Steve A Kay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2587205/publications.pdf Version: 2024-02-01

		1463	1799
239	48,444	107	211
papers	citations	h-index	g-index
251	251	251	26143
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phosphorylation of RNA Polymerase II by CDKC;2 Maintains the Arabidopsis Circadian Clock Period. Plant and Cell Physiology, 2022, 63, 450-462.	3.1	10
2	Comprehensive profiling of clock genes expression in colorectal cancer (CRC) Journal of Clinical Oncology, 2022, 40, 3129-3129.	1.6	0
3	Clocking cancer: the circadian clock as a target in cancer therapy. Oncogene, 2021, 40, 3187-3200.	5.9	41
4	Two bHLH transcription factors, bHLH48 and bHLH60, associate with phytochrome interacting factor 7 to regulate hypocotyl elongation in Arabidopsis. Cell Reports, 2021, 35, 109054.	6.4	21
5	A genome-wide microRNA screen identifies the microRNA-183/96/182 cluster as a modulator of circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
6	HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping theÂrhythmic chromatin landscape. Nature Communications, 2021, 12, 6350.	12.8	38
7	Circulating Exosomal miRNAs Signal Circadian Misalignment to Peripheral Metabolic Tissues. International Journal of Molecular Sciences, 2020, 21, 6396.	4.1	23
8	COP1 destabilizes DELLA proteins in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13792-13799.	7.1	84
9	Isoform-selective regulation of mammalian cryptochromes. Nature Chemical Biology, 2020, 16, 676-685.	8.0	61
10	An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals. Cell Chemical Biology, 2020, 27, 1192-1198.e5.	5.2	22
11	Changes in ambient temperature are the prevailing cue in determining <i>Brachypodium distachyon</i> diurnal gene regulation. New Phytologist, 2020, 227, 1709-1724.	7.3	16
12	Light Perception: A Matter of Time. Molecular Plant, 2020, 13, 363-385.	8.3	71
13	A mobile ELF4 delivers circadian temperature information from shoots to roots. Nature Plants, 2020, 6, 416-426.	9.3	73
14	GIGANTEA gates gibberellin signaling through stabilization of the DELLA proteins in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21893-21899.	7.1	41
15	Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discovery, 2019, 9, 1556-1573.	9.4	172
16	Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Scientific Reports, 2019, 9, 12405.	3.3	31
17	CryoEM structures of Arabidopsis DDR complexes involved in RNA-directed DNA methylation. Nature Communications, 2019, 10, 3916.	12.8	31
18	Chemical Control of Mammalian Circadian Behavior through Dual Inhibition of Casein Kinase Iα and δ. Journal of Medicinal Chemistry, 2019, 62, 1989-1998.	6.4	21

#	Article	IF	CITATIONS
19	Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Science Advances, 2019, 5, eaau9060.	10.3	93
20	Multi-level Modulation of Light Signaling by GIGANTEA Regulates Both the Output and Pace of the Circadian Clock. Developmental Cell, 2019, 49, 840-851.e8.	7.0	53
21	Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11528-11536.	7.1	77
22	Functional dissection of the <i><scp>ARGONAUTE</scp>7</i> promoter. Plant Direct, 2019, 3, e00102.	1.9	4
23	ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4503-E4511.	7.1	28
24	Nuclear receptor HNF4A transrepresses CLOCK:BMAL1 and modulates tissue-specific circadian networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12305-E12312.	7.1	77
25	Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins. Plant Physiology, 2018, 177, 1170-1186.	4.8	49
26	The <i>6xABRE</i> Synthetic Promoter Enables the Spatiotemporal Analysis of ABA-Mediated Transcriptional Regulation. Plant Physiology, 2018, 177, 1650-1665.	4.8	63
27	Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors. Current Biology, 2017, 27, 437-444.	3.9	148
28	<i>Arabidopsis</i> B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 172-177.	7.1	95
29	Taurine ameliorates particulate matter-induced emphysema by switching on mitochondrial NADH dehydrogenase genes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9655-E9664.	7.1	56
30	Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nature Genetics, 2017, 49, 1546-1552.	21.4	226
31	A Modified Yeast-one Hybrid System for Heteromeric Protein Complex-DNA Interaction Studies. Journal of Visualized Experiments, 2017, , .	0.3	2
32	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
33	TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genetics, 2017, 13, e1006856.	3.5	80
34	Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes. PLoS ONE, 2017, 12, e0169923.	2.5	29
35	Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural and Molecular Biology, 2016, 23, 1061-1069.	8.2	226
36	Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell, 2016, 165, 1644-1657.	28.9	130

