List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587628/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A viral inhibitor of peptide transporters for antigen presentation. Nature, 1995, 375, 415-418.                                                                                                                                   | 27.8 | 596       |
| 2  | A Critical Role for Tapasin in the Assembly and Function of Multimeric MHC Class I-TAP Complexes.<br>Science, 1997, 277, 1306-1309.                                                                                               | 12.6 | 477       |
| 3  | Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature<br>Nanotechnology, 2012, 7, 257-263.                                                                                                          | 31.5 | 440       |
| 4  | High-Affinity Adaptors for Switchable Recognition of Histidine-Tagged Proteins. Journal of the American Chemical Society, 2005, 127, 10205-10215.                                                                                 | 13.7 | 370       |
| 5  | Dynamic Superresolution Imaging of Endogenous Proteins on Living Cells at Ultra-High Density.<br>Biophysical Journal, 2010, 99, 1303-1310.                                                                                        | 0.5  | 364       |
| 6  | Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation.<br>Nature Immunology, 2008, 9, 558-566.                                                                                             | 14.5 | 356       |
| 7  | Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nature Cell<br>Biology, 2012, 14, 1057-1067.                                                                                         | 10.3 | 339       |
| 8  | Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12889-12894. | 7.1  | 334       |
| 9  | Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47 EMBO<br>Journal, 1996, 15, 3247-3255.                                                                                                 | 7.8  | 303       |
| 10 | Identifying MHC Class I Epitopes by Predicting the TAP Transport Efficiency of Epitope Precursors.<br>Journal of Immunology, 2003, 171, 1741-1749.                                                                                | 0.8  | 290       |
| 11 | Structure of the human MHC-I peptide-loading complex. Nature, 2017, 551, 525-528.                                                                                                                                                 | 27.8 | 284       |
| 12 | Structure and mechanism of ABC transporters. Current Opinion in Structural Biology, 2002, 12, 754-760.                                                                                                                            | 5.7  | 282       |
| 13 | A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity, 1994, 1, 491-500.                                                                                          | 14.3 | 275       |
| 14 | TLR Signals Induce Phagosomal MHC-I Delivery from the Endosomal Recycling Compartment to Allow<br>Cross-Presentation. Cell, 2014, 158, 506-521.                                                                                   | 28.9 | 270       |
| 15 | Structural and Mechanistic Principles of ABC Transporters. Annual Review of Biochemistry, 2020, 89, 605-636.                                                                                                                      | 11.1 | 252       |
| 16 | Cross-presenting human γδT cells induce robust CD8 <sup>+</sup> αβ T cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2307-2312.                                       | 7.1  | 229       |
| 17 | Synthesis and Characterization of Chelator-Lipids for Reversible Immobilization of Engineered<br>Proteins at Self-Assembled Lipid Interfaces. Journal of the American Chemical Society, 1994, 116,<br>8485-8491.                  | 13.7 | 202       |
| 18 | Specific and Stable Fluorescence Labeling of Histidine-Tagged Proteins for Dissecting Multi-Protein Complex Formation. Journal of the American Chemical Society, 2006, 128, 2365-2372.                                            | 13.7 | 200       |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human<br>lung cancer. Nature Genetics, 1996, 13, 210-213.                                                                                   | 21.4 | 186       |
| 20 | Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature, 2019, 571, 580-583.                                                                                                                                    | 27.8 | 185       |
| 21 | Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Letters, 1994, 351, 443-447.                                                                            | 2.8  | 183       |
| 22 | Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8976-8981.                                             | 7.1  | 181       |
| 23 | The Transporter Associated With Antigen Processing: Function and Implications in Human Diseases.<br>Physiological Reviews, 2002, 82, 187-204.                                                                                                | 28.8 | 179       |
| 24 | Structural and functional diversity calls for a new classification of ABC transporters. FEBS Letters, 2020, 594, 3767-3775.                                                                                                                  | 2.8  | 169       |
| 25 | Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5144-5149.      | 7.1  | 168       |
| 26 | A Metal-Chelating Microscopy Tip as a New Toolbox for Single-Molecule Experiments by Atomic Force<br>Microscopy. Biophysical Journal, 2000, 78, 3275-3285.                                                                                   | 0.5  | 166       |
| 27 | Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nature Immunology, 2005, 6, 107-113.                                                                                              | 14.5 | 166       |
| 28 | The ATP Hydrolysis Cycle of the Nucleotide-binding Domain of the Mitochondrial ATP-binding Cassette Transporter Mdl1p. Journal of Biological Chemistry, 2003, 278, 26862-26869.                                                              | 3.4  | 160       |
| 29 | Fabs Enable Single Particle cryoEM Studies of Small Proteins. Structure, 2012, 20, 582-592.                                                                                                                                                  | 3.3  | 154       |
| 30 | The ABCs of Immunology: Structure and Function of TAP, the Transporter Associated with Antigen Processing. Physiology, 2004, 19, 216-224.                                                                                                    | 3.1  | 153       |
| 31 | Functional Dissection of the Transmembrane Domains of the Transporter Associated with Antigen Processing (TAP). Journal of Biological Chemistry, 2004, 279, 10142-10147.                                                                     | 3.4  | 147       |
| 32 | High-Affinity Chelator Thiols for Switchable and Oriented Immobilization of Histidine-Tagged<br>Proteins: A Generic Platform for Protein Chip Technologies. Chemistry - A European Journal, 2005, 11,<br>5249-5259.                          | 3.3  | 146       |
| 33 | Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Research, 2001, 61, 8647-50.                                                            | 0.9  | 145       |
| 34 | Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates.<br>Biophysical Journal, 1994, 67, 217-226.                                                                                            | 0.5  | 144       |
| 35 | Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3228-3233. | 7.1  | 142       |
| 36 | Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO<br>Journal, 1996, 15, 3247-55.                                                                                                             | 7.8  | 138       |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends in Biochemical Sciences, 2013, 38, 412-420.                                                                                                                  | 7.5  | 117       |
| 38 | Production of Recombinant and Tagged Proteins in the Hyperthermophilic Archaeon Sulfolobus solfataricus. Applied and Environmental Microbiology, 2006, 72, 102-111.                                                                           | 3.1  | 116       |
| 39 | Structure of the TAPBPR–MHC I complex defines the mechanism of peptide loading and editing. Science, 2017, 358, 1060-1064.                                                                                                                    | 12.6 | 115       |
| 40 | Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter.<br>Nature, 2015, 517, 396-400.                                                                                                                     | 27.8 | 114       |
| 41 | EIGER detector: application in macromolecular crystallography. Acta Crystallographica Section D:<br>Structural Biology, 2016, 72, 1036-1048.                                                                                                  | 2.3  | 114       |
