Kai Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587459/publications.pdf

Version: 2024-02-01

155	12,060	56 h-index	106
papers	citations		g-index
157	157	157	16234
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano, 2012, 6, 5988-5994.	7.3	788
2	Atomic Defects in Monolayer Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>}) MXene. ACS Nano, 2016, 10, 9193-9200.	7.3	785
3	Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates. Nano Letters, 2013, 13, 1649-1654.	4.5	683
4	PdSe ₂ : Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society, 2017, 139, 14090-14097.	6.6	509
5	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials, 2016, 3, 042001.	2.0	408
6	A Highly π-Stacked Organic Semiconductor for Field-Effect Transistors Based on Linearly Condensed Pentathienoacene. Journal of the American Chemical Society, 2005, 127, 13281-13286.	6.6	334
7	Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. ACS Nano, 2017, 11, 12742-12752.	7.3	282
8	High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing. ACS Photonics, 2015, 2, 680-686.	3.2	268
9	Interlayer Coupling in Twisted WSe ₂ /WS ₂ Bilayer Heterostructures Revealed by Optical Spectroscopy. ACS Nano, 2016, 10, 6612-6622.	7.3	249
10	Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions. Journal of the American Chemical Society, 2015, 137, 9210-9213.	6.6	246
11	Two-dimensional GaSe/MoSe ₂ misfit bilayer heterojunctions by van der Waals epitaxy. Science Advances, 2016, 2, e1501882.	4.7	239
12	Ultrathin nanosheets of CrSiTe ₃ : a semiconducting two-dimensional ferromagnetic material. Journal of Materials Chemistry C, 2016, 4, 315-322.	2.7	235
13	Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse. Scientific Reports, 2014, 4, 5497.	1.6	222
14	Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nature Communications, 2015, 6, 7749.	5.8	213
15	A roadmap for electronic grade 2D materials. 2D Materials, 2019, 6, 022001.	2.0	205
16	Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. Journal of Materials Chemistry C, 2015, 3, 7022-7028.	2.7	203
17	Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nature Materials, 2018, 17, 1013-1019.	13.3	183
18	Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. ACS Nano, 2015, 9, 6333-6342.	7.3	151

#	Article	IF	CITATIONS
19	Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Research, 2014, 7, 694-703.	5.8	140
20	Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures. ACS Nano, 2020, 14, 3896-3906.	7.3	136
21	Surface-Induced Orientation Control of CuPc Molecules for the Epitaxial Growth of Highly Ordered Organic Crystals on Graphene. Journal of the American Chemical Society, 2013, 135, 3680-3687.	6.6	125
22	In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nature Communications, 2018, 9, 2266.	5.8	125
23	Thickness-dependent charge transport in few-layer MoS ₂ field-effect transistors. Nanotechnology, 2016, 27, 165203.	1.3	124
24	High-Performance Field-Effect Transistors Based on Polystyrene- <i>b</i> -Poly(3-hexylthiophene) Diblock Copolymers. ACS Nano, 2011, 5, 3559-3567.	7.3	122
25	Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe _{2â°'<i>x</i>} Crystals. Nano Letters, 2016, 16, 5213-5220.	4.5	121
26	Twisted MoSe ₂ Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy. ACS Nano, 2016, 10, 2736-2744.	7.3	117
27	Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. Npj Computational Materials, 2019, 5, .	3.5	113
28	PSâ€ <i>b</i> à€₱3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics. Advanced Materials, 2011, 23, 5529-5535.	11.1	110
29	Pulsed Laser Deposition of Photoresponsive Twoâ€Dimensional GaSe Nanosheet Networks. Advanced Functional Materials, 2014, 24, 6365-6371.	7.8	108
30	The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nature Communications, 2014, 5, 3180.	5.8	103