#	Article	IF	CITATIONS
37	The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harbor Perspectives in Biology, 2016, 8, a027748.	5.5	154
38	Cultivated tomato clock runs slow. Nature Genetics, 2016, 48, 8-9.	21.4	3
39	Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry. Molecular and Cellular Proteomics, 2016, 15, 201-217.	3.8	170
40	Identification of Arabidopsis Transcriptional Regulators by Yeast One-Hybrid Screens Using a Transcription Factor ORFeome. Methods in Molecular Biology, 2016, 1398, 107-118.	0.9	18
41	The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. ELife, 2016, 5, e11794.	6.0	119
42	Development of Smallâ€Molecule Cryptochrome Stabilizer Derivatives as Modulators of the Circadian Clock. ChemMedChem, 2015, 10, 1489-1497.	3.2	49
43	Identification of Small-Molecule Modulators of the Circadian Clock. Methods in Enzymology, 2015, 551, 267-282.	1.0	29
44	Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. Plant Physiology, 2015, 169, 760-779.	4.8	100
45	Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9166-9173.	7.1	181
46	CH Activation Generates Periodâ€Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angewandte Chemie, 2015, 127, 7299-7303.	2.0	4
47	Cĩ£¿H Activation Generates Periodâ€Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angewandte Chemie - International Edition, 2015, 54, 7193-7197.	13.8	71
48	Genome-wide identification of CCA1 targets uncovers an expanded clock network in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4802-10.	7.1	230
49	Integration of Light and Photoperiodic Signaling in Transcriptional Nuclear Foci. Developmental Cell, 2015, 35, 311-321.	7.0	72
50	An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature, 2015, 517, 571-575.	27.8	636
51	Control of plant stem cell function by conserved interacting transcriptional regulators. Nature, 2015, 517, 377-380.	27.8	224
52	Daily Changes in Temperature, Not the Circadian Clock, Regulate Growth Rate in Brachypodium distachyon. PLoS ONE, 2014, 9, e100072.	2.5	47
53	Nitrate foraging by <i>Arabidopsis</i> roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15267-15272.	7.1	202
54	Spatiotemporal separation of PER and CRY posttranslational regulation in the mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2040-2045.	7.1	55

