amino acid) derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2002 1124-1134.	1.3	23
62	Effect of <scp>d</scp> â€fagomine on excreted enterobacteria and weight gain in rats fed a highâ€fat highâ€sucrose diet. Obesity, 2014, 22, 976-979.	3.0	23
63	Peptide bond formation by the industrial protease, neutrase, in organic media. Biotechnology Letters, 1997, 19, 1023-1026.	2.2	22
64	Lipase-catalysed selective monoacylation of 1,n-diols with vinyl acetate. Tetrahedron Letters, 2004, 45, 5031-5033.	1.4	22
65	Nucleophile Promiscuity of Engineered Class ll Pyruvate Aldolase YfaU from <i>E. Coli</i> . Angewandte Chemie - International Edition, 2018, 57, 3583-3587.	13.8	22
66	Recent Advances in the Substrate Selectivity of Aldolases. ACS Catalysis, 2022, 12, 733-761.	11.2	22
67	Solid-Phase Synthesis of Glycopeptide Amides under Mild Conditions: Morphiceptin Analogues. Angewandte Chemie International Edition in English, 1990, 29, 291-292.	4.4	21
68	Cytotoxicity and enzymatic activity inhibition in cell lines treated with novel iminosugar derivatives. Glycoconjugate Journal, 2010, 27, 277-285.	2.7	21
69	Structureâ€Guided Engineering of <scp>D</scp> â€Fructoseâ€6â€Phosphate Aldolase for Improved Acceptor Tolerance in Biocatalytic Aldol Additions. Advanced Synthesis and Catalysis, 2015, 357, 1787-1807.	4.3	20
70	Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants. Amino Acids, 2015, 47, 1465-1477.	2.7	20
71	2â€Ketoâ€3â€Deoxyâ€ <scp>l</scp> â€Rhamnonate Aldolase (YfaU) as Catalyst in Aldol Additions of Pyruvate to Amino Aldehyde Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 2090-2100.	4.3	20
72	Stereospecificity of an Enzymatic Monoene 1,4-Dehydrogenation Reaction:Â Conversion of (Z)-11-Tetradecenoic Acid into (E,E)-10,12-Tetradecadienoic Acid. Journal of Organic Chemistry, 2002, 67, 2228-2233.	3.2	19

#	Article	IF	Citations
73	Aldolaseâ€Catalyzed Asymmetric Synthesis of Nâ€Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes. Advanced Synthesis and Catalysis, 2019, 361, 2673-2687.	4.3	19
74	Comparative behaviour of proteinases from the latex of Carica papaya and Funastrum clausum as catalysts for the synthesis of Z-Ala-Phe-OMe. Journal of Molecular Catalysis B: Enzymatic, 2006, 41, 117-124.	1.8	18
75	Screening of plant peptidases for the synthesis of arginine-based surfactants. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 177-182.	1.8	18
76	<scp>L</scp> â€Rhamnuloseâ€1â€phosphate Aldolase from <i>Thermotoga maritima</i> in Organic Synthesis: Oneâ€Pot Multistep Reactions for the Preparation of Iminoâ€and Nitrocyclitols. Advanced Synthesis and Catalysis, 2015, 357, 1951-1960.	4.3	18
77	Degradation of MCPA by photochemical methods. Chemosphere, 1986, 15, 395-401.	8.2	17
78	Enzymatic synthesis of X-Phe-Leu-NH2 in low water content systems: Influence of the N- $\hat{1}$ ± protecting group and the reaction medium composition. BBA - Proteins and Proteomics, 1993, 1164, 189-196.	2.1	17
79	Aldolase-Catalyzed Synthesis of Conformationally Constrained Iminocyclitols: Preparation of Polyhydroxylated Benzopyrrolizidines and Cyclohexapyrrolizidines. Organic Letters, 2014, 16, 1422-1425.	4.6	17
80	Influence of Water Activity and Support Material on the Enzymatic Synthesis of a Cck-8 Tripeptide Fragment. Biocatalysis and Biotransformation, 1996, 13, 165-178.	2.0	16
81	Highly concentrated water-in-oil emulsions as novel reaction media for protease-catalysed kinetically controlled peptide synthesis. Perkin Transactions II RSC, 2001, , 1394-1399.	1.1	16