| 42 | Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3732-3737.                                 | 7.1  | 113       |
| 43 | Molecular Recognition of Histidine-Tagged Molecules by Metal-Chelating Lipids Monitored by<br>Fluorescence Energy Transfer and Correlation Spectroscopy§. Journal of the American Chemical<br>Society, 1998, 120, 2753-2763.                  | 13.7 | 112       |
| 44 | A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nature Chemistry, 2015, 7, 255-262.                                                                                                                      | 13.6 | 112       |
| 45 | Function of the transport complex TAP in cellular immune recognition. Biochimica Et Biophysica Acta<br>- Biomembranes, 1999, 1461, 405-419.                                                                                                   | 2.6  | 107       |
| 46 | ABC proteins in antigen translocation and viral inhibition. Nature Chemical Biology, 2010, 6, 572-580.                                                                                                                                        | 8.0  | 106       |
| 47 | Mitochondrial ABC proteins in health and disease. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 681-690.                                                                                                                         | 1.0  | 102       |
| 48 | Structural Organization of Essential Iron-Sulfur Clusters in the Evolutionarily Highly Conserved<br>ATP-binding Cassette Protein ABCE1. Journal of Biological Chemistry, 2007, 282, 14598-14607.                                              | 3.4  | 99        |
| 49 | Molecular organization of histidine-tagged biomolecules at self-assembled lipid interfaces using a<br>novel class of chelator lipids Proceedings of the National Academy of Sciences of the United States<br>of America, 1995, 92, 9014-9018. | 7.1  | 97        |
| 50 | Specificity of the proteasome and the TAP transporter. Current Opinion in Immunology, 1999, 11, 203-208.                                                                                                                                      | 5.5  | 97        |
| 51 | Requirements for Peptide Binding to the Human Transporter Associated with Antigen Processing<br>Revealed by Peptide Scans and Complex Peptide Libraries. Journal of Biological Chemistry, 1995, 270,<br>18512-18516.                          | 3.4  | 95        |
| 52 | Molecular Selfâ€Assembly, Chemical Lithography, and Biochemical Tweezers: A Path for the Fabrication<br>of Functional Nanometerâ€6cale Protein Arrays. Advanced Materials, 2008, 20, 471-477.                                                 | 21.0 | 95        |
| 53 | Live-cell protein labelling with nanometre precision by cell squeezing. Nature Communications, 2016, 7, 10372.                                                                                                                                | 12.8 | 94        |
| 54 | Analysis of the major histocompatibility complex class I antigen presentation machinery in normal and malignant renal cells: evidence for deficiencies associated with transformation and progression.<br>Cancer Research, 1996, 56, 1756-60. | 0.9  | 91        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Down-regulation of the MHC class I antigen-processing machinery after oncogenic transformation of murine fibroblasts. European Journal of Immunology, 1998, 28, 122-133.                                                             | 2.9  | 86        |
| 56 | Structural arrangement of the transmission interface in the antigen ABC transport complex TAP.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5551-5556.                             | 7.1  | 86        |
| 57 | Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter. Nature Communications, 2014, 5, 5419.                                                                             | 12.8 | 86        |
| 58 | Effects of Major-Histocompatibility-Complex-Encoded Subunits on the Peptidase and Proteolytic<br>Activities of Human 20S Proteasomes. Cleavage of Proteins and Antigenic Peptides. FEBS Journal, 1996,<br>235, 404-415.              | 0.2  | 85        |
| 59 | Molecular Mechanism and Structural Aspects of Transporter Associated with Antigen Processing<br>Inhibition by the Cytomegalovirus Protein US6. Journal of Biological Chemistry, 2001, 276, 48031-48039.                              | 3.4  | 85        |
| 60 | Native protein nanolithography that can write, read and erase. Nature Nanotechnology, 2007, 2, 220-225.                                                                                                                              | 31.5 | 83        |
| 61 | EB1 interacts with outwardly curved and straight regions of the microtubule lattice. Nature Cell<br>Biology, 2016, 18, 1102-1108.                                                                                                    | 10.3 | 81        |
| 62 | The active domain of the herpes simplex virus protein ICP47: A potent inhibitor of the transporter associated with antigen processing (TAP). Journal of Molecular Biology, 1997, 272, 484-492.                                       | 4.2  | 78        |
| 63 | Conformation of peptides bound to the transporter associated with antigen processing (TAP).<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1349-1354.                                | 7.1  | 77        |
| 64 | Structure of the 40S–ABCE1 post-splitting complex in ribosome recycling and translation initiation.<br>Nature Structural and Molecular Biology, 2017, 24, 453-460.                                                                   | 8.2  | 77        |
| 65 | Synthetic protein-conductive membrane nanopores built with DNA. Nature Communications, 2019, 10, 5018.                                                                                                                               | 12.8 | 76        |
| 66 | The Binding Specificity of OppA Determines the Selectivity of the Oligopeptide ATP-binding Cassette Transporter. Journal of Biological Chemistry, 2004, 279, 32301-32307.                                                            | 3.4  | 75        |
| 67 | Multifaceted structures and mechanisms of ABC transport systems in health and disease. Current<br>Opinion in Structural Biology, 2018, 51, 116-128.                                                                                  | 5.7  | 74        |
| 68 | The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity. Journal of Cell Biology, 2015, 210, 333-346.                                                                              | 5.2  | 73        |
| 69 | Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12487-12492. | 7.1  | 71        |
| 70 | Nucleotide binding to the hydrophilic C-terminal domain of the transporter associated with antigen processing (TAP). Journal of Biological Chemistry, 1994, 269, 14032-7.                                                            | 3.4  | 71        |
| 71 | How do ABC transporters drive transport?. Biological Chemistry, 2004, 385, 927-933.                                                                                                                                                  | 2.5  | 70        |
| 72 | Peptides Induce ATP Hydrolysis at Both Subunits of the Transporter Associated with Antigen<br>Processing. Journal of Biological Chemistry, 2003, 278, 29686-29692.                                                                   | 3.4  | 68        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with<br>Antigen Processing, TAP. PLoS Pathogens, 2008, 4, e1000080.                                       | 4.7  | 68        |
| 74 | Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E438-E447. | 7.1  | 67        |
| 75 | Nucleotide binding to the hydrophilic C-terminal domain of the transporter associated with antigen processing (TAP) Journal of Biological Chemistry, 1994, 269, 14032-14037.                              | 3.4  | 67        |
| 76 | Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10.<br>Blood, 1997, 90, 2390-7.                                                                            | 1.4  | 66        |
| 77 | Multiplexed Parallel Single Transport Recordings on Nanopore Arrays. Nano Letters, 2010, 10, 5080-5087.                                                                                                   | 9.1  | 65        |
| 78 | Functional Non-equivalence of ATP-binding Cassette Signature Motifs in the Transporter Associated with Antigen Processing (TAP). Journal of Biological Chemistry, 2004, 279, 46073-46081.                 | 3.4  | 64        |
| 79 | Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends in Biochemical Sciences, 2013, 38, 64-74.                                                                                       | 7.5  | 64        |
| 80 | Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors<br>by AFM. Nature Communications, 2015, 6, 8857.                                                       | 12.8 | 64        |
| 81 | Kinetic analysis of peptide binding to the TAP transport complex: evidence for structural rearrangements induced by substrate binding. Journal of Molecular Biology, 1999, 294, 1203-1213.                | 4.2  | 63        |