#	Article	IF	CITATIONS
55	Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature, 2014, 515, 419-422.	27.8	276
56	HsfB2b-mediated repression of <i>PRR7</i> directs abiotic stress responses of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16172-16177.	7.1	96
57	FBH1 affects warm temperature responses in the <i>Arabidopsis</i> circadian clock. Proceedings of the United States of America, 2014, 111, 14595-14600.	7.1	36
58	A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors. Cell Reports, 2014, 8, 622-632.	6.4	164
59	Transcriptional Regulation of LUX by CBF1 Mediates Cold Input to the Circadian Clock in Arabidopsis. Current Biology, 2014, 24, 1518-1524.	3.9	79
60	Global approaches for telling time: Omics and the Arabidopsis circadian clock. Seminars in Cell and Developmental Biology, 2013, 24, 383-392.	5.0	47
61	BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in <i>Arabidopsis</i> ÂÂÂ. Plant Cell, 2013, 25, 1228-1242.	6.6	189
62	Real-time in vivo monitoring of circadian E-box enhancer activity: A robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock. Developmental Biology, 2013, 380, 259-273.	2.0	48
63	ELF3 recruitment to the <i>PRR9</i> promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant Signaling and Behavior, 2012, 7, 170-173.	2.4	102
64	Cell-autonomous hepatic circadian clock regulates polyamine synthesis. Cell Cycle, 2012, 11, 422-423.	2.6	1
65	<i>CIRCADIAN CLOCK-ASSOCIATED 1</i> regulates ROS homeostasis and oxidative stress responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17129-17134.	7.1	336
66	Linking photoreceptor excitation to changes in plant architecture. Genes and Development, 2012, 26, 785-790.	5.9	460
67	Circadian Surprise—lt's Not All About Transcription. Science, 2012, 338, 338-340.	12.6	11
68	<i>Arabidopsis</i> circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3167-3172.	7.1	436
69	Complexity in the Wiring and Regulation of Plant Circadian Networks. Current Biology, 2012, 22, R648-R657.	3.9	246
70	Gene Transfer in Leptolyngbya sp. Strain BL0902, a Cyanobacterium Suitable for Production of Biomass and Bioproducts. PLoS ONE, 2012, 7, e30901.	2.5	59
71	Identification of Small Molecule Activators of Cryptochrome. Science, 2012, 337, 1094-1097.	12.6	408
72	The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475, 398-402.	27.8	736

#	Article	IF	CITATIONS
73	GIGANTEA directly activates <i>Flowering Locus T</i> in <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2011, 108, 11698-11703.	7.1	267
74	Enhanced Y1H assays for Arabidopsis. Nature Methods, 2011, 8, 1053-1055.	19.0	115
75	Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved Circadian-Controlled Pathways and cis-Regulatory Modules. PLoS ONE, 2011, 6, e16907.	2.5	188
76	Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabidopsis. Plant Journal, 2011, 65, 991-1000.	5.7	74
77	LUX ARRHYTHMO Encodes a Nighttime Repressor of Circadian Gene Expression in the Arabidopsis Core Clock. Current Biology, 2011, 21, 126-133.	3.9	327
78	A Small Molecule Modulates Circadian Rhythms through Phosphorylation of the Period Protein. Angewandte Chemie - International Edition, 2011, 50, 10608-10611.	13.8	55
79	Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18560-18565.	7.1	37
80	Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Medicine, 2010, 16, 1152-1156.	30.7	465
81	Clocks not winding down: unravelling circadian networks. Nature Reviews Molecular Cell Biology, 2010, 11, 764-776.	37.0	394
82	F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control <i>Arabidopsis</i> Clock Progression Â. Plant Cell, 2010, 22, 606-622.	6.6	220
83	Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker. PLoS Biology, 2010, 8, e1000513.	5.6	172
84	High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIα as a Clock Regulatory Kinase. PLoS Biology, 2010, 8, e1000559.	5.6	216
85	Climate Change and the Integrity of Science. Science, 2010, 328, 689-690.	12.6	143
86	An expanding universe of circadian networks in higher plants. Trends in Plant Science, 2010, 15, 259-265.	8.8	161
87	Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annual Review of Physiology, 2010, 72, 551-577.	13.1	1,056
88	Circadian Control of Global Gene Expression Patterns. Annual Review of Genetics, 2010, 44, 419-444.	7.6	274
89	Ultra-High Throughput Screening (uHTS) Chemical Genetics to Identify Novel Chronotherapeutics. , 2010, , 167-175.		0
90	A model of the cell-autonomous mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11107-11112.	7.1	183