31	Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. ACS Nano, 2015, 9, 8078-8088.	7.3	103
32	Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures. Journal of the American Chemical Society, 2016, 138, 14713-14719.	6.6	102
33	High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Research, 2018, 11, 722-730.	5.8	101
34	In situ edge engineering in two-dimensional transition metal dichalcogenides. Nature Communications, 2018, 9, 2051.	5.8	100
35	Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Physical Review B, 2017, 96, .	1.1	99
36	Deciphering Halogen Competition in Organometallic Halide Perovskite Growth. Journal of the American Chemical Society, 2016, 138, 5028-5035.	6.6	92

#	Article	IF	CITATIONS
37	Single-Crystal Organic Nanowires of Copper–Tetracyanoquinodimethane: Synthesis, Patterning, Characterization, and Device Applications. Angewandte Chemie - International Edition, 2007, 46, 2650-2654.	7.2	90
38	Synthesis and emerging properties of 2D layered III–VI metal chalcogenides. Applied Physics Reviews, 2019, 6, 041312.	5.5	89
39	Excitonic Dynamics in Janus MoSSe and WSSe Monolayers. Nano Letters, 2021, 21, 931-937.	4.5	86
40	Isoelectronic Tungsten Doping in Monolayer MoSe ₂ for Carrier Type Modulation. Advanced Materials, 2016, 28, 8240-8247.	11.1	85
41	Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe ₂ . Advanced Functional Materials, 2017, 27, 1603850.	7.8	84
42	Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams. Scientific Reports, 2016, 6, 30481.	1.6	82
43	Metastable Copperâ€Phthalocyanine Singleâ€Crystal Nanowires and Their Use in Fabricating Highâ€Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2009, 19, 3776-3780.	7.8	81
44	Enhanced Performance Consistency in Nanoparticle/TIPS Pentaceneâ€Based Organic Thin Film Transistors. Advanced Functional Materials, 2011, 21, 3617-3623.	7.8	81
45	Defect-Mediated Phase Transformation in Anisotropic Two-Dimensional PdSe ₂ Crystals for Seamless Electrical Contacts. Journal of the American Chemical Society, 2019, 141, 8928-8936.	6.6	81
46	Twoâ€Dimensional Palladium Diselenide with Strong Inâ€Plane Optical Anisotropy and High Mobility Grown by Chemical Vapor Deposition. Advanced Materials, 2020, 32, e1906238.	11.1	81
47	Conjugated Polymer-Mediated Polymorphism of a High Performance, Small-Molecule Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, and Charge Transport. Chemistry of Materials, 2013, 25, 4378-4386.	3.2	77
48	Enhancing Ion Migration in Grain Boundaries of Hybrid Organic–Inorganic Perovskites by Chlorine. Advanced Functional Materials, 2017, 27, 1700749.	7.8	74
49	Field-Effect Transistors Based on Langmuirâ-'Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers. Journal of Physical Chemistry B, 2003, 107, 9226-9230.	1.2	73
50	Thin-Film Transistors Based on Langmuirâ^'Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. Langmuir, 2005, 21, 6527-6531.	1.6	68
51	3D Imaging and Manipulation of Subsurface Selenium Vacancies in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow>< Physical Review Letters, 2018, 121, 086101.</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	mml:mn>2	<
52	Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers. Journal of the American Chemical Society, 2017, 139, 482-491.	6.6	65
53	Realâ€Time Observation of Orderâ€Disorder Transformation of Organic Cations Induced Phase Transition and Anomalous Photoluminescence in Hybrid Perovskites. Advanced Materials, 2018, 30, e1705801.	11.1	60
54	Anomalous interlayer vibrations in strongly coupled layered PdSe ₂ . 2D Materials, 2018, 5, 035016.	2.0	60

#	Article	IF	Citations
55	Spatial Localization of Excitons and Charge Carriers in Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2015, 6, 3041-3047.	2.1	59
56	Reduced Grain Size and Improved Thermoelectric Properties of Melt Spun (Hf,Zr)NiSn Half-Heusler Alloys. Journal of Electronic Materials, 2010, 39, 2008-2012.	1.0	58