82	Protein Flexibility and Metal Coordination Changes in DHAPâ€Dependent Aldolases. Chemistry - A European Journal, 2009, 15, 1422-1428.	3.3	16
83	Casuarine Stereoisomers from Achiral Substrates: Chemoenzymatic Synthesis and Inhibitory Properties. Journal of Organic Chemistry, 2014, 79, 5386-5389.	3.2	16
84	$\mbox{\scp}\sc$	4.6	16
85	Enantioselective Reductive Oligomerization of Carbon Dioxide into <scp>I</scp> -Erythrulose via a Chemoenzymatic Catalysis. Journal of the American Chemical Society, 2021, 143, 16274-16283.	13.7	16
86	Kinetic study of \hat{l} ±-chymotrypsin-catalyzed synthesis of kyotorphin. BBA - Proteins and Proteomics, 1988, 953, 157-163.	2.1	15
87	New enzymatic approach to the synthesis of convenient aspartic acid intermediates in peptide chemistry. Synthesis of n-benzyloxycarbonyl-l-aspartic acid l^2 -allyl ester Tetrahedron, 1989, 45, 7421-7426.	1.9	15
88	Enzymatic synthesis and physicochemical characterization of glycero arginine-based surfactants. Comptes Rendus Chimie, 2004, 7, 169-176.	0.5	15
89	Comparative evaluation of cytotoxicity and phototoxicity of mono and diacylglycerol amino acid-based surfactants. Food and Chemical Toxicology, 2008, 46, 3837-3841.	3.6	15
90	In situ aldehyde generation for aldol addition reactions catalyzed by d-fructose-6-phosphate aldolase. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 102-107.	1.8	15

#	Article	IF	Citations
91	Chemoenzymatic Hydroxymethylation of Carboxylic Acids by Tandem Stereodivergent Biocatalytic Aldol Reaction and Chemical Decarboxylation. ACS Catalysis, 2019, 9, 7568-7577.	11.2	15
92	Festphasenâ€Synthese von Glycopeptidamiden unter milden Bedingungen: Morphiceptinâ€Analoga. Angewandte Chemie, 1990, 102, 311-313.	2.0	14
93	A dynamic view of enzyme catalysis. Journal of Molecular Modeling, 2008, 14, 735-746.	1.8	14
94	Thermostability Engineering of a Class II Pyruvate Aldolase from <i>Escherichia coli</i> by <i>in Vivo</i> Folding Interference. ACS Sustainable Chemistry and Engineering, 2021, 9, 5430-5436.	6.7	14
95	Enzymatic resolution of Z-γ,γ′-di-tert-butyl-D,L-carboxyglutamic acid methyl ester. Tetrahedron Letters, 1996, 37, 417-418.	1.4	13
96	Langmuir Monolayers of Diacyl Glycerol Amino Acid-Based Surfactants. Effect of the Substitution Pattern of the Glycerol Backbone. Langmuir, 2003, 19, 10878-10884.	3.5	13
97	Expedient Synthesis of C â€Aryl Carbohydrates by Consecutive Biocatalytic Benzoin and Aldol Reactions. Chemistry - A European Journal, 2015, 21, 3335-3346.	3.3	13
98	Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I. Angewandte Chemie - International Edition, 2017, 56, 5304-5307.	13.8	13
99	Microvesicle release and micellar attack as the alternative mechanisms involved in the red-blood-cell-membrane solubilization induced by arginine-based surfactants. RSC Advances, 2017, 7, 37549-37558.	3.6	13
100	Nucleophile Promiscuity of Natural and Engineered Aldolases. ChemBioChem, 2018, 19, 1353-1358.	2.6	13
101	Kinetic Study of 4-Chloro-2-methylphenoxyacetic Acid Photodegeneration. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 645-649.	0.5	12
102	Reactivity of easily removable protecting groups for glycine in peptide synthesis using papain as catalyst. Enzyme and Microbial Technology, 1998, 23, 199-203.	3.2	12
103	Useful Methods in Enzymatic Synthesis of Peptides: A Comparative Study Focussing on Kinetically Controlled Synthesis of Ac-Phe-Ala-NH2Catalyzed by α-Chymotrypsin. Biocatalysis and Biotransformation, 1999, 17, 319-345.	2.0	12
104	Integrated Process for the Enzymatic Synthesis of the Octapeptide PhAcCCK-8. Biotechnology Progress, 2002, 18, 1214-1220.	2.6	12
