Jason C Mills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587286/publications.pdf

Version: 2024-02-01

101543 102487 4,792 93 36 66 h-index citations g-index papers 97 97 97 4228 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Differentiated Troy+ Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium. Cell, 2013, 155, 357-368.	28.9	445
2	Mature Chief Cells Are Cryptic Progenitors for Metaplasia in the Stomach. Gastroenterology, 2010, 139, 2028-2037.e9.	1.3	228
3	Extranuclear Apoptosis. Journal of Cell Biology, 1999, 146, 703-708.	5.2	227
4	Gastric Epithelial Stem Cells. Gastroenterology, 2011, 140, 412-424.	1.3	202
5	Tamoxifen Induces Rapid, Reversible Atrophy, and Metaplasia in Mouse Stomach. Gastroenterology, 2012, 142, 21-24.e7.	1.3	191
6	Spasmolytic Polypeptide-Expressing Metaplasia and Intestinal Metaplasia: Time for Reevaluation of Metaplasias and the Origins of Gastric Cancer. Gastroenterology, 2010, 138, 2207-2210.e1.	1.3	183
7	The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1. Development (Cambridge), 2007, 134, 211-222.	2.5	159
8	A Molecular Signature of Gastric Metaplasia Arising in Response to Acute Parietal Cell Loss. Gastroenterology, 2008, 134, 511-522.	1.3	146
9	Regenerative proliferation of differentiated cells by <scp>mTORC</scp> 1â€dependent paligenosis. EMBO Journal, 2018, 37, .	7.8	132
10	Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Science Signaling, 2015, 8, re8.	3.6	111
11	The origin of pre-neoplastic metaplasia in the stomach: Chief cells emerge from the Mist. Experimental Cell Research, 2011, 317, 2759-2764.	2.6	107
12	XBP1 Controls Maturation of Gastric Zymogenic Cells by Induction of MIST1 and Expansion of the Rough Endoplasmic Reticulum. Gastroenterology, 2010, 139, 2038-2049.	1.3	105
13	The Transcription Factor MIST1 Is a Novel Human Gastric Chief Cell Marker Whose Expression Is Lost in Metaplasia, Dysplasia, and Carcinoma. American Journal of Pathology, 2010, 177, 1514-1533.	3.8	105
14	A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4471-4476.	7.1	98
15	The Hyaluronic Acid Receptor CD44 Coordinates Normal and Metaplastic Gastric Epithelial Progenitor Cell Proliferation. Journal of Biological Chemistry, 2013, 288, 16085-16097.	3.4	97
16	Molecular characterization of mouse gastric epithelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14819-14824.	7.1	93
17	RAB26 and RAB3D Are Direct Transcriptional Targets of MIST1 That Regulate Exocrine Granule Maturation. Molecular and Cellular Biology, 2010, 30, 1269-1284.	2.3	88
18	Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 257-273.	17.8	83