57	Selective Patterned Growth of Singleâ€Crystal Ag–TCNQ Nanowires for Devices by Vapor–Solid Chemical Reaction. Advanced Functional Materials, 2008, 18, 3043-3048.	7.8	57
58	Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. Npj 2D Materials and Applications, 2019, 3, .	3.9	55
59	Correlating high power conversion efficiency of PTB7:PC ₇₁ BM inverted organic solar cells with nanoscale structures. Nanoscale, 2015, 7, 15576-15583.	2.8	54
60	Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by in Situ TEM. ACS Applied Materials & Situ TEM. ACS Applied Materials & Situ TEM. ACS Applied Materials & Situ TEM. Situ TEM. ACS Applied Materials & Situ TEM. Situ TEM. ACS Applied Materials & Situ TEM. Situ TEM	4.0	54
61	Ternary behavior and systematic nanoscale manipulation of domain structures in P3HT/PCBM/P3HT-b-PEO films. Journal of Materials Chemistry, 2012, 22, 13013.	6.7	53
62	Electronâ€Beamâ€Related Studies of Halide Perovskites: Challenges and Opportunities. Advanced Energy Materials, 2020, 10, 1903191.	10.2	53
63	High Conduction Hopping Behavior Induced in Transition Metal Dichalcogenides by Percolating Defect Networks: Toward Atomically Thin Circuits. Advanced Functional Materials, 2017, 27, 1702829.	7.8	52
64	Solvent quality-induced nucleation and growth of parallelepiped nanorods in dilute poly(3-hexylthiophene) (P3HT) solution and the impact on the crystalline morphology of solution-cast thin film. CrystEngComm, 2013, 15, 1114-1124.	1.3	51
65	Controllable Thinâ€Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers. Advanced Science, 2021, 8, 2004249.	5.6	51
66	Growth, Patterning, and One-Dimensional Electron -Transport Properties of Self-Assembled Ag-TCNQF4 Organic Nanowires. Chemistry of Materials, 2009, 21, 4275-4281.	3.2	48
67	The impact of controlled solvent exposure on the morphology, structure and function of bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 107, 112-124.	3.0	48
68	Imaging Electronic Trap States in Perovskite Thin Films with Combined Fluorescence and Femtosecond Transient Absorption Microscopy. Journal of Physical Chemistry Letters, 2016, 7, 1725-1731.	2.1	48
69	Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation. ACS Nano, 2014, 8, 11567-11575.	7.3	47
70	Perovskites: transforming photovoltaics, a mini-review. Journal of Photonics for Energy, 2015, 5, 057402.	0.8	47
71	Valence band inversion and spin-orbit effects in the electronic structure of monolayer GaSe. Physical Review B, 2018, 98, .	1.1	47
72	Low thermal budget, photonic-cured compact TiO ₂ layers for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 9685-9690.	5.2	46

#	Article	IF	CITATIONS
73	Strain tolerance of two-dimensional crystal growth on curved surfaces. Science Advances, 2019, 5, eaav4028.	4.7	46
74	Revealing the Preferred Interlayer Orientations and Stackings of Twoâ€Dimensional Bilayer Gallium Selenide Crystals. Angewandte Chemie - International Edition, 2015, 54, 2712-2717.	7.2	45
75	Observation of two distinct negative trions in tungsten disulfide monolayers. Physical Review B, 2015, 92, .	1.1	44
76	Ultrafast Dynamics of Metal Plasmons Induced by 2D Semiconductor Excitons in Hybrid Nanostructure Arrays. ACS Photonics, 2016, 3, 2389-2395.	3.2	42
77	Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS ₂ . ACS Nano, 2019, 13, 2481-2489.	7.3	42
78	Controllable Growth of Perovskite Films by Roomâ€Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells. Angewandte Chemie - International Edition, 2015, 54, 14862-14865.	7.2	41
79	Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spunâ€Cast Thin Film. Advanced Functional Materials, 2014, 24, 6647-6657.	7.8	39
80	Patterned Growth of Pâ€Type MoS ₂ Atomic Layers Using Sol–Gel as Precursor. Advanced Functional Materials, 2016, 26, 6371-6379.	7.8	34