| 82 | Selective and ATP-dependent Translocation of Peptides by the Homodimeric ATP Binding Cassette<br>Transporter TAP-like (ABCB9). Journal of Biological Chemistry, 2005, 280, 23631-23636.                   | 3.4  | 63        |
| 83 | Molecular Printboards as a General Platform for Protein Immobilization: A Supramolecular Solution to Nonspecific Adsorption. Angewandte Chemie - International Edition, 2007, 46, 4104-4107.              | 13.8 | 63        |
| 84 | The transporter associated with antigen processing: a key player in adaptive immunity. Biological<br>Chemistry, 2015, 396, 1059-1072.                                                                     | 2.5  | 62        |
| 85 | Reduced membrane major histocompatibility complex class I density and stability in a subset of human renal cell carcinomas with low TAP and LMP expression. Clinical Cancer Research, 1996, 2, 1427-33.   | 7.0  | 62        |
| 86 | High-resolution AFM-imaging and mechanistic analysis of the 20 S proteasome. Journal of Molecular<br>Biology, 1999, 288, 1027-1036.                                                                       | 4.2  | 61        |
| 87 | Functional Immobilization of a DNA-Binding Protein at a Membrane Interface via Histidine Tag and<br>Synthetic Chelator Lipidsâ€. Biochemistry, 1996, 35, 1100-1105.                                       | 2.5  | 60        |
| 88 | Intracellular peptide transporters in human – compartmentalization of the "peptidome― Pflugers<br>Archiv European Journal of Physiology, 2007, 453, 591-600.                                              | 2.8  | 60        |
| 89 | Structure and Dynamics of Membrane-associated ICP47, a Viral Inhibitor of the MHC I<br>Antigen-processing Machinery. Journal of Biological Chemistry, 2006, 281, 30365-30372.                             | 3.4  | 58        |
| 90 | Proofreading of Peptide—MHC Complexes through Dynamic Multivalent Interactions. Frontiers in<br>Immunology, 2017, 8, 65.                                                                                  | 4.8  | 58        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Downregulation of the constitutive tapasin expression in human tumor cells of distinct origin and its transcriptional upregulation by cytokines. Tissue Antigens, 2001, 57, 39-45.            | 1.0 | 57        |
| 92  | In situ assembly of macromolecular complexes triggered by light. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6146-6151.                       | 7.1 | 56        |
| 93  | Asymmetric ATP Hydrolysis Cycle of the Heterodimeric Multidrug ABC Transport Complex TmrAB from Thermus thermophilus. Journal of Biological Chemistry, 2011, 286, 7104-7115.                  | 3.4 | 54        |
| 94  | Modulation of the antigen transport machinery TAP by friends and enemies. FEBS Letters, 2006, 580, 1156-1163.                                                                                 | 2.8 | 53        |
| 95  | The macromolecular peptide-loading complex in MHC class I-dependent antigen presentation. Cellular and Molecular Life Sciences, 2006, 63, 653-662.                                            | 5.4 | 53        |
| 96  | Enhanced expression of human ABC-transporter tap is associated with cellular resistance to mitoxantrone. FEBS Letters, 2001, 503, 179-184.                                                    | 2.8 | 52        |
| 97  | The transporter associated with antigen processing TAP: structure and function. FEBS Letters, 1999, 464, 108-112.                                                                             | 2.8 | 51        |
| 98  | Self-Assembled Monolayers with Latent Aldehydes for Protein Immobilization. Bioconjugate Chemistry, 2007, 18, 247-253.                                                                        | 3.6 | 51        |
| 99  | ABC transporters in adaptive immunity. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 449-460.                                                                                 | 2.4 | 51        |
| 100 | Molecular mechanism of peptide editing in the tapasin–MHC I complex. Scientific Reports, 2016, 6,<br>19085.                                                                                   | 3.3 | 51        |
| 101 | Structure of the Viral TAP-Inhibitor ICP47 Induced by Membrane Associationâ€. Biochemistry, 1997, 36, 4694-4700.                                                                              | 2.5 | 50        |
| 102 | Two-substrate association with the 20S proteasome at single-molecule level. EMBO Journal, 2004, 23, 2488-2497.                                                                                | 7.8 | 49        |
| 103 | Design of Supported Membranes Tethered via Metal-Affinity Ligand-Receptor Pairs. Biophysical Journal, 2000, 79, 3144-3152.                                                                    | 0.5 | 47        |
| 104 | Specific Orientation and Two-dimensional Crystallization of the Proteasome at Metal-chelating Lipid<br>Interfaces. Journal of Biological Chemistry, 2002, 277, 36321-36328.                   | 3.4 | 46        |
| 105 | Self-Assembled Monolayers Containing Terminal Mono-, Bis-, and Tris-nitrilotriacetic Acid Groups:<br>Characterization and Application. Langmuir, 2008, 24, 4959-4967.                         | 3.5 | 46        |
| 106 | Mutual A domain interactions in the force sensing protein von Willebrand factor. Journal of<br>Structural Biology, 2017, 197, 57-64.                                                          | 2.8 | 46        |
| 107 | Membrane Topology of the Transporter Associated with Antigen Processing (TAP1) within an Assembled Functional Peptide-loading Complex. Journal of Biological Chemistry, 2006, 281, 6455-6462. | 3.4 | 45        |
| 108 | Purification and Reconstitution of the Antigen Transport Complex TAP. Journal of Biological Chemistry, 2009, 284, 33740-33749.                                                                | 3.4 | 45        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Coupled ATPase-adenylate kinase activity in ABC transporters. Nature Communications, 2016, 7, 13864.                                                                                                                    | 12.8 | 45        |
| 110 | Kinetics of antigenic peptide binding to the class II major histocompatibility molecule I-Ad<br>Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4661-4665.                   | 7.1  | 44        |
| 111 | Structure of the Active Domain of the Herpes Simplex Virus Protein ICP47 in Water/Sodium Dodecyl<br>Sulfate Solution Determined by Nuclear Magnetic Resonance Spectroscopyâ€,‡. Biochemistry, 1999, 38,<br>13692-13698. | 2.5  | 44        |
| 112 | Piezo Dispensed Microarray of Multivalent Chelating Thiols for Dissecting Complex Proteinâ^'Protein<br>Interactions. Analytical Chemistry, 2006, 78, 3643-3650.                                                         | 6.5  | 44        |
| 113 | Orientation and Two-Dimensional Organization of Proteins at Chelator Lipid Interfaces. Biological Chemistry, 1998, 379, 1151-1160.                                                                                      | 2.5  | 43        |
| 114 | Mechanistic Basis for Epitope Proofreading in the Peptide-Loading Complex. Journal of Immunology, 2015, 195, 4503-4513.                                                                                                 | 0.8  | 43        |
| 115 | Anchoring of Histidineâ€Tagged Proteins to Molecular Printboards: Selfâ€assembly, Thermodynamic<br>Modeling, and Patterning. Chemistry - A European Journal, 2008, 14, 2044-2051.                                       | 3.3  | 42        |
| 116 | Antigenic Peptide Recognition on the Human ABC Transporter TAP Resolved by DNP-Enhanced<br>Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2016, 138, 13967-13974.                              | 13.7 | 42        |
| 117 | Conformational Coupling and trans-Inhibition in the Human Antigen Transporter Ortholog TmrAB<br>Resolved with Dipolar EPR Spectroscopy. Journal of the American Chemical Society, 2018, 140,<br>4527-4533.              | 13.7 | 42        |
| 118 | SLAP: Small Labeling Pair for Singleâ€Molecule Superâ€Resolution Imaging. Angewandte Chemie -<br>International Edition, 2015, 54, 10216-10219.                                                                          | 13.8 | 41        |
| 119 | MHC I chaperone complexes shaping immunity. Current Opinion in Immunology, 2019, 58, 9-15.                                                                                                                              | 5.5  | 41        |
| 120 | Identification of Two Interaction Sites in SecY that Are Important for the Functional Interaction with SecA. Journal of Molecular Biology, 2006, 361, 839-849.                                                          | 4.2  | 40        |
| 121 | Identification of a Lysosomal Peptide Transport System Induced during Dendritic Cell Development.<br>Journal of Biological Chemistry, 2007, 282, 37836-37843.                                                           | 3.4  | 40        |
| 122 | Live-Cell Targeting of His-Tagged Proteins by Multivalent <i>N</i> -Nitrilotriacetic Acid Carrier<br>Complexes. Journal of the American Chemical Society, 2014, 136, 13975-13978.                                       | 13.7 | 40        |