#	Article	IF	Citations
19	The gastric epithelial progenitor cell niche and differentiation of the zymogenic (chief) cell lineage. Developmental Biology, 2009, 325, 211-224.	2.0	80
20	Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology, 2018, 154, 839-843.e2.	1.3	80
21	Stomach Organ and Cell Lineage Differentiation: FromÂEmbryogenesis to Adult Homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 546-559.	4.5	79
22	Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice. Bone Research, 2017, 5, 16049.	11.4	69
23	Murine Models of Gastric Corpus Preneoplasia. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 11-26.	4.5	66
24	Proliferation and Differentiation of Gastric Mucous Neck and Chief Cells During Homeostasis and Injury-induced Metaplasia. Gastroenterology, 2020, 158, 598-609.e5.	1.3	62
25	Inducible activation of Cre recombinase in adult mice causes gastric epithelial atrophy, metaplasia, and regenerative changes in the absence of "floxed―alleles. American Journal of Physiology - Renal Physiology, 2010, 299, G368-G380.	3.4	61
26	Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology, 2022, 162, 415-430.	1.3	61
27	A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genes and Development, 2017, 31, 154-171.	5.9	59
28	Scaling factors: Transcription factors regulating subcellular domains. BioEssays, 2012, 34, 10-16.	2.5	55
29	Targeted Apoptosis of Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology, 2017, 152, 762-766.e7.	1.3	52
30	Interferonâ€Î³ directly induces gastric epithelial cell death and is required for progression to metaplasia. Journal of Pathology, 2019, 247, 513-523.	4.5	52
31	Single-Cell Transcriptional Analyses Identify Lineage-Specific Epithelial Responses to Inflammation and Metaplastic Development in the Gastric Corpus. Gastroenterology, 2020, 159, 2116-2129.e4.	1.3	52
32	Modeling Murine Gastric Metaplasia Through Tamoxifen-Induced Acute Parietal Cell Loss. Methods in Molecular Biology, 2016, 1422, 329-339.	0.9	50
33	Tropism for Spasmolytic Polypeptide-Expressing Metaplasia Allows Helicobacter pylori to Expand Its Intragastric Niche. Gastroenterology, 2019, 156, 160-174.e7.	1.3	50
34	A Dedicated Evolutionarily Conserved Molecular Network Licenses Differentiated Cells to Return to the Cell Cycle. Developmental Cell, 2020, 55, 178-194.e7.	7.0	46
35	Autoimmune Gastritis Mediated by CD4+ T Cells Promotes the Development of Gastric Cancer. Cancer Research, 2013, 73, 2117-2126.	0.9	44
36	Single-Cell Transcriptomics Reveals a Conserved Metaplasia Program in Pancreatic Injury. Gastroenterology, 2022, 162, 604-620.e20.	1.3	43

#	Article	IF	CITATIONS
37	Metaplasia in the Stomach Arises From Gastric Chief Cells. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 85-88.	4.5	41
38	Nomenclature for cellular plasticity: are the terms as plastic as the cells themselves?. EMBO Journal, 2019, 38, e103148.	7.8	40
39	Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. Rna, 2019, 25, 70-81.	3 . 5	39
40	Interleukin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone Mice. Gastroenterology, 2021, 160, 302-316.e7.	1.3	38
41	DDIT4 Licenses Only Healthy Cells to Proliferate During Injury-induced Metaplasia. Gastroenterology, 2021, 160, 260-271.e10.	1.3	38
42	A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell, 2020, 26, 910-925.e6.	11.1	37
43	The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. Journal of Clinical Investigation, 2013, 123, 1475-1491.	8.2	37
44	Interleukin-17A Promotes Parietal Cell Atrophy by Inducing Apoptosis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 678-690.e1.	4.5	35
45	RAB26 coordinates lysosome traffic and mitochondrial localization. Journal of Cell Science, 2014, 127, 1018-32.	2.0	34
46	Osteopetrorickets due to Snx10 Deficiency in Mice Results from Both Failed Osteoclast Activity and Loss of Gastric Acid-Dependent Calcium Absorption. PLoS Genetics, 2015, 11, e1005057.	3 . 5	32
47	Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	32
48	Molecular Characterization of Mouse Gastric Zymogenic Cells. Journal of Biological Chemistry, 2003, 278, 46138-46145.	3.4	31
49	Establishment of novel in vitro mouse chief cell and SPEM cultures identifies MAL2 as a marker of metaplasia in the stomach. American Journal of Physiology - Renal Physiology, 2014, 307, G777-G792.	3.4	28
50	Maturity and age influence chief cell ability to transdifferentiate into metaplasia. American Journal of Physiology - Renal Physiology, 2017, 312, G67-G76.	3.4	28
51	Cystine/Glutamate Antiporter (xCT) Is Required for Chief Cell Plasticity After Gastric Injury. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 379-405.	4.5	28
52	Diverse Adult Stem Cells Share Specific Higher-Order Patterns of Gene Expression. Stem Cells, 2008, 26, 2124-2130.	3.2	26
53	Transcriptional Regulation of X-Box-binding Protein One (XBP1) by Hepatocyte Nuclear Factor 4α (HNF4Î') Is Vital to Beta-cell Function. Journal of Biological Chemistry, 2016, 291, 6146-6157.	3.4	25
54	Plasticity of differentiated cells in wound repair and tumorigenesis, part I: stomach and pancreas. DMM Disease Models and Mechanisms, $2018,11,$.	2.4	24