81	Correlation of polymeric compatibilizer structure to its impact on the morphology and function of P3HT:PCBM bulk heterojunctions. Journal of Materials Chemistry A, 2013, 1, 5309.	5.2	33
82	Nonequilibrium Synthesis of TiO ₂ Nanoparticle "Building Blocks―for Crystal Growth by Sequential Attachment in Pulsed Laser Deposition. Nano Letters, 2017, 17, 4624-4633.	4.5	33
83	High performance top-gated multilayer WSe ₂ field effect transistors. Nanotechnology, 2017, 28, 475202.	1.3	33
84	Effect of Charge Localization on the Effective Hyperfine Interaction in Organic Semiconducting Polymers. Physical Review Letters, 2018, 120, 086602.	2.9	32
85	Atmospheric and Long-term Aging Effects on the Electrical Properties of Variable Thickness WSe ₂ Transistors. ACS Applied Materials & Interfaces, 2018, 10, 36540-36548.	4.0	31
86	Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. Npj Computational Materials, 2018, 4, .	3.5	31
87	Low temperature synthesis of hierarchical TiO ₂ nanostructures for high performance perovskite solar cells by pulsed laser deposition. Physical Chemistry Chemical Physics, 2016, 18, 27067-27072.	1.3	29
88	Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4921-4928.	4.0	29
89	Multiwall nanotubes with intramolecular junctions (CNx/C): Preparation, rectification, logic gates, and application. Applied Physics Letters, 2004, 84, 4932-4934.	1.5	28
90	Atomic Insight into Thermolysisâ€Driven Growth of 2D MoS ₂ . Advanced Functional Materials, 2019, 29, 1902149.	7.8	28

#	Article	IF	CITATIONS
91	Defects in Highly Anisotropic Transition-Metal Dichalcogenide PdSe ₂ . Journal of Physical Chemistry Letters, 2020, 11, 740-746.	2.1	28
92	High-performance organic field-effect transistors with dielectric and active layers printed sequentially by ultrasonic spraying. Journal of Materials Chemistry C, 2013, 1, 4384.	2.7	27
93	Synthesis and Photoluminescence Properties of 2D Phenethylammonium Lead Bromide Perovskite Nanocrystals. Small Methods, 2017, 1, 1700245.	4.6	27
94	Tilt Grain Boundary Topology Induced by Substrate Topography. ACS Nano, 2017, 11, 8612-8618.	7.3	27
95	Dynamic behavior of CH3NH3PbI3 perovskite twin domains. Applied Physics Letters, 2018, 113, .	1.5	27
96	Anisotropic Phonon Response of Few‣ayer PdSe ₂ under Uniaxial Strain. Advanced Functional Materials, 2020, 30, 2003215.	7.8	26
97	High-performance polymer photovoltaics based on rationally designed fullerene acceptors. Solar Energy Materials and Solar Cells, 2013, 118, 171-178.	3.0	25
98	Photocarrier Transfer across Monolayer MoS ₂ â€"MoSe ₂ Lateral Heterojunctions. ACS Nano, 2018, 12, 7086-7092.	7.3	25
99	Elucidation of Perovskite Film Micro-Orientations Using Two-Photon Total Internal Reflectance Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 3283-3288.	2.1	24
100	Lightâ€Ferroic Interaction in Hybrid Organic–Inorganic Perovskites. Advanced Optical Materials, 2019, 7, 1901451.	3.6	24
101	High performance field-effect transistors made of a multiwall CNx/C nanotube intramolecular junction. Applied Physics Letters, 2003, 83, 4824-4826.	1.5	23
102	Ultrafast Exciton Dissociation at the 2D-WS ₂ Monolayer/Perovskite Interface. Journal of Physical Chemistry C, 2018, 122, 28910-28917.	1.5	23
103	One-dimensional electron transport in Cu-tetracyanoquinodimethane organic nanowires. Applied Physics Letters, 2007, 90, 193115.	1.5	22
104	Impact of Crystallographic Orientation Disorders on Electronic Heterogeneities in Metal Halide Perovskite Thin Films. Nano Letters, 2018, 18, 6271-6278.	4.5	22
105	The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures. Carbon, 2018, 131, 246-257.	5.4	21
106	Lithographically patterned metallic conduction in single-layer MoS2 via plasma processing. Npj 2D Materials and Applications, 2019, 3, .	3.9	21