| 123 | Glycophorin-induced cholesterol-phospholipid domains in dimyristoylphosphatidylcholine bilayer vesicles. Biochemistry, 1991, 30, 4909-4916.                                                                             | 2.5  | 39        |
| 124 | Mechanism of Substrate Sensing and Signal Transmission within an ABC Transporter. Journal of<br>Biological Chemistry, 2007, 282, 3871-3880.                                                                             | 3.4  | 39        |
| 125 | Inhibition of HIVâ€1 by a Peptide Ligand of the Genomic RNA Packaging Signal Î <sup>°</sup> . ChemMedChem, 2008, 3, 749-755.                                                                                            | 3.2  | 39        |
| 126 | Native Laser Lithography of His-Tagged Proteins by Uncaging of Multivalent Chelators. Journal of the American Chemical Society, 2010, 132, 5932-5933.                                                                   | 13.7 | 39        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | The lysosomal polypeptide transporter TAPL is stabilized by the interaction with LAMP-1 and LAMP-2.<br>Journal of Cell Science, 2012, 125, 4230-40.                                              | 2.0  | 39        |
| 128 | His-tagged norovirus-like particles: A versatile platform for cellular delivery and surface display.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 22-31.                 | 4.3  | 39        |
| 129 | Self assembly of covalently anchored phospholipid supported membranes by use of<br>DODA-Suc-NHS-lipids. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1196, 227-230.                       | 2.6  | 37        |
| 130 | Differential Protein Assembly on Micropatterned Surfaces with Tailored Molecular and Surface Multivalency. ChemBioChem, 2006, 7, 1325-1329.                                                      | 2.6  | 37        |
| 131 | Highly Parallel Transport Recordings on a Membrane-on-Nanopore Chip at Single Molecule<br>Resolution. Nano Letters, 2014, 14, 1674-1680.                                                         | 9.1  | 37        |
| 132 | Diffusion measurement of fluorescence-labeled amphiphilic molecules with a standard fluorescence microscope. Biophysical Journal, 1997, 72, 1701-1710.                                           | 0.5  | 36        |
| 133 | Affinity, Specificity, Diversity: A Challenge for the ABC Transporter TAP in Cellular Immunity.<br>ChemBioChem, 2000, 1, 16-35.                                                                  | 2.6  | 36        |
| 134 | Tuning the Cellular Trafficking of the Lysosomal Peptide Transporter TAPL by its N-terminal Domain.<br>Traffic, 2010, 11, 383-393.                                                               | 2.7  | 36        |
| 135 | Energy transfer between two peptides bound to one MHC class II molecule. Science, 1991, 254, 87-89.                                                                                              | 12.6 | 35        |
| 136 | Intracellular Location, Complex Formation, and Function of the Transporter Associated with Antigen<br>Processing in Yeast. FEBS Journal, 1997, 245, 266-272.                                     | 0.2  | 35        |
| 137 | Quantum-Yield-Optimized Fluorophores for Site-Specific Labeling and Super-Resolution Imaging.<br>Journal of the American Chemical Society, 2011, 133, 8090-8093.                                 | 13.7 | 35        |
| 138 | Single liposome analysis of peptide translocation by the ABC transporter TAPL. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2046-2051.            | 7.1  | 35        |
| 139 | ABCE1 Controls Ribosome Recycling by an Asymmetric Dynamic Conformational Equilibrium. Cell<br>Reports, 2019, 28, 723-734.e6.                                                                    | 6.4  | 34        |
| 140 | Oriented Binding of the His6-Tagged Carboxyl-Tail of the L-type Ca2+ Channel α1-Subunit to a New<br>NTA-Functionalized Self-Assembled Monolayer. Langmuir, 2004, 20, 5885-5890.                  | 3.5  | 33        |
| 141 | ABC Transporters and Immunity: Mechanism of Self-Defense. Biochemistry, 2012, 51, 4981-4989.                                                                                                     | 2.5  | 33        |
| 142 | The Stalk Domain and the Glycosylation Status of the Activating Natural Killer Cell Receptor NKp30<br>Are Important for Ligand Binding. Journal of Biological Chemistry, 2012, 287, 31527-31539. | 3.4  | 33        |
| 143 | Control of mRNA Translation by Versatile ATP-Driven Machines. Trends in Biochemical Sciences, 2019, 44, 167-180.                                                                                 | 7.5  | 33        |
| 144 | A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor.<br>ELife, 2020, 9, .                                                                            | 6.0  | 33        |

9

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Herpes viral proteins blocking the transporter associated with antigen processing TAP-from genes to function and structure. Current Topics in Microbiology and Immunology, 2002, 269, 87-99.                                                       | 1.1  | 33        |
| 146 | Viral evasion of the MHC class I antigen-processing machinery. Pflugers Archiv European Journal of Physiology, 2005, 451, 409-417.                                                                                                                 | 2.8  | 32        |
| 147 | Protein-Resistant Self-Assembled Monolayers on Gold with Latent Aldehyde Functions. Langmuir, 2007, 23, 5571-5577.                                                                                                                                 | 3.5  | 32        |
| 148 | The Varicellovirus UL49.5 Protein Blocks the Transporter Associated with Antigen Processing (TAP) by<br>Inhibiting Essential Conformational Transitions in the 6+6 Transmembrane TAP Core Complex. Journal<br>of Immunology, 2008, 181, 4894-4907. | 0.8  | 32        |
| 149 | Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy. Journal of Structural Biology, 2009, 168, 217-222.                                                                                     | 2.8  | 32        |
| 150 | Epstein-Barr Viral BNLF2a Protein Hijacks the Tail-anchored Protein Insertion Machinery to Block<br>Antigen Processing by the Transport Complex TAP. Journal of Biological Chemistry, 2011, 286,<br>41402-41412.                                   | 3.4  | 32        |
| 151 | Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. Journal of<br>Molecular Biology, 2015, 427, 1102-1118.                                                                                                            | 4.2  | 32        |
| 152 | Single-molecule FRET reveals the pre-initiation and initiation conformations of influenza virus promoter RNA. Nucleic Acids Research, 2016, 44, gkw884.                                                                                            | 14.5 | 32        |
| 153 | Structure and Dynamics of Antigenic Peptides in Complex with TAP. Frontiers in Immunology, 2017, 8, 10.                                                                                                                                            | 4.8  | 32        |
| 154 | Thermodynamics of Peptide Binding to the Transporter Associated with Antigen Processing (TAP).<br>Journal of Molecular Biology, 2002, 324, 965-973.                                                                                                | 4.2  | 31        |
| 155 | Control of Nanomolar Interaction and Inâ€Situ Assembly of Proteins in Four Dimensions by Light.<br>Angewandte Chemie - International Edition, 2013, 52, 848-853.                                                                                   | 13.8 | 31        |
| 156 | Expression and function of the peptide transporters in escape variants of human renal cell carcinomas. Experimental Hematology, 1997, 25, 608-14.                                                                                                  | 0.4  | 31        |
| 157 | Expression of TAP1 by human trophoblast. European Journal of Immunology, 1995, 25, 543-548.                                                                                                                                                        | 2.9  | 30        |
| 158 | Metal-Chelating Amino Acids As Building Blocks For Synthetic Receptors Sensing Metal Ions And<br>Histidine-Tagged Proteins. ChemBioChem, 2003, 4, 1340-1344.                                                                                       | 2.6  | 30        |
| 159 | Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annual Review of Biophysics, 2020, 49, 135-161.                                                                                                                      | 10.0 | 30        |
| 160 | MHC I assembly and peptide editing — chaperones, clients, and molecular plasticity in immunity.<br>Current Opinion in Immunology, 2021, 70, 48-56.                                                                                                 | 5.5  | 30        |
| 161 | A single power stroke by ATP binding drives substrate translocation in a heterodimeric ABC transporter. ELife, 2020, 9, .                                                                                                                          | 6.0  | 30        |