#	Article	IF	CITATIONS
55	Transcription factor MIST1 in terminal differentiation of mouse and human plasma cells. Physiological Genomics, 2011, 43, 174-186.	2.3	23
56	Hepatocyte nuclear factor $4\hat{l}_{\pm}$ is required for cell differentiation and homeostasis in the adult mouse gastric epithelium. American Journal of Physiology - Renal Physiology, 2016, 311, G267-G275.	3.4	21
57	Apobec 1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	21
58	Paligenosis: Cellular Remodeling During Tissue Repair. Annual Review of Physiology, 2022, 84, 461-483.	13.1	20
59	Are Gastric and Esophageal Metaplasia Relatives? The Case for Barrett's Stemming from SPEM. Digestive Diseases and Sciences, 2018, 63, 2028-2041.	2.3	17
60	ATF3 induces RAB7 to govern autodegradation in paligenosis, a conserved cell plasticity program. EMBO Reports, 2021, 22, e51806.	4.5	17
61	The cyclical hit model. Current Opinion in Gastroenterology, 2019, 35, 363-370.	2.3	16
62	Interleukin 27 Protects From Gastric Atrophy and Metaplasia During Chronic Autoimmune Gastritis. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 561-579.	4.5	15
63	Evolution of the human gastrokine locus and confounding factors regarding the pseudogenicity of <i>GKN3 </i> . Physiological Genomics, 2013, 45, 667-683.	2.3	14
64	Autophagy repurposes cells during paligenosis. Autophagy, 2021, 17, 588-589.	9.1	14
65	A Role for Salivary Peptides in the Innate Defense Against Enterotoxigenic Escherichia coli. Journal of Infectious Diseases, 2018, 217, 1435-1441.	4.0	13
66	Gastric Organoids: Progress and Remaining Challenges. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 19-33.	4.5	10
67	Implantable synthetic organoid matrices for intestinal regeneration. Nature Cell Biology, 2017, 19, 1307-1308.	10.3	9
68	Past Questions and Current Understanding About Gastric Cancer. Gastroenterology, 2018, 155, 939-944.	1.3	9
69	ELAPOR1 is a secretory granule maturation-promoting factor that is lost during paligenosis. American Journal of Physiology - Renal Physiology, 2022, 322, G49-G65.	3.4	9
70	Identification of alanyl aminopeptidase (CD13) as a surface marker for isolation of mature gastric zymogenic chief cells. American Journal of Physiology - Renal Physiology, 2015, 309, G955-G964.	3.4	8
71	Cellular plasticity at the nexus of development and disease. Development (Cambridge), $2021,148,$	2.5	8
72	CD36 maintains the gastric mucosa and associates with gastric disease. Communications Biology, 2021, 4, 1247.	4.4	8