107	Reply to: On the ferroelectricity of CH3NH3Pbl3 perovskites. Nature Materials, 2019, 18, 1051-1053.	13.3	21
108	Atomically Precise PdSe2 Pentagonal Nanoribbons. ACS Nano, 2020, 14, 1951-1957.	7.3	21

#	Article	IF	Citations
109	Persistent photoconductivity in two-dimensional Mo _{1â^²<i>x</i>} W _{<i>x</i>} Se ₂ –MoSe ₂ van der Waals heterojunctions. Journal of Materials Research, 2016, 31, 923-930.	1.2	20
110	Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging. Journal of Physical Chemistry Letters, 2017, 8, 3299-3305.	2.1	20
111	Layer-by-Layer Thinning of PdSe ₂ Flakes via Plasma Induced Oxidation and Sublimation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7345-7350.	4.0	20
112	Strain-Induced Growth of Twisted Bilayers during the Coalescence of Monolayer MoS ₂ Crystals. ACS Nano, 2021, 15, 4504-4517.	7.3	19
113	Separation of Distinct Photoexcitation Species in Femtosecond Transient Absorption Microscopy. ACS Photonics, 2016, 3, 434-442.	3.2	18
114	Phase segregation mechanisms of small moleculeâ€polymer blends unraveled by varying polymer chain architecture. SmartMat, 2021, 2, 367-377.	6.4	18
115	Janus Monolayers for Ultrafast and Directional Charge Transfer in Transition Metal Dichalcogenide Heterostructures. ACS Nano, 2022, 16, 4197-4205.	7.3	18
116	Understanding the Metal-Directed Growth of Single-Crystal M-TCNQF ₄ Organic Nanowires with Time-Resolved, in Situ X-ray Diffraction and First-Principles Theoretical Studies. Journal of the American Chemical Society, 2012, 134, 14353-14361.	6.6	17
117	Twin domains modulate light-matter interactions in metal halide perovskites. APL Materials, 2020, 8, .	2.2	17
118	Peculiarity of Two Thermodynamically-Stable Morphologies and Their Impact on the Efficiency of Small Molecule Bulk Heterojunction Solar Cells. Scientific Reports, 2015, 5, 13407.	1.6	16
119	Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging. Polymers, 2015, 7, 2446-2460.	2.0	16
120	Spatial Mapping of Thermal Boundary Conductance at Metal–Molybdenum Diselenide Interfaces. ACS Applied Materials & Diselenide Interfaces, 2019, 11, 14418-14426.	4.0	16
121	Exciton–Exciton Annihilation in Copper-phthalocyanine Single-Crystal Nanowires. Journal of Physical Chemistry C, 2012, 116, 21588-21593.	1.5	15
122	Morphological origin for the stratification of P3HT:PCBM blend film studied by neutron reflectometry. Applied Physics Letters, 2013, 103, .	1.5	14
123	In situ laser reflectivity to monitor and control the nucleation and growth of atomically thin 2D materials*. 2D Materials, 2020, 7, 025048.	2.0	14
124	Selective Antisite Defect Formation in WS ₂ Monolayers via Reactive Growth on Dilute Wâ€Au Alloy Substrates. Advanced Materials, 2022, 34, e2106674.	11.1	14
125	Stabilized Synthesis of 2D Verbeekite: Monoclinic PdSe ₂ Crystals with High Mobility and In-Plane Optical and Electrical Anisotropy. ACS Nano, 2022, 16, 13900-13910.	7.3	14
126	Ion Migration Studies in Exfoliated 2D Molybdenum Oxide via Ionic Liquid Gating for Neuromorphic Device Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22623-22631.	4.0	12

#	Article	IF	Citations
127	Simplification of femtosecond transient absorption microscopy data from CH ₃ NH ₃ Pbl ₃ perovskite thin films into decay associated amplitude maps. Nanotechnology, 2016, 27, 114002.	1.3	11
128	Relationship between the Nature of Monovalent Cations and Charge Recombination in Metal Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 1298-1304.	2.5	11
129	Defect detection in atomic-resolution images via unsupervised learning with translational invariance. Npj Computational Materials, 2021, 7, .	3.5	11
130	Molecular Scaffold Growth of Two-Dimensional, Strong Interlayer-Bonding-Layered Materials. CCS Chemistry, 0, , 117-127.	4.6	10