#	Article	IF	CITATIONS
91	HSP90, a Capacitor of Behavioral Variation. Journal of Biological Rhythms, 2009, 24, 183-192.	2.6	20
92	High-Throughput Screening and Chemical Biology: New Approaches for Understanding Circadian Clock Mechanisms. Chemistry and Biology, 2009, 16, 921-927.	6.0	41
93	Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways Â. Plant Physiology, 2009, 150, 858-878.	4.8	75
94	A Genome-wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells. Cell, 2009, 139, 199-210.	28.9	437
95	A Functional Genomics Approach Reveals CHE as a Component of the <i>Arabidopsis</i> Circadian Clock. Science, 2009, 323, 1481-1485.	12.6	398
96	Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biology, 2009, 10, R17.	9.6	103
97	A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2097-2103.	7.1	200
98	Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 2008, 9, R130.	9.6	677
99	SnapShot: Circadian Clock Proteins. Cell, 2008, 135, 368-368.e1.	28.9	24
100	Photoperiodic flowering occurs under internal and external coincidence. Plant Signaling and Behavior, 2008, 3, 269-271.	2.4	26
101	A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20746-20751.	7.1	273
102	Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules. PLoS Genetics, 2008, 4, e14.	3.5	474
103	A Morning-Specific Phytohormone Gene Expression Program underlying Rhythmic Plant Growth. PLoS Biology, 2008, 6, e225.	5.6	197
104	Redundant Function of REV-ERBα and β and Non-Essential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms. PLoS Genetics, 2008, 4, e1000023.	3.5	347
105	Clock Control Over Plant Gene Expression. Advances in Botanical Research, 2008, 48, 69-105.	1.1	3
106	Circadian Transcriptional Output in the SCN and Liver of the Mouse. Novartis Foundation Symposium, 2008, , 171-183.	1.1	35
107	Circadian Light Input in Plants, Flies and Mammals. Novartis Foundation Symposium, 2008, , 73-88.	1.1	17
108	PRR3 Is a Vascular Regulator of TOC1 Stability in the <i>Arabidopsis</i> Circadian Clock. Plant Cell, 2007, 19, 3462-3473.	6.6	192

#	Article	IF	CITATIONS
109	Genome-wide patterns of single-feature polymorphism in <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2007, 104, 12057-12062.	7.1	157
110	Impaired clock output by altered connectivity in the circadian network. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5650-5655.	7.1	51
111	In SYNC: The Ins and Outs of Circadian Oscillations in Calcium. Science Signaling, 2007, 2007, pe32.	3.6	10
112	Circadian Transcription Depends on Limiting Amounts of the Transcription Co-activator nejire/CBP. Journal of Biological Chemistry, 2007, 282, 31349-31357.	3.4	48
113	Daily Watch on Metabolism. Science, 2007, 318, 1730-1731.	12.6	18
114	Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network. Cell, 2007, 129, 605-616.	28.9	676
115	The Diurnal Project: Diurnal and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 353-363.	1.1	358
116	FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in <i>Arabidopsis</i> . Science, 2007, 318, 261-265.	12.6	744
117	Time for growth. Nature, 2007, 448, 265-266.	27.8	11
118	Mammalian circadian signaling networks and therapeutic targets. Nature Chemical Biology, 2007, 3, 630-639.	8.0	162
119	PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. Plant Journal, 2007, 52, 548-560.	5.7	83
120	Circadian rhythms lit up in Chlamydomonas. Genome Biology, 2006, 7, 215.	9.6	13
121	Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science, 2006, 11, 550-558.	8.8	379
122	Second messenger and Ras/MAPK signalling pathways regulate CLOCK/CYCLE-dependent transcription. Journal of Neurochemistry, 2006, 98, 248-257.	3.9	49
123	Feedback repression is required for mammalian circadian clock function. Nature Genetics, 2006, 38, 312-319.	21.4	344
124	A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Molecular Systems Biology, 2006, 2, 58.	7.2	213
125	A Constitutive Shade-Avoidance Mutant Implicates TIR-NBS-LRR Proteins in Arabidopsis Photomorphogenic Development. Plant Cell, 2006, 18, 2919-2928.	6.6	89
126	Arabidopsis FHY3 Specifically Gates Phytochrome Signaling to the Circadian Clock. Plant Cell, 2006, 18, 2506-2516.	6.6	79