| 162 | Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Cellular and Molecular Life Sciences, 2012, 69, 3317-3327.                        | 5.4  | 29        |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | ABC Transporters in Dynamic Macromolecular Assemblies. Journal of Molecular Biology, 2018, 430, 4481-4495.                                                                                                                                | 4.2  | 29        |
| 164 | Engineered fusion molecules at chelator lipid interfaces imaged by reflection interference contrast microscopy (RICM). Biosensors and Bioelectronics, 1995, 10, 805-812.                                                                  | 10.1 | 28        |
| 165 | Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel<br>Site-specific Labeling Technique. Journal of Biological Chemistry, 2006, 281, 5694-5701.                                              | 3.4  | 28        |
| 166 | Engineering ATPase Activity in the Isolated ABC Cassette of Human TAP1. Journal of Biological Chemistry, 2006, 281, 27471-27480.                                                                                                          | 3.4  | 28        |
| 167 | The peptide-loading complex – antigen translocation and MHC class I loading. Biological Chemistry, 2009, 390, 783-794.                                                                                                                    | 2.5  | 28        |
| 168 | The transporter associated with antigen processing (TAP) is active in a post-ER compartment. Journal of Cell Science, 2010, 123, 4271-4279.                                                                                               | 2.0  | 28        |
| 169 | â€ <sup>-</sup> Traceless' tracing of proteins – high-affinity trans-splicing directed by a minimal interaction pair.<br>Chemical Science, 2016, 7, 2646-2652.                                                                            | 7.4  | 28        |
| 170 | Structural and Functional Fingerprint of the Mitochondrial ATP-binding Cassette Transporter Mdl1 from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 3951-3961.                                                    | 3.4  | 27        |
| 171 | Signaling of a Varicelloviral Factor across the Endoplasmic Reticulum Membrane Induces Destruction of the Peptide-loading Complex and Immune Evasion. Journal of Biological Chemistry, 2008, 283, 13428-13436.                            | 3.4  | 27        |
| 172 | Peptide Specificity and Lipid Activation of the Lysosomal Transport Complex ABCB9 (TAPL). Journal of Biological Chemistry, 2008, 283, 17083-17091.                                                                                        | 3.4  | 27        |
| 173 | An Annular Lipid Belt Is Essential for Allosteric Coupling and Viral Inhibition of the Antigen<br>Translocation Complex TAP (Transporter Associated with Antigen Processing). Journal of Biological<br>Chemistry, 2014, 289, 33098-33108. | 3.4  | 27        |
| 174 | Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nature Communications, 2016, 7, 13248.                                                                                           | 12.8 | 27        |
| 175 | Dynamic blue light-switchable protein patterns on giant unilamellar vesicles. Chemical<br>Communications, 2018, 54, 948-951.                                                                                                              | 4.1  | 27        |
| 176 | Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing. Nature Communications, 2020, 11, 2284.                                                                                          | 12.8 | 27        |
| 177 | TAP dysfunction in dendritic cells enables noncanonical cross-presentation for T cell priming. Nature<br>Immunology, 2021, 22, 497-509.                                                                                                   | 14.5 | 27        |
| 178 | Multicolour Fluorescence-Detection Size-Exclusion Chromatography for Structural Genomics of Membrane Multiprotein Complexes. PLoS ONE, 2013, 8, e67112.                                                                                   | 2.5  | 27        |
| 179 | Specific Protein Docking to Chelator Lipid Monolayers Monitored by FT-IR Spectroscopy at the Airâ $\in$ "Water Interface. Angewandte Chemie International Edition in English, 1996, 35, 317-320.                                          | 4.4  | 26        |
| 180 | The first N-terminal transmembrane helix of each subunit of the antigenic peptide transporter TAP is<br>essential for independent tapasin binding. FEBS Letters, 2006, 580, 4091-4096.                                                    | 2.8  | 26        |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Ribosome recycling in mRNA translation, quality control, and homeostasis. Biological Chemistry, 2019, 401, 47-61.                                                                                             | 2.5  | 26        |
| 182 | Pairing of the Nucleotide Binding Domains of the Transporter Associated with Antigen Processing.<br>Journal of Biological Chemistry, 2000, 275, 6831-6840.                                                    | 3.4  | 25        |
| 183 | The Intracellular Antigen Transport Machinery TAP in Adaptive Immunity and Virus Escape Mechanisms.<br>Journal of Bioenergetics and Biomembranes, 2005, 37, 509-515.                                          | 2.3  | 25        |
| 184 | Charge determination of membrane molecules in polymer-supported lipid layers. Biochimica Et<br>Biophysica Acta - Biomembranes, 1995, 1238, 183-191.                                                           | 2.6  | 24        |
| 185 | Base-Pair Formation of Self-Organizing RNA Amphiphiles within Two Dimensions. Langmuir, 1998, 14, 6620-6624.                                                                                                  | 3.5  | 24        |
| 186 | Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation. Nanotechnology, 2008, 19, 445305.                                                                                         | 2.6  | 24        |
| 187 | The Scaffold Design of Trivalent Chelator Heads Dictates Affinity and Stability for Labeling Hisâ€ŧagged<br>Proteins in vitro and in Cells. Angewandte Chemie - International Edition, 2018, 57, 12395-12399. | 13.8 | 24        |
| 188 | Tris-N-Nitrilotriacetic Acid Fluorophore as a Self-Healing Dye for Single-Molecule Fluorescence<br>Imaging. Journal of the American Chemical Society, 2018, 140, 11006-11012.                                 | 13.7 | 24        |
| 189 | Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies.<br>Chemical Science, 2018, 9, 7835-7842.                                                                         | 7.4  | 24        |
| 190 | Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM.<br>Molecular Biology of the Cell, 2019, 30, 1369-1376.                                                           | 2.1  | 24        |
| 191 | Molecular analysis of the ribosome recycling factor <scp>ABCE</scp> 1 bound to the 30S postâ€splitting complex. EMBO Journal, 2020, 39, e103788.                                                              | 7.8  | 24        |
| 192 | Constitutive transduction of peptide transporter and HLA genes restores antigen processing function and cytotoxic T cell-mediated immune recognition of human melanoma cells. , 1998, 75, 590-595.            |      | 23        |
| 193 | Functional properties and modulation of extracellular epitope - tagged Ca <sub>V</sub> 2.1 voltage-gated calcium channels. Channels, 2008, 2, 461-473.                                                        | 2.8  | 23        |
| 194 | Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP). Journal of Biological Chemistry, 2011, 286, 13346-13356.                                                                   | 3.4  | 23        |
| 195 | Threeâ€Dimensional Protein Networks Assembled by Twoâ€Photon Activation. Angewandte Chemie -<br>International Edition, 2014, 53, 5680-5684.                                                                   | 13.8 | 23        |
| 196 | Ultrasensitive quantification of TAP-dependent antigen compartmentalization in scarce primary immune cell subsets. Nature Communications, 2015, 6, 6199.                                                      | 12.8 | 23        |
| 197 | ATP-LipidsProtein Anchor and Energy Source in Two Dimensions⊥. Journal of the American Chemical Society, 1996, 118, 5532-5543.                                                                                | 13.7 | 22        |
| 198 | Conformation of Receptor Adopted upon Interaction with Virus Revealed by Site-Specific Fluorescence<br>Quenchers and FRET Analysis. Journal of the American Chemical Society, 2009, 131, 5478-5482.           | 13.7 | 22        |

| #   | Article                                                                                                                                                                                                                                                   | IF                | CITATIONS                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
| 199 | Single residue within the antigen translocation complex TAP controls the epitope repertoire by stabilizing a receptive conformation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9135-9140.               | 7.1               | 22                          |