105	Investigation of the Thermotropic Behavior of Isomer Mixtures of Diacyl Arginine-Based Surfactants. Comparison of Polarized Light Microscopy, DSC, and SAXS Observations. Journal of Physical Chemistry B, 2004, 108, 11080-11088.	2.6	12
106	Chemoenzymatic Synthesis and Antimicrobial and Haemolytic Activities of Amphiphilic Bis (phenylacetylarginine) Derivatives. ChemMedChem, 2006, 1, 1091-1098.	3.2	12
107	Engineered <scp>L</scp> â€Serine Hydroxymethyltransferase from <i>Streptococcus thermophilus</i> for the Synthesis of α,αâ€Dialkylâ€Î±â€Amino Acids. Angewandte Chemie, 2015, 127, 3056-3060.	2.0	12
108	Reaction medium engineering in enzymatic peptide fragment condensation: synthesis of Eledoisin and LH-RH. Bioorganic and Medicinal Chemistry, 1998, 6, 891-901.	3.0	11

#	Article	IF	Citations
109	The Effect of Molecular Shape on the Thermotropic Liquid Crystal Behavior of Monolauroylated Amino Acid Glyceride Conjugates. Journal of Physical Chemistry B, 2005, 109, 22899-22908.	2.6	11
110	Aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalyzed by two aldolases variants in microreactors. Enzyme and Microbial Technology, 2013, 53, 38-45.	3.2	11
111	Nucleophile Promiscuity of Engineered Class Il Pyruvate Aldolase YfaU from <i>E. Coli</i> . Angewandte Chemie, 2018, 130, 3645-3649.	2.0	11
112	Cascade enzymatic synthesis of <scp>l</scp> -homoserine â€" mathematical modelling as a tool for process optimisation and design. Reaction Chemistry and Engineering, 2020, 5, 747-759.	3.7	11
113	Kinetically Controlled Enzyme-Catalyzed Synthesis of Kyotorphin. Applied Biochemistry and Biotechnology, 1987, 15, 89-96.	2.9	10
114	Novel Chemoenzymatic Strategy for the Synthesis of Enantiomerically Pure Secondary Alcohols with Sterically Similar Substituents. Journal of Organic Chemistry, 2003, 68, 5351-5356.	3.2	10
115	A new concept for production of (3S,4R)-6-[(benzyloxycarbonyl)amino]-5,6-dideoxyhex-2-ulose, a precursor of <scp>d</scp> -fagomine. RSC Advances, 2015, 5, 69819-69828.	3.6	10
116	Biocatalytic Construction of Quaternary Centers by Aldol Addition of 3,3-Disubstituted 2-Oxoacid Derivatives to Aldehydes. Journal of the American Chemical Society, 2020, 142, 19754-19762.	13.7	10
117	Immobilization of fuculose-1-phosphate aldolase fromE. colito glyoxal-agarose gels by multipoint covalent attachment. Biocatalysis and Biotransformation, 2005, 23, 241-250.	2.0	9
118	Interaction of Antioxidant Biobased Epicatechin Conjugates with Biomembrane Models. Journal of Agricultural and Food Chemistry, 2007, 55, 2901-2905.	5.2	9
119	Mathematical model for aldol addition catalyzed by two d-fructose-6-phosphate aldolases variants overexpressed in E. coli. Journal of Biotechnology, 2013, 167, 191-200.	3.8	9
120	Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products. Angewandte Chemie, 2018, 130, 10310-10314.	2.0	9
121	Hydrolysis of N-protected amino acid allyl esters by enzymatic catalysis. Biotechnology Letters, 1989, 11, 393-396.	2.2	8
122	Application of empirical design methodologies to the study of the influence of reaction conditions and N- \hat{l} ±-protecting group structure on the enzymatic X-Phe-Leu-NH2dipeptide synthesis in buffer/dimethylformamide solvents systems. Biotechnology and Bioengineering, 1992, 39, 539-549.	3.3	8
123	A Novel Activity of Immobilized Penicillin G Acylase: Removal of Benzyloxycarbonyl Amino Protecting Group. Biocatalysis and Biotransformation, 2000, 18, 253-258.	2.0	8