Steve A Kay

#	Article	IF	CITATIONS
127	Bioluminescence imaging in living organisms. Current Opinion in Biotechnology, 2005, 16, 73-78.	6.6	159
128	Overlapping and Distinct Roles of PRR7 and PRR9 in the Arabidopsis Circadian Clock. Current Biology, 2005, 15, 47-54.	3.9	408
129	LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10387-10392.	7.1	381
130	Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in Arabidopsis. Plant Cell, 2005, 17, 1926-1940.	6.6	184
131	Rapid Array Mapping of Circadian Clock and Developmental Mutations in Arabidopsis. Plant Physiology, 2005, 138, 990-997.	4.8	85
132	Real-Time Reporting of Circadian-Regulated Gene Expression by Luciferase Imaging in Plants and Mammalian Cells. Methods in Enzymology, 2005, 393, 269-288.	1.0	79
133	FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science, 2005, 309, 293-297.	12.6	640
134	Universality and flexibility in gene expression from bacteria to human. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3765-3769.	7.1	139
135	Bioluminescence Imaging of Individual Fibroblasts Reveals Persistent, Independently Phased Circadian Rhythms of Clock Gene Expression. Current Biology, 2004, 14, 2289-2295.	3.9	614
136	A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock. Neuron, 2004, 43, 527-537.	8.1	909
137	The F Box Protein AFR Is a Positive Regulator of Phytochrome A-Mediated Light Signaling. Current Biology, 2003, 13, 2091-2096.	3.9	67
138	FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 2003, 426, 302-306.	27.8	541
139	Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 2003, 426, 567-570.	27.8	541
140	Living by the calendar: how plants know when to flower. Nature Reviews Molecular Cell Biology, 2003, 4, 265-276.	37.0	287
141	Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice. Science, 2003, 301, 525-527.	12.6	635
142	Circadian Clocks in Daily and Seasonal Control of Development. Science, 2003, 301, 326-328.	12.6	98
143	A PERIOD inhibitor buffer introduces a delay mechanism for CLK/CYC-activated transcription. FEBS Letters, 2003, 555, 341-345.	2.8	17
144	Gene arrays are not just for measuring gene expression. Trends in Plant Science, 2003, 8, 413-416.	8.8	47

#	Article	IF	CITATIONS
145	Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3380-3385.	7.1	222
146	Dual Role of TOC1 in the Control of Circadian and Photomorphogenic Responses in Arabidopsis[W]. Plant Cell, 2003, 15, 223-236.	6.6	250
147	A Genomic Analysis of the Shade Avoidance Response in Arabidopsis Â. Plant Physiology, 2003, 133, 1617-1629.	4.8	243
148	DNA Arrays: Applications and Implications for Circadian Biology. Journal of Biological Rhythms, 2003, 18, 96-105.	2.6	31
149	HY5, Circadian Clock-Associated 1, and a cis-Element, DET1 Dark Response Element, Mediate DET1 Regulation of Chlorophyll a/b-Binding Protein 2 Expression. Plant Physiology, 2003, 133, 1565-1577.	4.8	52
150	PAS Proteins in the Mammalian Circadian Clock. , 2003, , 231-252.		0
151	Circadian transcriptional output in the SCN and liver of the mouse. Novartis Foundation Symposium, 2003, 253, 171-80; discussion 52-5, 102-9, 180-3 passim.	1.1	22
152	Melanopsin (<i>Opn4</i>) Requirement for Normal Light-Induced Circadian Phase Shifting. Science, 2002, 298, 2213-2216.	12.6	768
153	A P Element with a Novel Fusion of Reporters Identifies regular, a C2H2 Zinc-Finger Gene Downstream of the Circadian Clock. Molecular and Cellular Neurosciences, 2002, 19, 501-514.	2.2	5
154	Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock. Cell, 2002, 109, 307-320.	28.9	2,099
155	tej Defines a Role for Poly(ADP-Ribosyl)ation in Establishing Period Length of the Arabidopsis Circadian Oscillator. Developmental Cell, 2002, 3, 51-61.	7.0	109
156	Genome-Wide Expression Analysis in <i>Drosophila</i> Reveals Genes Controlling Circadian Behavior. Journal of Neuroscience, 2002, 22, 9305-9319.	3.6	329
157	Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in Arabidopsis. Current Biology, 2002, 12, 757-761.	3.9	275
158	Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002, 419, 308-312.	27.8	616
159	Circadian rhythms from flies to human. Nature, 2002, 417, 329-335.	27.8	860
160	Divergent perspectives on GM food. Nature Biotechnology, 2002, 20, 1195-1196.	17.5	11
161	Circadian Photoperception. Annual Review of Physiology, 2001, 63, 677-694.	13.1	169
162	Reciprocal Regulation Between TOC1 and LHY/CCA1 Within the Arabidopsis Circadian Clock. Science, 2001, 293, 880-883.	12.6	1,026