| 200 | Molecular architecture of the MHC I peptideâ€loading complex: one tapasin molecule is essential and sufficient for antigen processing. FASEB Journal, 2012, 26, 5071-5080.                                                                                | 0.5               | 21                          |
| 201 | Exploring the minimal functional unit of the transporter associated with antigen processing. FEBS<br>Letters, 2005, 579, 4413-4416.                                                                                                                       | 2.8               | 20                          |
| 202 | Modulation of the Antigenic Peptide Transporter TAP by Recombinant Antibodies Binding to the Last<br>Five Residues of TAP1. Journal of Molecular Biology, 2007, 369, 95-107.                                                                              | 4.2               | 20                          |
| 203 | Mechanism for Targeting the A-kinase Anchoring Protein AKAP18δto the Membrane. Journal of<br>Biological Chemistry, 2012, 287, 42495-42501.                                                                                                                | 3.4               | 20                          |
| 204 | Antigenic and 3D structural characterization of soluble X4 and hybrid X4-R5 HIV-1 Env trimers.<br>Retrovirology, 2014, 11, 42.                                                                                                                            | 2.0               | 20                          |
| 205 | A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Scientific Reports, 2016, 6, 36907.                                                                                                               | 3.3               | 20                          |
| 206 | Gene transfer of human interferon gamma complementary DNA into a renal cell carcinoma line<br>enhances MHC-restricted cytotoxic T lymphocyte recognition but suppresses non-MHC-restricted<br>effector cell activity. Gene Therapy, 2000, 7, 950-959.     | 4.5               | 19                          |
| 207 | Functional cysteine-less subunits of the transporter associated with antigen processing (TAP1 and) Tj ETQq1 1 0                                                                                                                                           | .784314 rj<br>2.8 | gBT/Overlo <mark>c</mark> i |
| 208 | Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch. Scientific Reports, 2015, 5, 17341.                                                                                                                            | 3.3               | 19                          |
| 209 | Moving the Cellular Peptidome by Transporters. Frontiers in Cell and Developmental Biology, 2018, 6, 43.                                                                                                                                                  | 3.7               | 19                          |
| 210 | Peptide translocation by the lysosomal ABC transporter TAPL is regulated by coupling efficiency and activation energy. Scientific Reports, 2019, 9, 11884.                                                                                                | 3.3               | 19                          |
| 211 | Multivalent Chelators for Inâ€Vivo Protein Labeling. Angewandte Chemie - International Edition, 2019,<br>58, 8278-8290.                                                                                                                                   | 13.8              | 19                          |
| 212 | Selectivity of Competitive Multivalent Interactions at Interfaces. ChemBioChem, 2009, 10, 1878-1887.                                                                                                                                                      | 2.6               | 18                          |
| 213 | A Negative Feedback Modulator of Antigen Processing Evolved from a Frameshift in the Cowpox Virus<br>Genome. PLoS Pathogens, 2014, 10, e1004554.                                                                                                          | 4.7               | 18                          |
| 214 | Interferon Alpha Signalling and Its Relevance for the Upregulatory Effect of Transporter Proteins<br>Associated with Antigen Processing (TAP) in Patients with Malignant Melanoma. PLoS ONE, 2016, 11,<br>e0146325.                                       | 2.5               | 18                          |
| 215 | Camptothecin and its analog SN-38, the active metabolite of irinotecan, inhibit binding of the transcriptional regulator and oncoprotein FUBP1 to its DNA target sequence FUSE. Biochemical Pharmacology, 2017, 146, 53-62.                               | 4.4               | 18                          |
| 216 | Proteasome subunits, lowâ€molecularâ€mass polypeptides 2 and 7 are hyperexpressed by target cells in<br>autoimmune thyroid disease but not in insulinâ€dependent diabetes mellitus: implications for<br>autoimmunity. Tissue Antigens, 1997, 50, 153-163. | 1.0               | 17                          |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Function of the Antigen Transport Complex TAP in Cellular Immunity. Angewandte Chemie -<br>International Edition, 2004, 43, 4014-4031.                                                             | 13.8 | 17        |
| 218 | Atomic Force Microscopyâ€Derived Nanoscale Chip for the Detection of Human Pathogenic Viruses.<br>Small, 2008, 4, 847-854.                                                                         | 10.0 | 17        |
| 219 | Caged Glutathione – Triggering Protein Interaction by Light. Angewandte Chemie - International<br>Edition, 2012, 51, 3960-3963.                                                                    | 13.8 | 17        |
| 220 | Photoinduced receptor confinement drives ligand-independent GPCR signaling. Science, 2021, 371, .                                                                                                  | 12.6 | 17        |
| 221 | The TAP translocation machinery in adaptive immunity and viral escape mechanisms. Essays in Biochemistry, 2011, 50, 249-264.                                                                       | 4.7  | 17        |
| 222 | Ribosome recycling is coordinated by processive events in two asymmetric ATP sites of ABCE1. Life<br>Science Alliance, 2018, 1, e201800095.                                                        | 2.8  | 17        |
| 223 | Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Current Opinion in Cell Biology, 2009, 21, 508-515.                                      | 5.4  | 16        |
| 224 | Protein resistant oligo(ethylene glycol) terminated self-assembled monolayers of thiols on gold by vapor deposition in vacuum. Biointerphases, 2010, 5, 30-36.                                     | 1.6  | 16        |
| 225 | Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. Journal of Experimental Botany, 2011, 62, 2403-2410.                                                | 4.8  | 16        |
| 226 | Singleâ€Molecule Analysis of the Recognition Forces Underlying Nucleo ytoplasmic Transport.<br>Angewandte Chemie - International Edition, 2013, 52, 10356-10359.                                   | 13.8 | 16        |
| 227 | Assembly and Function of the Major Histocompatibility Complex (MHC) I Peptide-loading Complex Are<br>Conserved Across Higher Vertebrates. Journal of Biological Chemistry, 2014, 289, 33109-33117. | 3.4  | 16        |
| 228 | Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane<br>Proteins on Chip. Nano Letters, 2018, 18, 3901-3910.                                           | 9.1  | 16        |
| 229 | A systematic re-examination of processing of MHCI-bound antigenic peptide precursors by endoplasmic reticulum aminopeptidase 1. Journal of Biological Chemistry, 2020, 295, 7193-7210.             | 3.4  | 16        |
| 230 | Herpes Viral Proteins Blocking the Transporter Associated with Antigen Processing TAP — From Genes to Function and Structure. Current Topics in Microbiology and Immunology, 2002, , 85-99.        | 1.1  | 16        |
| 231 | Diacetylene Chelator Lipids as Support for Immobilization and Imaging of Proteins by Atomic Force<br>Microscopy. Langmuir, 1998, 14, 4836-4842.                                                    | 3.5  | 15        |
| 232 | TAP and TAP-like — Brothers in arms?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 372,<br>444-450.                                                                                       | 3.0  | 15        |
| 233 | Superâ€Chelators for Advanced Protein Labeling in Living Cells. Angewandte Chemie - International Edition, 2018, 57, 5620-5625                                                                     | 13.8 | 15        |
| 234 | Lysosomal targeting of the ABC transporter TAPL is determined by membrane-localized charged residues. Journal of Biological Chemistry, 2019, 294, 7308-7323.                                       | 3.4  | 15        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Light-guided intrabodies for on-demand <i>in situ</i> target recognition in human cells. Chemical Science, 2021, 12, 5787-5795.                                                                          | 7.4  | 15        |