124	Inhibitory properties of 1,4-dideoxy-1,4-imino- <scp>d</scp> -arabinitol (DAB) derivatives acting on glycogen metabolising enzymes. Organic and Biomolecular Chemistry, 2016, 14, 9105-9113.	2.8	8
125	A Comparative Study of the Performance of Solid Supported and Soluble $\hat{l}\pm$ -Chymotrypsin for the Enzymatic Synthesis of Kyotorphin. Biocatalysis, 1988, 2, 19-28.	0.9	7
126	Enzymatic Peptide Synthesis in Organic Media. Annals of the New York Academy of Sciences, 1990, 613, 517-520.	3.8	7

#	Article	IF	CITATIONS
127	Enzymatic Peptide Synthesis in Organic Media. Synthesis of CCK-8 Dipeptide Fragments. Biocatalysis and Biotransformation, 1996, 13, 201-216.	2.0	7
128	N-Protection of Amino Acid Derivatives Catalyzed by Immobilized Penicillin G Acylase. Biocatalysis and Biotransformation, 1996, 14, 317-332.	2.0	7
129	Qualitative and quantitative analysis of new alkyl amide arginine surfactants by high-performance liquid chromatography and capillary electrophoresis. Journal of Chromatography A, 1999, 852, 499-506.	3.7	7
130	Racemization free coupling of peptide segments. International Journal of Peptide and Protein Research, 1992, 39, 528-532.	0.1	7
131	Intramolecular Benzoin Reaction Catalyzed by Benzaldehyde Lyase from Pseudomonas Fluorescens Biovar I. Angewandte Chemie, 2017, 129, 5388-5391.	2.0	7
132	Convergent inâ€situ Generation of Both Transketolase Substrates via Transaminase and Aldolase Reactions for Sequential Oneâ€Pot, Threeâ€Step Cascade Synthesis of Ketoses. ChemCatChem, 2020, 12, 812-817.	3.7	7
133	An innovative route for the production of atorvastatin side-chain precursor by DERA-catalysed double aldol addition. Chemical Engineering Science, 2021, 231, 116312.	3.8	7
134	Chemoenzymatic Production of Enantiocomplementary 2â€Substituted 3â€Hydroxycarboxylic Acids from l â€Î±â€Amino Acids. Advanced Synthesis and Catalysis, 2021, 363, 2866-2876.	4.3	7
135	Ethyl acetate modified AOT water-in-oil microemulsions for the α-chymotrypsin catalyzed synthesis of a model dipeptide derivative. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96, 47-52.	4.7	6
136	PURIFICATION OF NON-TOXIC, BIODEGRADABLE ARGININE-BASED GEMINI SURFACTANTS, BIS(ARGS), BY ION EXCHANGE CHROMATOGRAPHY. Preparative Biochemistry and Biotechnology, 2001, 31, 259-274.	1.9	6
137	Continuous enzymatic synthesis of <i>Z</i> â€kyotorphin amide in an enzymeâ€immobilized fixedâ€bed reactor. Journal of Chemical Technology and Biotechnology, 1989, 45, 191-202.	3.2	6
138	Enzymatic CC Bond Formation. , 2016, , 285-337.		6
139	Determination of the \hat{l}^2 -glycosylate fraction of contaminants of emerging concern in lettuce (Lactuca) Tj ETQq1 1 5715-5721.	0.784314 3.7	4 rgBT /Ov <mark>erl</mark> 6
140	Model-based optimization of the enzymatic aldol addition of propanal to formaldehyde: A first step towards enzymatic synthesis of 3-hydroxybutyric acid. Chemical Engineering Research and Design, 2019, 150, 140-152.	5.6	6
141	Enzymatic synthesis of carboxyglutamic acid containing peptides in organic media. Tetrahedron Letters, 1996, 37, 3609-3612.	1.4	5
142	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
143	Peptide Synthesis in Non-Aqueous Media., 2000, , 110-132.		5
144	Rapid and efficient preparative purification of building blocks suitable for solid-phase synthesis of neoglycopeptides: Synthesis and purification of O-(2,3,4,6-tetra-O-acetyl-?-d-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	50,62 Td (§	ga <mark>l</mark> actopyran

 $\label{eq:continuous} \textit{Journal of Peptide Research and Therapeutics}, 1996, 3, 61\text{-}68.$