131	Unraveling the Fundamental Mechanisms of Solvent-Additive-Induced Optimization of Power Conversion Efficiencies in Organic Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 20220-20229.	4.0	8
132	Heterogeneities at multiple length scales in 2D layered materials: From localized defects and dopants to mesoscopic heterostructures. Nano Research, 2021, 14, 1625-1649.	5.8	8
133	Understanding Heterogeneities in Quantum Materials. Advanced Materials, 2023, 35, e2106909.	11.1	8
134	Atomic Defects and Edge Structure in Single-layer Ti ₃ C ₂ T _x MXene. Microscopy and Microanalysis, 2017, 23, 1704-1705.	0.2	7
135	Understanding Substrate-Guided Assembly in van der Waals Epitaxy by <i>in Situ</i> Laser Crystallization within a Transmission Electron Microscope. ACS Nano, 2021, 15, 8638-8652.	7. 3	7
136	Tip-induced local strain on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mathvariant="normal">S<mml:mn>2</mml:mn></mml:mathvariant="normal"></mml:msub><mml:mo>/</mml:mo>/<mml:mo>/<mml:mi>graph detected by inelastic electron tunneling spectroscopy. Physical Review B, 2018, 97, .</mml:mi></mml:mo></mml:mrow></mml:math>	mi 111 ite <th>ni>⁶</th>	ni> ⁶
137	Transformation of 2D group-III selenides to ultra-thin nitrides: enabling epitaxy on amorphous substrates. Nanotechnology, 2018, 29, 47LT02.	1.3	6
138	Atomic Edge-Guided Polyethylene Crystallization on Monolayer Two-Dimensional Materials. Macromolecules, 2022, 55, 559-567.	2.2	6
139	Revealing the Preferred Interlayer Orientations and Stackings of Twoâ€Dimensional Bilayer Gallium Selenide Crystals. Angewandte Chemie, 2015, 127, 2750-2755.	1.6	5
140	Connecting Femtosecond Transient Absorption Microscopy with Spatially Coregistered Time Averaged Optical Imaging Modalities. Journal of Physical Chemistry A, 2020, 124, 3915-3923.	1.1	4
141	Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials. Springer Series in Materials Science, 2014, , 143-173.	0.4	4
142	Nanophase Engineering of Organic Semiconductor-Based Solar Cells. Springer Series in Materials Science, 2016, , 197-228.	0.4	3
143	Transition Metal Dichalcogenides: Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe ₂ (Adv. Funct. Mater. 19/2017). Advanced Functional Materials, 2017, 27, .	7.8	3
144	The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides. Journal of Physics Condensed Matter, 2020, 32, 025306.	0.7	3

#	Article	IF	CITATIONS
145	On the origin of spatially dependent electronic excited-state dynamics in mixed hybrid perovskite thin films. Lithuanian Journal of Physics, 2019, 58, .	0.1	2
146	Magnetostriction of \hat{l}_{\pm} -RuCl ₃ Flakes in the Zigzag Phase. Journal of Physical Chemistry C, 2021, 125, 25687-25694.	1.5	2
147	Laser Synthesis, Processing, and Spectroscopy of Atomically-Thin Two Dimensional Materials. Springer Series in Materials Science, 2018, , 1-37.	0.4	1
148	Automatic detection of crystallographic defects in STEM images by unsupervised learning with translational invariance. Microscopy and Microanalysis, 2021, 27, 1460-1462.	0.2	1
149	Nonequilibrium synthesis and processing approaches to tailor heterogeneity in 2D materials. , 2022, , 221-258.		1
150	Laser synthesis and processing of atomically thin 2D materials. Trends in Chemistry, 2022, 4, 769-772.	4.4	1
151	In Situ X-Ray Studies of Crystallization Kinetics and Ordering in Functional Organic and Hybrid Materials. , 2018, , 33-60.		O
152	Investigation of Structural Phases in Mo1-xWxTe2 in STEM. Microscopy and Microanalysis, 2020, 26, 2362-2364.	0.2	0
153	Designing Atomic Edge Structures in 2D Transition Metal Dichalcogenides for Improved Catalytic Activity. Microscopy and Microanalysis, 2021, 27, 964-965.	0.2	O
154	Atomic-scale Feedback-controlled Electron Beam Fabrication of 2D Materials. Microscopy and Microanalysis, 2021, 27, 3072-3073.	0.2	0
155	Inside Front Cover: Volume 2 Issue 3. SmartMat, 2021, 2, iii.	6.4	O