| 236 | Thermodynamics of the ATPase Cycle of GlcV, the Nucleotide-Binding Domain of the Glucose ABC Transporter of Sulfolobus solfataricus. Biochemistry, 2006, 45, 15056-15067.                                | 2.5  | 14        |
| 237 | Switching of the homooligomeric ATPâ€binding cassette transport complex MDL1 from<br>postâ€translational mitochondrial import to endoplasmic reticulum insertion. FEBS Journal, 2007, 274,<br>5298-5310. | 4.7  | 14        |
| 238 | Reversible Biofunctionalization of Surfaces with a Switchable Mutant of Avidin. Bioconjugate Chemistry, 2013, 24, 1656-1668.                                                                             | 3.6  | 14        |
| 239 | Principles of Small-Molecule Transport through Synthetic Nanopores. ACS Nano, 2021, 15, 16194-16206.                                                                                                     | 14.6 | 14        |
| 240 | Targeted degradation of ABC transporters in health and disease. Journal of Bioenergetics and Biomembranes, 2007, 39, 489-497.                                                                            | 2.3  | 13        |
| 241 | Inâ€5itu Spin Labeling of Hisâ€Tagged Proteins: Distance Measurements under Inâ€Cell Conditions. Chemistry<br>- A European Journal, 2013, 19, 13714-13719.                                               | 3.3  | 13        |
| 242 | Thermodynamic Basis for Conformational Coupling in an ATP-Binding Cassette Exporter. Journal of Physical Chemistry Letters, 2020, 11, 7946-7953.                                                         | 4.6  | 13        |
| 243 | Chemical Tags Mediate the Orthogonal Selfâ€Assembly of DNA Duplexes into Supramolecular<br>Structures. Small, 2010, 6, 1732-1735.                                                                        | 10.0 | 12        |
| 244 | Interaction of von Willebrand factor domains with collagen investigated by single molecule force spectroscopy. Journal of Chemical Physics, 2018, 148, 123310.                                           | 3.0  | 12        |
| 245 | Enhanced labeling density and whole-cell 3D dSTORM imaging by repetitive labeling of target proteins.<br>Scientific Reports, 2018, 8, 5507.                                                              | 3.3  | 12        |
| 246 | Interactions of bacteriophage T4 adhesin with selected lipopolysaccharides studied using atomic force microscopy. Scientific Reports, 2018, 8, 10935.                                                    | 3.3  | 12        |
| 247 | Modulation of TAP-dependent antigen compartmentalization during human monocyte-to-DC differentiation. Blood Advances, 2019, 3, 839-850.                                                                  | 5.2  | 11        |
| 248 | Extended interaction networks with HCV protease NS3-4A substrates explain the lack of adaptive capability against protease inhibitors. Journal of Biological Chemistry, 2020, 295, 13862-13874.          | 3.4  | 10        |
| 249 | De novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition. ELife, 2021, 10, .                                                           | 6.0  | 10        |
| 250 | Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. Journal of Controlled Release, 2021, 334, 201-212.                          | 9.9  | 10        |
| 251 | Peptide binding and photo-crosslinking to detergent solubilized and to reconstituted transporter associated with antigen processing (TAP). FEBS Letters, 1997, 416, 359-363.                             | 2.8  | 9         |
| 252 | Single molecule research on surfaces: from analytics to construction and back. Reviews in Molecular Biotechnology, 2001, 82, 3-24.                                                                       | 2.8  | 9         |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Dreidimensionale Proteinnetzwerke durch Zweiâ€Photonen―Aktivierung. Angewandte Chemie, 2014, 126,<br>5787-5791.                                                                                                  | 2.0  | 9         |
| 254 | Probing fibronectin adsorption on chemically defined surfaces by means of single molecule force microscopy. Scientific Reports, 2020, 10, 15662.                                                                 | 3.3  | 9         |
| 255 | Reconstitution and electron paramagnetic resonance-spectroscopic characterization of glycophorin containing phospholipid vesicles. Chemistry and Physics of Lipids, 1989, 51, 91-103.                            | 3.2  | 8         |
| 256 | Membranes on nanopores for multiplexed single-transporter analyses. Mikrochimica Acta, 2016, 183,<br>965-971.                                                                                                    | 5.0  | 8         |
| 257 | Synergistic effects of Ca2+ and wheat germ agglutinin on the lamellar-hexagonal (HII) phase<br>transition of glycophorin-containing egg-phosphatidylethanolamine membranes. FEBS Journal, 1991,<br>199, 187-193. | 0.2  | 7         |
| 258 | Controlling the Activity of the 20S Proteasome Complex by Synthetic Gatekeepers. Angewandte Chemie<br>- International Edition, 2006, 45, 5702-5705.                                                              | 13.8 | 7         |
| 259 | Pragmatic Studies on Protein-Resistant Self-Assembled Monolayers. Monatshefte Für Chemie, 2007, 138, 245-252.                                                                                                    | 1.8  | 7         |
| 260 | Singleâ€Molecule Analysis of the Recognition Forces Underlying Nucleo ytoplasmic Transport.<br>Angewandte Chemie, 2013, 125, 10546-10549.                                                                        | 2.0  | 7         |
| 261 | Vapor Phase Exchange of Self-Assembled Monolayers for Engineering of Biofunctional Surfaces.<br>Langmuir, 2017, 33, 3847-3854.                                                                                   | 3.5  | 7         |
| 262 | Structural and functional insights into the interaction and targeting hub TMD0 of the polypeptide transporter TAPL. Scientific Reports, 2018, 8, 15662.                                                          | 3.3  | 7         |
| 263 | Light control of the peptide-loading complex synchronizes antigen translocation and MHC I trafficking. Communications Biology, 2021, 4, 430.                                                                     | 4.4  | 7         |
| 264 | Single Cell-like Systems Reveal Active Unidirectional and Light-Controlled Transport by Nanomachineries. ACS Nano, 2021, 15, 6747-6755.                                                                          | 14.6 | 7         |
| 265 | Reactions of the subunits of the class II major histocompatibility complex molecule IAd Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10667-10670.                  | 7.1  | 6         |
| 266 | Activation of G-Protein-Coupled Receptors in Cell-Derived Plasma Membranes Supported on Porous<br>Beads. Journal of the American Chemical Society, 2011, 133, 16868-16874.                                       | 13.7 | 6         |
| 267 | Optical control of the antigen translocation by synthetic photo-conditional viral inhibitors.<br>Chemical Science, 2019, 10, 2001-2005.                                                                          | 7.4  | 6         |
| 268 | Ultrafast in-gel detection by fluorescent super-chelator probes with HisQuick-PAGE. Communications<br>Biology, 2020, 3, 138.                                                                                     | 4.4  | 6         |
| 269 | PAKC: A novel panel of HLA class I antigen presentation machinery knockout cells from the same genetic origin. European Journal of Immunology, 2021, 51, 734-737.                                                | 2.9  | 6         |
| 270 | Peptide Libraries in Cellular Immune Recognition. Current Topics in Microbiology and Immunology, 1999, 243, 1-21.                                                                                                | 1.1  | 6         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | The Transporters Associated with Antigen Processing (TAP). Molecular Biology Intelligence Unit, 1997, , 115-136.                                                                                                | 0.2 | 6         |
| 272 | Sensitizer-enhanced two-photon patterning of biomolecules in photoinstructive hydrogels.<br>Communications Materials, 2022, 3, .                                                                                | 6.9 | 6         |
| 273 | Caught in the Act: an ABC Transporter on the Move. Structure, 2007, 15, 1028-1030.                                                                                                                              | 3.3 | 5         |
| 274 | Single molecule force spectroscopy data and BD- and MD simulations on the blood protein von Willebrand factor. Data in Brief, 2016, 8, 1080-1087.                                                               | 1.0 | 5         |
| 275 | Nanomolar affinity protein trans-splicing monitored in real-time by fluorophore–quencher pairs.<br>Chemical Communications, 2017, 53, 545-548.                                                                  | 4.1 | 5         |
