Scott A Hodges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2586886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-pollinator selection for a floral homeotic mutant conferring loss of nectar reward in Aquilegia coerulea. Current Biology, 2022, 32, 1332-1341.e5.	3.9	9
2	Landscape Genomics to Enable Conservation Actions: The California Conservation Genomics Project. Journal of Heredity, 2022, 113, 577-588.	2.4	59
3	Genetic architecture underlying variation in floral meristem termination in <i>Aquilegia</i> . Journal of Experimental Botany, 2022, 73, 6241-6254.	4.8	1
4	Genetic architecture of floral traits in bee―and hummingbirdâ€pollinated sister species of <i>Aquilegia</i> (columbine). Evolution; International Journal of Organic Evolution, 2021, 75, 2197-2216.	2.3	14
5	<i>POPOVICH</i> , encoding a C2H2 zinc-finger transcription factor, plays a central role in the development of a key innovation, floral nectar spurs, in <i>Aquilegia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22552-22560.	7.1	35
6	Semiaquilegia danxiashanensis (Ranunculaceae), a new species from Danxia Shan in Guangdong, southern China. Phytotaxa, 2019, 405, 1.	0.3	3
7	Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development. BMC Genomics, 2019, 20, 668.	2.8	18
8	The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. ELife, 2018, 7, .	6.0	120
9	Genetic variation among mainland and island populations of a native perennial grass used in restoration. AoB PLANTS, 2014, 6, .	2.3	6
10	Understanding the development and evolution of novel floral form in Aquilegia. Current Opinion in Plant Biology, 2014, 17, 22-27.	7.1	30
11	Gene flow between nascent species: geographic, genotypic and phenotypic differentiation within and between <i>Aquilegia formosa</i> and <i>A.Âpubescens</i> . Molecular Ecology, 2014, 23, 5589-5598.	3.9	12
12	Spatiotemporal reconstruction of the <i>Aquilegia</i> rapid radiation through nextâ€generation sequencing of rapidly evolving cp <scp>DNA</scp> regions. New Phytologist, 2013, 198, 579-592.	7.3	86
13	Disruption of the petal identity gene <i>APETALA3-3</i> is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5074-5079.	7.1	88
14	Evolution of spur-length diversity in <i>Aquilegia</i> petals is achieved solely through cell-shape anisotropy. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1640-1645.	2.6	76
15	Genomic tools development for Aquilegia: construction of a BAC-based physical map. BMC Genomics, 2010, 11, 621.	2.8	13
16	Genetic Variation at Nuclear Loci Fails to Distinguish Two Morphologically Distinct Species of Aquilegia. PLoS ONE, 2010, 5, e8655.	2.5	23
17	<i>Aquilegia</i> as a model system for the evolution and ecology of petals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 477-490.	4.0	77
18	Early Inbreeding Depression Selects for High Outcrossing Rates in <i>Aquilegia formosa</i> and <i>Aquilegia pubescens</i> . International Journal of Plant Sciences, 2010, 171, 860-871.	1.3	14

