Koichi Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588470/publications.pdf Version: 2024-02-01

KOICHI SASAKI

#	Article	IF	CITATIONS
1	Effect of Pressurization on the Dynamics of a Cavitation Bubble Induced by Liquid-Phase Laser Ablation. Applied Physics Express, 0, 2, 046501.	2.4	106
2	Liquid-phase laser ablation. Pure and Applied Chemistry, 2010, 82, 1317-1327.	1.9	102
3	Growth Processes of Nanoparticles in Liquid-Phase Laser Ablation Studied by Laser-Light Scattering. Applied Physics Express, 2010, 3, 035201.	2.4	91
4	Modification of Rayleigh–Plesset Theory for Reproducing Dynamics of Cavitation Bubbles in Liquid-Phase Laser Ablation. Japanese Journal of Applied Physics, 2010, 49, 116202.	1.5	71
5	Synthesis of crystalline TiN and Si particles by laser ablation inÂliquid nitrogen. Applied Physics A: Materials Science and Processing, 2008, 93, 833-836.	2.3	58
6	Influence of additional external pressure on optical emission intensity in liquid-phase laser ablation. Applied Surface Science, 2009, 255, 9572-9575.	6.1	34
7	Negative ion production and beam extraction processes in a large ion source (invited). Review of Scientific Instruments, 2016, 87, 02B936.	1.3	33
8	Diagnostics of liquid-phase laser ablation plasmas by spectroscopic methods. Journal of Physics: Conference Series, 2007, 59, 563-566.	0.4	27
9	Measurements of Gas Temperature in High-Density Helicon-Wave H2Plasmas by Diode Laser Absorption Spectroscopy. Japanese Journal of Applied Physics, 2005, 44, 6759-6763.	1.5	22
10	Diagnostics of Fluorine Negative Ions by Laser Photodetachment Combined with a Heated Probe in High-Density CF 4 Plasmas. Japanese Journal of Applied Physics, 1997, 36, L1702-L1705.	1.5	19
11	Effect of ultrasonic wave on the syntheses of Au and ZnO nanoparticles by laser ablation in water. Applied Physics A: Materials Science and Processing, 2013, 110, 835-839.	2.3	19
12	Development of a Compact Divertor Simulator Excited by Helicon-Wave Discharge. Japanese Journal of Applied Physics, 2004, 43, 1164-1165.	1.5	18
13	Nitridation of titanium surface by the irradiation of YAG laser pulses in N2/O2gas mixture and liquid nitrogen. Journal of Physics: Conference Series, 2007, 59, 40-43.	0.4	17
14	Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. EPJ Applied Physics, 2015, 71, 20807.	0.7	16
15	Spatial distribution of OH radical density in atmospheric-pressure dc helium glow plasma in contact with electrolyte solution. Japanese Journal of Applied Physics, 2015, 54, 01AF02.	1.5	16
16	Negative ion densities in high-density, low-temperature recombining hydrogen plasmas. Journal Physics D: Applied Physics, 2008, 41, 195204.	2.8	12
17	Visualization of short-lived reactive species in liquid in contact with atmospheric-pressure plasma by chemiluminescence of luminol. Applied Physics Express, 2018, 11, 026201.	2.4	12
18	Correlation between gas-phase OH density and intensity of luminol chemiluminescence in liquid interacting with atmospheric-pressure plasma. Journal Physics D: Applied Physics, 2019, 52, 39LT02.	2.8	12