#	Article	IF	CITATIONS
163	Molecular Bases of Circadian Rhythms. Annual Review of Cell and Developmental Biology, 2001, 17, 215-253.	9.4	344
164	A Comparison of the Celera and Ensembl Predicted Gene Sets Reveals Little Overlap in Novel Genes. Cell, 2001, 106, 413-415.	28.9	185
165	ELF3 Modulates Resetting of the Circadian Clock in Arabidopsis. Plant Cell, 2001, 13, 1305-1316.	6.6	280
166	Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant Journal, 2001, 26, 15-22.	5.7	217
167	Regulation of the cycling oftimeless (tim) RNA. Journal of Neurobiology, 2001, 47, 161-175.	3.6	32
168	Time zones: a comparative genetics of circadian clocks. Nature Reviews Genetics, 2001, 2, 702-715.	16.3	1,036
169	Signaling networks in the plant circadian system. Current Opinion in Plant Biology, 2001, 4, 429-435.	7.1	54
170	A Role for LKP2 in the Circadian Clock of Arabidopsis. Plant Cell, 2001, 13, 2659.	6.6	1
171	A Role for LKP2 in the Circadian Clock of Arabidopsis. Plant Cell, 2001, 13, 2659-2670.	6.6	225
172	ELF3 Modulates Resetting of the Circadian Clock in Arabidopsis. Plant Cell, 2001, 13, 1305.	6.6	4
173	A Role for LKP2 in the Circadian Clock of Arabidopsis. Plant Cell, 2001, 13, 2659-2670.	6.6	134
174	ELF3 Modulates Resetting of the Circadian Clock in Arabidopsis. Plant Cell, 2001, 13, 1305-1316.	6.6	265
175	Circadian rhythm genetics: from flies to mice to humans. Nature Genetics, 2000, 26, 23-27.	21.4	220
176	Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000, 408, 207-211.	27.8	433
177	Specific Sequences Outside the E-box Are Required for Proper <i>per</i> Expression and Behavioral Rescue. Journal of Biological Rhythms, 2000, 15, 472-482.	2.6	28
178	Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity. Plant Cell, 2000, 12, 2499.	6.6	11
179	Fluorescent Differential Display Identifies Circadian Clock-Regulated Genes in Arabidopsis thaliana. Journal of Biological Rhythms, 2000, 15, 208-217.	2.6	21
180	The <i>period</i> E-box Is Sufficient to Drive Circadian Oscillation of Transcription In Vivo. Journal of Biological Rhythms, 2000, 15, 462-470.	2.6	42