#	Article	IF	Citations
145	Cascade Synthesis of <scp>l</scp> -Homoserine Catalyzed by Lyophilized Whole Cells Containing Transaminase and Aldolase Activities: The Mathematical Modeling Approach. Industrial & Description of Engineering Chemistry Research, 2021, 60, 13846-13858.	3.7	4
146	Enzymatic peptide fragment condensation. Choice of reaction media for the synthesis of an insect neuropeptide derivative. Biotechnology Letters, 1992, 6, 69-72.	0.5	3
147	Synthesis of sulfated bioactive peptides using immobilized arylsulfotransferase from Eubacterium sp Biotechnology Letters, 1996, 18, 609-614.	2.2	3
148	Syntheses of dipeptide alcohols and dipeptide aldehyde precursors catalyzed by plant cysteine peptidases. Journal of Molecular Catalysis B: Enzymatic, 2013, 89, 130-136.	1.8	3
149	Reactor and microreactor performance and kinetics of the aldol addition of dihydroxyacetone to benzyloxycarbonyl- <i>N</i> -3-aminopropanal catalyzed by D-fructose-6-phosphate aldolase variant A129G. Chemical Engineering Communications, 2019, 206, 927-939.	2.6	3
150	Chromatographic behaviour and purification of N1.5-glycosyl enkephalins. Chromatographia, 1988, 25, 891-894.	1.3	2
151	Neoglycopeptide Synthesis and Purification in Multi-gram Scale: Preparation of O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-Nα-fluoren-9-yl-methoxycarbonyl-hydroxyproline and Its Use in the Pilot-scale Synthesis of the Potent Analgesic Glycopeptide O1.5-β-D-galactopyranosyl [DMet2, Hyp5]enkephalinamide. 1997. 3, 99-109.		2
152	Lipase-catalysed selective monoacylation of 1,n-diols with vinyl acetate. Tetrahedron Letters, 2004, 45, 5031-5031.	1.4	2
153	A cascade reaction for the synthesis of d-fagomine precursor revisited: Kinetic insight and understanding of the system. New Biotechnology, 2021, 63, 19-28.	4.4	2
154	Glycerolipid arginine-based surfactants: synthesis and surface active properties. , 0, , 210-216.		2
155	Unifying Scheme for the Biosynthesis of Acylâ€Branched Sugars: Extended Substrate Scope of Thiamineâ€Dependent Enzymes. Angewandte Chemie - International Edition, 2022, , e202113405.	13.8	2
156	Use of spreadsheets in biotechnology. Trends in Biotechnology, 1987, 5, 294-296.	9.3	1
157	Influence of the contact model and support characteristics on the partition constant for kinetically controlled synthesis of peptides. Journal of Chemical Technology and Biotechnology, 1989, 45, 271-278.	3.2	1
158	Novel Strategies in Aldolase-Catalyzed Synthesis of Iminosugars. , 0, , 299-311.		1
159	A Spreadsheet Simulation of a Differential Reactor for Estimating Kinetic Constants., 1996,, 419-433.		1
160	Solid-phase synthesis of carboxyamidomethyl peptide esters: Application to enzymatic fragment condensation., 1993,, 423-424.		1
161	Lipase-Catalyzed Selective Monoacylation of 1,n-Diols with Vinyl Acetate ChemInform, 2004, 35, no.	0.0	0
162	Titelbild: Nucleophile Promiscuity of Engineered Classâ€ Pyruvate Aldolase YfaU from <i>E.â€Coli</i> (Angew. Chem. 14/2018). Angewandte Chemie, 2018, 130, 3581-3581.	2.0	0

PERE CLAPES

#	Article	IF	CITATIONS
163	Carbon–Carbon Bond-Forming Enzymes for the Synthesis of Non-natural Amino Acids. Methods in Molecular Biology, 2012, 794, 73-85.	0.9	O
164	Synthesis and activity of new N,N-dialkyl-morphiceptin analogs. , 1991, , 623-625.		0
165	Solid-phase synthesis of new glycosyl enkephalinamides. , 1991, , 416-417.		O
166	Unifying Scheme for the Biosynthesis of Acylâ€Branched Sugars: Extended Substrate Scope of Thiamineâ€Dependent Enzymes. Angewandte Chemie, 0, , .	2.0	0