Коісні Sasaki

#	Article	IF	CITATIONS
19	Effect of Water Pressure on Size of Nanoparticles in Liquid-Phase Laser Ablation. Japanese Journal of Applied Physics, 2011, 50, 108003.	1.5	10
20	Structure and size control of ZnO nanoparticles by applying high pressure to ambient liquid in liquid-phase laser ablation. Applied Physics A: Materials Science and Processing, 2013, 110, 779-783.	2.3	9
21	Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source. AIP Conference Proceedings, 2015, , .	0.4	8
22	Effect of Water Pressure on Size of Nanoparticles in Liquid-Phase Laser Ablation. Japanese Journal of Applied Physics, 2011, 50, 108003.	1.5	7
23	Spectrum of laser light scattered by nanoparticles in an ablation-induced cavitation bubble. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
24	Electron Temperatures and Electron Densities in Microwave Helium Discharges with Pressures Higher than 0.1 MPa. Contributions To Plasma Physics, 2015, 55, 563-569.	1.1	6
25	Nickel nanoparticles generated by pulsed laser ablation in liquid CO2. Research on Chemical Intermediates, 2016, 42, 4581-4590.	2.7	6
26	Physics-based investigation of negative ion behavior in a negative-ion-rich plasma using integrated diagnostics. AIP Conference Proceedings, 2017, , .	0.4	6
27	Temporal Variation of Two-Dimensional Temperature in a Laser-Ablation Plume Produced from a Graphite Target. Applied Physics Express, 0, 1, 086001.	2.4	5
28	Measurements of Rotational Temperature and Density of Molecular Nitrogen in Spark-Plug Assisted Atmospheric-Pressure Microwave Discharges by Rotational Raman Scattering. Japanese Journal of Applied Physics, 2011, 50, 076101.	1.5	5
29	Negative ion species in atmospheric-pressure helium dc glow discharge produced in ambient air. Plasma Sources Science and Technology, 2020, 29, 085012.	3.1	5
30	Discharge phenomena in a cavitation bubble induced by liquid-phase laser ablation. Journal Physics D: Applied Physics, 2017, 50, 325202.	2.8	4
31	Rate coefficient of CO ₂ splitting in recombining H ₂ and He plasmas with ultralow electron temperatures. Plasma Sources Science and Technology, 2020, 29, 115016.	3.1	4
32	Nitriding characteristics of 4H-SiC irradiated with remote nitrogen plasmas. Japanese Journal of Applied Physics, 2016, 55, 036503.	1.5	3
33	Excitation of cavitation bubbles in low-temperature liquid nitrogen. Japanese Journal of Applied Physics, 2017, 56, 068002.	1.5	3
34	Reactivity of solvated electrons in ionic liquid interacting with low-pressure plasmas. Japanese Journal of Applied Physics, 2020, 59, 066001.	1.5	3
35	Efficient production and transport of OH radicals in spatial afterglow of atmospheric-pressure DC glow discharge using intersecting helium ï¬,ows. Plasma Sources Science and Technology, 0, ,	3.1	3
36	Detection of solvated electrons below the interface between atmospheric-pressure plasma and water by laser-induced desolvation. Plasma Sources Science and Technology, 2022, 31, 03LT02.	3.1	3

KOICHI SASAKI

#	Article	lF	CITATIONS
37	Observation of currentless redox reactions on surface of water jet immersed in low-pressure plasma. Plasma Sources Science and Technology, 2022, 31, 06LT02.	3.1	3
38	Influence of mirror size on ringdown frequency in cavity-ringdown spectroscopy of slender premixed burner flame. Japanese Journal of Applied Physics, 2015, 54, 088005.	1.5	2
39	An Attempt to Produce Electrical Discharges in Acoustic Cavitation Bubbles. Plasma and Fusion Research, 2016, 11, 1406113-1406113.	0.7	2
40	Observation of ¹ <i>D</i> â^' ¹ <i>S</i> forbidden optical emission of atomic oxygen in atmosphericâ€pressure N ₂ /O ₂ plasma jet. Contributions To Plasma Physics, 2020, 60, e202000061.	1.1	2
41	Effect of atmospheric-pressure plasma irradiation on the surface tension of water. Journal Physics D: Applied Physics, 0, , .	2.8	2
42	Optical Emission of Molecular Hydrogen in a Recombining Hydrogen Plasma. Contributions To Plasma Physics, 2012, 52, 676-681.	1.1	1
43	LIF Imaging of OH radicals in Atmospheric DC Glow Discharge Using Miniature Gas Flow and Electrolyte Cathode. Materials Research Society Symposia Proceedings, 2013, 1598, 1.	0.1	1
44	Suppression of carbon desorption from 4H-SiC by irradiating a remote nitrogen plasma at a low temperature. Japanese Journal of Applied Physics, 2018, 57, 056201.	1.5	1
45	Reaction frequency of solvated electrons in water interacting with atmospheric-pressure helium plasma jet. Japanese Journal of Applied Physics, 2021, 60, 096001.	1.5	1
46	Estimation of Vibrational Temperatures of N ₂ and CO ₂ in Low-Pressure Electron Cyclotron Resonance Plasmas by Threshold Ionization Mass Spectrometry. Plasma and Fusion Research, 2022, 17, 1406070-1406070.	0.7	1
47	Effect of water pressure on the size of nanoparticles in liquid-phase laser ablation. , 2010, , .		0
48	Measurements of absolute Cu, Zn and Sn metastable densities in CZTS sputtering plasmas measured using UVAS technique. , 2016, , .		0
49	Comparison between absolute densities of metastable state and ground state of atoms in CZTS sputtering plasmas. AIP Conference Proceedings, 2017, , .	0.4	0
50	Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature. Applied Physics Express, 2018, 11, 066202.	2.4	0
51	Nitriding of 4H-SiC by irradiation of fourth harmonics of Nd:YAG laser pulses in liquid nitrogen. SN Applied Sciences, 2020, 2, 1.	2.9	0
52	Spectroscopic Studies on Laser-Produced Carbon Vapor. , 2011, , 55-76.		0
53	ãf¬ãf¼ã,¶ãf¼èª~èµ∙ã,ãf£ãf"ãf†ãf¼ã,•ãf§ãf³ãfēf−ãf«ã•ãē®ãfŠãfŽæœ−™å‰µæ^ã¸ã®å½¹å‰². The Revio	ew of Laser	Engineering,
54	Rate Coefficient of CO ₂ Splitting via Vibrational Excited States in Recombining Plasmas with Ultralow Electron Temperatures. Vacuum and Surface Science, 2020, 63, 635-640.	0.1	0