#	Article	IF	CITATIONS
181	Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity. Plant Cell, 2000, 12, 2499-2509.	6.6	315
182	Time Flies for Drosophila. Cell, 2000, 100, 297-300.	28.9	66
183	ZEITLUPE Encodes a Novel Clock-Associated PAS Protein from Arabidopsis. Cell, 2000, 101, 319-329.	28.9	618
184	PLANT BIOLOGY:Flower Arranging in Arabidopsis. Science, 2000, 288, 1600-1602.	12.6	22
185	Cloning of the Arabidopsis Clock Gene TOC1, an Autoregulatory Response Regulator Homolog. Science, 2000, 289, 768-771.	12.6	772
186	Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science, 2000, 290, 2110-2113.	12.6	1,539
187	Light-dependent Translocation of a Phytochrome B-GFP Fusion Protein to the Nucleus in Transgenic Arabidopsis. Journal of Cell Biology, 1999, 145, 437-445.	5.2	359
188	Cryptochromes – bringing the blues to circadian rhythms. Trends in Cell Biology, 1999, 9, 295-298.	7.9	34
189	Blues news. Trends in Cell Biology, 1999, 9, 384.	7.9	0
190	The ins and outs of circadian regulated gene expression. Current Opinion in Plant Biology, 1999, 2, 114-120.	7.1	29
191	Light-Dependent Sequestration of TIMELESS by CRYPTOCHROME. Science, 1999, 285, 553-556.	12.6	535
192	Control of Circadian Rhythms and Photoperiodic Flowering by the Arabidopsis GIGANTEA Gene. Science, 1999, 285, 1579-1582.	12.6	565
193	COP1 and HY5 interact to mediate light-induced gene expression. BioEssays, 1998, 20, 445-448.	2.5	7
194	The cryb Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila. Cell, 1998, 95, 681-692.	28.9	927
195	Closing the Circadian Loop: CLOCK-Induced Transcription of Its Own Inhibitors per and tim. Science, 1998, 280, 1599-1603.	12.6	784
196	Phytochromes and Cryptochromes in the Entrainment of the Arabidopsis Circadian Clock. , 1998, 282, 1488-1490.		714
197	An Arabidopsis Mutant Hypersensitive to Red and Far-Red Light Signals. Plant Cell, 1998, 10, 889-904.	6.6	103
198	Chapter 17: Synchronous Real-Time Reporting of Multiple Cellular Events. Methods in Cell Biology, 1998, 58, 283-291.	1.1	2

#	Article	IF	CITATIONS
199	Photoactive yellow protein: A structural prototype for the three-dimensional fold of the PAS domain superfamily. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5884-5890.	7.1	237
200	An Arabidopsis Mutant Hypersensitive to Red and Far-Red Light Signals. Plant Cell, 1998, 10, 889.	6.6	4
201	Attenuation of Phytochrome A and B Signaling Pathways by the Arabidopsis Circadian Clock. Plant Cell, 1997, 9, 1727.	6.6	0
202	Quantitative Analysis of Drosophila period Gene Transcription in Living Animals. Journal of Biological Rhythms, 1997, 12, 204-217.	2.6	364
203	<title>Fluorescence resonance energy transfer (FRET) imaging of a single living cell using green
fluorescent protein</title> . , 1997, , .		4
204	1. Phototransduction and Circadian Clock Pathways Regulating Gene Transcription in Higher Plants. Advances in Genetics, 1997, 35, 1-34.	1.8	12
205	PAS, Present, and Future: Clues to the Origins of Circadian Clocks. Science, 1997, 276, 753-754.	12.6	66
206	Independent Photoreceptive Circadian Clocks ThroughoutDrosophila. Science, 1997, 278, 1632-1635.	12.6	601
207	Reporter gene expression for monitoring gene transfer. Current Opinion in Biotechnology, 1997, 8, 617-622.	6.6	109
208	Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures. Current Biology, 1997, 7, 758-766.	3.9	44
209	Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO Journal, 1997, 16, 5006-5018.	7.8	146
210	Phytochrome-induced intercellular signalling activates cab::luciferase gene expression. Plant Journal, 1997, 12, 839-849.	5.7	31
211	The genetics of phototransduction and circadian rhythms in arabidopsis. BioEssays, 1997, 19, 209-214.	2.5	28
212	Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene, 1996, 173, 83-87.	2.2	108
213	Novel Features of Drosophila period Transcription Revealed by Real-Time Luciferase Reporting. Neuron, 1996, 16, 687-692.	8.1	171
214	Illuminating the mechanism of the circadian clock in plants. Trends in Plant Science, 1996, 1, 51-57.	8.8	34
215	Conditional Circadian Dysfunction of the Arabidopsis early-flowering 3 Mutant. Science, 1996, 274, 790-792.	12.6	393
216	Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15491-15496.	7.1	258