| 276 | The Scaffold Design of Trivalent Chelator Heads Dictates Affinity and Stability for Labeling Hisâ€ŧagged<br>Proteins in vitro and in Cells. Angewandte Chemie, 2018, 130, 12575-12579.                          | 2.0 | 5         |
| 277 | Interaction of Ganglioside and Glycoprotein Carbohydrates with Membrane Surfaces. Zeitschrift Fur<br>Elektrotechnik Und Elektrochemie, 1988, 92, 982-985.                                                       | 0.9 | 4         |
| 278 | Interaction between glycophorin and a spin-labeled cholesterol analogue in reconstituted<br>dimyristoylphosphatidylcholine bilayer vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1989,<br>982, 41-46. | 2.6 | 4         |
| 279 | Nachweis der spezifischen Proteinadsorption an Chelatorlipidmonoschichten mit FTâ€IRâ€Spektroskopie<br>an der Wasser/Luftâ€GrenzflÄ©he. Angewandte Chemie, 1996, 108, 344-347.                                  | 2.0 | 4         |
| 280 | Neutralisation of factor VIII inhibitors by anti-idiotypes isolated from phage-displayed libraries.<br>Thrombosis and Haemostasis, 2016, 116, 32-41.                                                            | 3.4 | 4         |
| 281 | Super helators for Advanced Protein Labeling in Living Cells. Angewandte Chemie, 2018, 130, 5722-5727.                                                                                                          | 2.0 | 4         |
| 282 | Efficient Amber Suppression <i>via</i> Ribosomal Skipping for <i>In Situ</i> Synthesis of Photoconditional Nanobodies. ACS Synthetic Biology, 2022, 11, 1466-1476.                                              | 3.8 | 4         |
| 283 | Viral immune evasins impact antigen presentation by allele-specific trapping of MHCÂI at the peptide-loading complex. Scientific Reports, 2022, 12, 1516.                                                       | 3.3 | 3         |
| 284 | THE TRANSPORTER ASSOCIATED WITH ANTIGEN PROCESSING (TAP): A PEPTIDE TRANSPORT AND LOADING COMPLEX ESSENTIAL FOR CELLULAR IMMUNE RESPONSE. , 2003, , 533-550.                                                    |     | 2         |
| 285 | A multi-faceted world of transporters. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 372, 383-384.                                                                                                      | 3.0 | 2         |
| 286 | Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein<br>Resolution. Journal of Visualized Experiments, 2016, , .                                                   | 0.3 | 2         |
| 287 | Membrane-Suspended Nanopores in Microchip Arrays for Stochastic Transport Recording and Sensing.<br>Frontiers in Nanotechnology, 2021, 3, .                                                                     | 4.8 | 2         |
| 288 | Epistatic interactions promote persistence of NS3-Q80K inÂHCV infection by compensating for protein folding instability. Journal of Biological Chemistry, 2021, 297, 101031.                                    | 3.4 | 2         |

| #   | Article                                                                                                                                                                                                                        | IF               | CITATIONS     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 289 | Anomalous pH dependence of the coexistence pressure of the polymerizable two-chain N-lipid methyl-bis(pentacosadiinoyl-oxyethyl)-amine. European Biophysics Journal, 1997, 26, 271-275.                                        | 2.2              | 1             |
| 290 | Changing Orders-Primary and Secondary Membrane Transporters Revised. ChemBioChem, 2004, 5, 1171-1175.                                                                                                                          | 2.6              | 1             |
| 291 | Soluteâ€Binding Sites in ABC Transporters for Recognition, Occlusion and Transâ€Inhibition.<br>ChemMedChem, 2009, 4, 25-28.                                                                                                    | 3.2              | 1             |
| 292 | Multicolor Fluorescence-Based Screening Toward Structural Analysis of Multiprotein Membrane<br>Complexes. Methods in Enzymology, 2015, 557, 3-26.                                                                              | 1.0              | 1             |
| 293 | Mutual a Domain Interactions in the Force Sensing Protein von Willebrand Factor (VWF). Biophysical<br>Journal, 2016, 110, 496a.                                                                                                | 0.5              | 1             |
| 294 | Rücktitelbild: The Scaffold Design of Trivalent Chelator Heads Dictates Affinity and Stability for<br>Labeling His-tagged Proteins in vitro and in Cells (Angew. Chem. 38/2018). Angewandte Chemie, 2018, 130,<br>12766-12766. | 2.0              | 1             |
| 295 | Function of the Antigen Transport Complex TAP in Cellular Immunity. ChemInform, 2004, 35, no.                                                                                                                                  | 0.0              | 0             |
| 296 | 1,2-Bis(5-chloro-2-methyl-3-thienyl)cyclopentene. Acta Crystallographica Section E: Structure Reports<br>Online, 2006, 62, o5649-o5650.                                                                                        | 0.2              | 0             |
| 297 | 5,5′-Dimethyl-4,4′-bis[2-(2-methyl-3-thienyl)cyclopentenyl]-2,2′-bithiophene. Acta Crystallographica<br>Section E: Structure Reports Online, 2007, 63, o2813-o2814.                                                            | 0.2              | 0             |
| 298 | Highlight: The gatekeepers of life yield their secrets. Biological Chemistry, 2009, 390, 673-673.                                                                                                                              | 2.5              | 0             |
| 299 | Highlight: Membrane transport in light of structure, function, and evolution. Biological Chemistry, 2011, 392, 3.                                                                                                              | 2.5              | 0             |
| 300 | Inside Cover: Caged Glutathione – Triggering Protein Interaction by Light (Angew. Chem. Int. Ed.) Tj ETQqO 0 0                                                                                                                 | rgBT/Ove<br>13.8 | rlock 10 Tf 5 |
| 301 | Single Liposomes Used to Study the Activity of Individual Transporters. Biophysical Journal, 2014, 106, 229a.                                                                                                                  | 0.5              | 0             |
| 302 | VWF - Collagen Interactions Studied with Single Molecule Force Spectroscopy. Biophysical Journal, 2014, 106, 450a.                                                                                                             | 0.5              | 0             |
| 303 | Titelbild: SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging (Angew. Chem.) Tj ETQq1 1 0.78                                                                                                               | 4314 rgB1<br>2.0 | -  Overlock 1 |
| 304 | Nanopore cavity arrays on Silicon-on-Sapphire substrates for optical studies of transport across lipid membranes. , 2016, , .                                                                                                  |                  | 0             |
| 305 | Molecular mechanisms of fitness compensation in drug resistance-associated NS3 protease variants in hepatitis C. Journal of Hepatology, 2017, 66, S319.                                                                        | 3.7              | 0             |
| 306 | Frontispiece: Superâ€Chelators for Advanced Protein Labeling in Living Cells. Angewandte Chemie -<br>International Edition, 2018, 57, .                                                                                        | 13.8             | 0             |

| #   | Article                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Frontispiz: Superâ€Chelators for Advanced Protein Labeling in Living Cells. Angewandte Chemie, 2018, 130, .                                        | 2.0 | 0         |
| 308 | Adaptive Immunity Shaped by Large Multiprotein Membrane Complexes. Biophysical Journal, 2019, 116,<br>13a.                                         | 0.5 | 0         |
| 309 | Multivalent Chelators for Inâ€Vivo Protein Labeling. Angewandte Chemie, 2019, 131, 8364.                                                           | 2.0 | 0         |
| 310 | Die Biochemie-StudiengÃ <b>¤</b> ge bekommen mehr Sichtbarkeit. BioSpektrum, 2021, 27, 119-119.                                                    | 0.0 | 0         |
| 311 | Function of the transporter associated with antigen processing (TAP) in cellular immunity, tumor escape, and virus persistence. , 2003, , 319-337. |     | 0         |
| 312 | The Role of the Antigen Translocation Machinery TAP in Adaptive Immunity. , 2011, , 163-180.                                                       |     | 0         |
| 313 | Processing and Selection of Antigens by the Major Histocompatibility Complex Encoded Peptide Transporter TAP. , 1998, , 155-163.                   |     | 0         |