#	Article	IF	CITATIONS
73	Regulation of the double-stranded RNA response through ADAR1 licenses metaplastic reprogramming in gastric epithelium. JCl Insight, 2022, 7 , .	5.0	8
74	Isthmus Time Is Here: Runx1 Identifies Mucosal Stem Cells in theÂGastric Corpus. Gastroenterology, 2017, 152, 16-19.	1.3	7
75	Tumor organoids to study gastroesophageal cancer: a primer. Journal of Molecular Cell Biology, 2020, 12, 593-606.	3.3	7
76	mAb Das-1 identifies pancreatic ductal adenocarcinoma and high-grade pancreatic intraepithelial neoplasia with high accuracy. Human Pathology, 2021, 111, 36-44.	2.0	7
77	Increased IFRD1 Expression in Human Colon Cancers Predicts Reduced Patient Survival. Digestive Diseases and Sciences, 2017, 62, 3460-3467.	2.3	6
78	Tropism of Severe Acute Respiratory Syndrome Coronavirus 2 for Barrett's Esophagus May Increase Susceptibility to Developing Coronavirus Disease 2019. Gastroenterology, 2021, 160, 2165-2168.e4.	1.3	6
79	A chief source of cancer and repair in stomachs. EMBO Journal, 2017, 36, 2318-2320.	7.8	5
80	mAb Das-1 recognizes 3'-Sulfated Lewis A/C, which is aberrantly expressed during metaplastic and oncogenic transformation of several gastrointestinal Epithelia. PLoS ONE, 2021, 16, e0261082.	2.5	5
81	Cell plasticity in regeneration in the stomach and beyond. Current Opinion in Genetics and Development, 2022, 75, 101948.	3.3	5
82	Healthy skin rejects cancer. Nature, 2017, 548, 289-290.	27.8	3
82		27.8 27.8	3
	Healthy skin rejects cancer. Nature, 2017, 548, 289-290.		
83	Healthy skin rejects cancer. Nature, 2017, 548, 289-290. Stomach growth in a dish. Nature, 2017, 541, 160-161. Calcified, top secretion only: epithelial repair in gastric organoids requires calcium mobilization.	27.8	2
83	Healthy skin rejects cancer. Nature, 2017, 548, 289-290. Stomach growth in a dish. Nature, 2017, 541, 160-161. Calcified, top secretion only: epithelial repair in gastric organoids requires calcium mobilization. Journal of Physiology, 2019, 597, 2617-2618. A Perfect Match: Explant and Organoid Systems Help Study Cytokines in Sickness and Health. Cellular	27.8	2
83 84 85	Healthy skin rejects cancer. Nature, 2017, 548, 289-290. Stomach growth in a dish. Nature, 2017, 541, 160-161. Calcified, top secretion only: epithelial repair in gastric organoids requires calcium mobilization. Journal of Physiology, 2019, 597, 2617-2618. A Perfect Match: Explant and Organoid Systems Help Study Cytokines in Sickness and Health. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 4-5. DeMISTifying Paneth Cell Maturation. Cellular and Molecular Gastroenterology and Hepatology, 2019,	27.8 2.9 4.5	2 2
83 84 85 86	Healthy skin rejects cancer. Nature, 2017, 548, 289-290. Stomach growth in a dish. Nature, 2017, 541, 160-161. Calcified, top secretion only: epithelial repair in gastric organoids requires calcium mobilization. Journal of Physiology, 2019, 597, 2617-2618. A Perfect Match: Explant and Organoid Systems Help Study Cytokines in Sickness and Health. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 4-5. DeMISTifying Paneth Cell Maturation. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 643-644. Helicobacter pylori: preying on SIVA for survival in the stomach. Journal of Clinical Investigation,	27.8 2.9 4.5 4.5	2 2 1
83 84 85 86	Healthy skin rejects cancer. Nature, 2017, 548, 289-290. Stomach growth in a dish. Nature, 2017, 541, 160-161. Calcified, top secretion only: epithelial repair in gastric organoids requires calcium mobilization. Journal of Physiology, 2019, 597, 2617-2618. A Perfect Match: Explant and Organoid Systems Help Study Cytokines in Sickness and Health. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 4-5. DeMISTifying Paneth Cell Maturation. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 643-644. Helicobacter pylori: preying on SIVA for survival in the stomach. Journal of Clinical Investigation, 2020, 130, 2183-2185.	27.8 2.9 4.5 4.5	2 2 1 1

#	Article	IF	CITATIONS
91	Metaplasiaâ€induced Epithelial Heterogeneity Directs Pancreatic Injury and Tumorigenesis. FASEB Journal, 2022, 36, .	0.5	O
92	Paligenosis: A conserved program differentiated cells use in regeneration and misuse in cancer. FASEB Journal, 2022, 36, .	0.5	0
93	Stroma New Tune: Emerging Role of PKA in Maintaining Gastric Homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	4.5	0