#	Article	IF	CITATIONS
217	Mechanisms of Input and Output in Circadian Transduction Pathways. Plant Gene Research, 1996, , 231-247.	0.4	2
218	The GATA-binding protein CGF-1 is closely related to GT-1. Plant Molecular Biology, 1995, 29, 1253-1266.	3.9	31
219	The regulation of circadian period by phototransduction pathways in Arabidopsis. Science, 1995, 267, 1163-1166.	12.6	285
220	Multiple DNA: Protein Complexes at a Circadian-Regulated Promoter Element. Plant Cell, 1995, 7, 2039.	6.6	48
221	Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science, 1995, 267, 1161-1163.	12.6	595
222	New models in vogue for circadian clocks. Cell, 1995, 83, 361-364.	28.9	48
223	Circadian clock- and phytochrome-regulated transcription is conferred by a 78 bp cis-acting domain of the Arabidopsis CAB2 promoter. Plant Journal, 1994, 6, 457-470.	5.7	136
224	Shedding light on clock controlled cab gene transcription in higher plants. Seminars in Cell Biology, 1993, 4, 81-86.	3.4	24
225	Characterization of a Gene Encoding a DNA Binding Protein with Specificity for a Light-Responsive Element. Plant Cell, 1992, 4, 839.	6.6	0
226	Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Molecular Biology Reporter, 1992, 10, 324-337.	1.8	127
227	Analysis of protein/DNA interactions. , 1992, , 378-392.		13
228	A Novel Circadian Phenotype Based on Firefly Luciferase Expression in Transgenic Plants. Plant Cell, 1992, 4, 1075.	6.6	105
229	Circadian Control of cab Gene Transcription and mRNA Accumulation in Arabidopsis. Plant Cell, 1991, 3, 541.	6.6	67
230	The sequence of the rice phytochrome gene. Nucleic Acids Research, 1989, 17, 2865-2866.	14.5	125
231	The Rice Phytochrome Gene: Structure, Autoregulated Expression, and Binding of GT-1 to a Conserved Site in the 5' Upstream Region. Plant Cell, 1989, 1, 351.	6.6	74
232	Rice Phytochrome Is Biologically Active in Transgenic Tobacco. Plant Cell, 1989, 1, 775.	6.6	22
233	Analysis of gene expression in transgenic plants. , 1989, , 271-299.		23
234	Gene regulation by phytochrome. Trends in Genetics, 1988, 4, 37-42.	6.7	129

#	Article	IF	CITATIONS
235	Regulatory Circuits of Light-Responsive Genes. Plant Gene Research, 1988, , 131-153.	0.4	5
236	Phytochrome-controlled expression of a wheat Cab gene in transgenic tobacco seedlings. EMBO Journal, 1986, 5, 1119-1124.	7.8	77
237	The presence and photoregulation of protochlorophyllide reductase in green tissues. Plant Molecular Biology, 1985, 4, 13-22.	3.9	37
238	Light-Induced Breakdown of NADPH-Protochlorophyllide Oxidoreductase In Vitro. Plant Physiology, 1983, 72, 229-236.	4.8	83
239	The Plant Circadian Clock: Review of a Clockwork Arabidopsis. , 0, , 1-23.		3