Andrea Lazzarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2588315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction of NH ₃ with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study. Journal of Physical Chemistry Letters, 2014, 5, 1552-1559.	4.6	248
2	Hydrogenation of CO ₂ to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 999-1009.	13.7	141
3	In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 2017, 283, 119-126.	4.4	103
4	A comprehensive approach to investigate the structural and surface properties of activated carbons and related Pd-based catalysts. Catalysis Science and Technology, 2016, 6, 4910-4922.	4.1	96
5	Graphitization of Activated Carbons: A Molecular-level Investigation by INS, DRIFT, XRD and Raman Techniques. Physics Procedia, 2016, 85, 20-26.	1.2	68
6	Influence of Defects and H ₂ O on the Hydrogenation of CO ₂ to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 17105-17118.	13.7	68
7	Core–Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffraction. Journal of Physical Chemistry C, 2017, 121, 18202-18213.	3.1	67
8	CO ₂ Hydrogenation over Pt-Containing UiO-67 Zr-MOFs—The Base Case. Industrial & Engineering Chemistry Research, 2017, 56, 13206-13218.	3.7	67
9	Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorption. Faraday Discussions, 2018, 208, 187-205.	3.2	47
10	<i>Operando</i> study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. Faraday Discussions, 2018, 208, 287-306.	3.2	46
11	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. ChemCatChem, 2019, 11, 5022-5026.	3.7	45
12	Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion. Microporous and Mesoporous Materials, 2020, 292, 109730.	4.4	44
13	Dynamics of Reactive Species and Reactant-Induced Reconstruction of Pt Clusters in Pt/Al ₂ O ₃ Catalysts. ACS Catalysis, 2019, 9, 7124-7136.	11.2	31
14	Hydride phase formation in carbon supported palladium hydride nanoparticles by <i>in situ</i> EXAFS and XRD. Journal of Physics: Conference Series, 2016, 712, 012032.	0.4	30
15	Controlling the Synthesis of Metal–Organic Framework UiO-67 by Tuning Its Kinetic Driving Force. Crystal Growth and Design, 2019, 19, 4246-4251.	3.0	28
16	A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on ZSM-22 zeolite. Journal of Catalysis, 2020, 385, 300-312.	6.2	23
17	Progress in the Characterization of the Surface Species in Activated Carbons by means of INS Spectroscopy Coupled with Detailed DFT Calculations. Advances in Condensed Matter Physics, 2015, 2015, 1-8.	1.1	22
18	The effect of surface chemistry on the performances of Pd-based catalysts supported on activated carbons. Catalysis Science and Technology, 2017, 7, 4162-4172.	4.1	21

ANDREA LAZZARINI

#	Article	IF	CITATIONS
19	A Systematic Study of Isomorphically Substituted Hâ€MAlPOâ€5 Materials for the Methanolâ€toâ€Hydrocarbons Reaction. ChemPhysChem, 2018, 19, 484-495.	2.1	21
20	Looking for the active hydrogen species in a 5Âwt% Pt/C catalyst: a challenge for inelastic neutron scattering. Faraday Discussions, 2018, 208, 227-242.	3.2	20
21	Evolution of Pt and Pd species in functionalized UiO-67 metal-organic frameworks. Catalysis Today, 2019, 336, 33-39.	4.4	19
22	Co-catalyst free ethene dimerization over Zr-based metal-organic framework (UiO-67) functionalized with Ni and bipyridine. Catalysis Today, 2021, 369, 193-202.	4.4	19
23	Zeolite morphology and catalyst performance: conversion of methanol to hydrocarbons over offretite. Catalysis Science and Technology, 2017, 7, 5435-5447.	4.1	18
24	Investigation of physico-chemical and catalytic properties of the coating layer of silica-coated iron oxide magnetic nanoparticles. Journal of Physics and Chemistry of Solids, 2021, 153, 110003.	4.0	17
25	The Pyridyl Functional Groups Guide the Formation of Pd Nanoparticles Inside A Porous Poly(4â€Vinylâ€Pyridine). ChemCatChem, 2015, 7, 2188-2195.	3.7	15
26	Dynamic Behavior of Pd/P4VP Catalyst during the Aerobic Oxidation of 2-Propanol: A Simultaneous SAXS/XAS/MS Operando Study. ACS Catalysis, 2018, 8, 6870-6881.	11.2	13
27	On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty?. Catalysis Science and Technology, 2020, 10, 4373-4385.	4.1	13
28	Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy. Topics in Catalysis, 2019, 62, 712-723.	2.8	9
29	Formation and growth of palladium nanoparticles inside porous poly(4-vinyl-pyridine) monitored by operando techniques: The role of different reducing agents. Catalysis Today, 2017, 283, 144-150.	4.4	8
30	Activated carbons for applications in catalysis: the point of view of a physical-chemist. Rendiconti Lincei, 2017, 28, 29-42.	2.2	5
31	Support–Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. Materials, 2021, 14, 6796.	2.9	5
32	Symmetry Breaking and Autocatalytic Amplification in Soai Reaction Confined within UiOâ€MOFs under Heterogenous Conditions Chemistry - an Asian Journal, 2021, 16, 2361-2369.	3.3	4
33	Synthesis of hydrophilic carbon nanotube sponge via post-growth thermal treatment. Nanotechnology, 2022, 33, 245707.	2.6	3
34	Pd nanoparticles formation inside porous polymeric scaffolds followed by <i>in situ</i> XANES/SAXS. Journal of Physics: Conference Series, 2016, 712, 012039.	0.4	1
35	Catalytic oxygen atom transfer promoted by tethered Mo(VI) dioxido complexes onto silica-coated magnetic nanoparticles. Inorganica Chimica Acta, 2022, 531, 120711.	2.4	1
36	XAS and XRD analysis of active Pt and Pd sites in metal–organic framework UiO-67. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C1046-C1046.	0.1	0

#	ARTICLE	IF	CITATIONS
37	X-ray absorption spectroscopy study of metal–organic frameworks functionalized by Pd: formation and growth of Pd nanoparticles. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C1270-C1270.	0.1	0
38	Hybrid polyphenolic Network/SPIONs aggregates with potential synergistic effects in MRI applications. Results in Chemistry, 2022, 4, 100387.	2.0	0