SCOTT A HODGES

#	Article	IF	CITATIONS
19	Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis. PLoS ONE, 2010, 5, e9735.	2.5	26
20	Adaptive radiations: From field to genomic studies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9947-9954.	7.1	64
21	Floral evolution: One-sided evolution or two? A reply to Ennos. Heredity, 2008, 100, 541-542.	2.6	6
22	Are we there yet? Tracking the development of new model systems. Trends in Genetics, 2008, 24, 353-360.	6.7	109
23	Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature, 2007, 447, 706-709.	27.8	558
24	Columbines. Current Biology, 2007, 17, R992-R994.	3.9	9
25	Convergence, constraint and the role of gene expression during adaptive radiation: floral anthocyanins in Aquilegia. Molecular Ecology, 2006, 15, 4645-4657.	3.9	119
26	Generating single-copy nuclear gene data for a recent adaptive radiation. Molecular Phylogenetics and Evolution, 2006, 39, 124-134.	2.7	56
27	A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evolutionary Biology, 2006, 6, 36.	3.2	291
28	Cross-species amplification of microsatellite loci in Aquilegia and Semiaquilegia (Ranunculaceae). Molecular Ecology Notes, 2005, 5, 317-320.	1.7	14
29	Floral Ontogeny of Aquilegia, Semiaquilegia, and Enemion (Ranunculaceae). International Journal of Plant Sciences, 2005, 166, 557-574.	1.3	78
30	Cryptic species in an endangered pondweed community (<i>Potamogeton</i> , Potamogetonaceae) revealed by AFLP markers. American Journal of Botany, 2004, 91, 2022-2029.	1.7	57
31	Evidence for mycorrhizal races in a cheating orchid. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 35-43.	2.6	95
32	Verne Grant and evolutionary studies of Aquilegia. New Phytologist, 2004, 161, 113-120.	7.3	90
33	Divergence in mycorrhizal specialization within <i>Hexalectris spicata</i> (Orchidaceae), a nonphotosynthetic desert orchid. American Journal of Botany, 2003, 90, 1168-1179.	1.7	141
34	Genetics of Floral Traits Influencing Reproductive Isolation betweenAquilegia formosaandAquilegia pubescens. American Naturalist, 2002, 159, S51-S60.	2.1	129
35	Genetics of Floral Traits Influencing Reproductive Isolation between Aquilegia formosa and Aquilegia pubescens. American Naturalist, 2002, 159, S51.	2.1	0
36	The extent of clonality and genetic diversity in the Santa Cruz Island ironwood, Lyonothamnus floribundus. Molecular Ecology, 1999, 8, 471-475.	3.9	25

SCOTT A HODGES

#	Article	IF	CITATIONS
37	Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2247-2252.	2.6	226
38	Sugar Composition of Nectars and Fruits Consumed by Birds and Bats in the Tropics and Subtropics1. Biotropica, 1998, 30, 559-586.	1.6	280
39	Floral Nectar Spurs and Diversification. International Journal of Plant Sciences, 1997, 158, S81-S88.	1.3	165
40	Effects of Differential Pollen-Tube Growth on Hybridization in the Louisiana Irises. Evolution; International Journal of Organic Evolution, 1996, 50, 1871.	2.3	30
41	EFFECTS OF DIFFERENTIAL POLLENâ€TUBE GROWTH ON HYBRIDIZATION IN THE LOUISIANA IRISES. Evolution; International Journal of Organic Evolution, 1996, 50, 1871-1878.	2.3	92
42	POLLENâ€TUBE COMPETITION, SIRING SUCCESS, AND CONSISTENT ASYMMETRIC HYBRIDIZATION IN LOUISIANA IRISES. Evolution; International Journal of Organic Evolution, 1996, 50, 2201-2206.	2.3	66
43	NATURAL FORMATION OF IRIS HYBRIDS: EXPERIMENTAL EVIDENCE ON THE ESTABLISHMENT OF HYBRID ZONES. Evolution; International Journal of Organic Evolution, 1996, 50, 2504-2509.	2.3	50
44	Pollen-Tube Competition, Siring Success, and Consistent Asymmetric Hybridization in Louisiana Irises. Evolution; International Journal of Organic Evolution, 1996, 50, 2201.	2.3	23
45	Natural Formation of Iris Hybrids: Experimental Evidence on the Establishment of Hybrid Zones. Evolution; International Journal of Organic Evolution, 1996, 50, 2504.	2.3	23
46	T he influence of nectar production on hawkmoth behavior, self pollination, and seed production in M irabilis multiflora (N yctaginaceae). American Journal of Botany, 1995, 82, 197-204.	1.7	130
47	Reply from M.L. Arnold and S.A. Hodges. Trends in Ecology and Evolution, 1995, 10, 289.	8.7	4
48	Are natural hybrids fit or unfit relative to their parents?. Trends in Ecology and Evolution, 1995, 10, 67-71.	8.7	539
49	The Influence of Nectar Production on Hawkmoth Behavior, Self Pollination, and Seed Production in Mirabilis multiflora (Nyctaginaceae). American Journal of Botany, 1995, 82, 197.	1.7	68
50	Columbines: a geographically widespread species flock Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5129-5132.	7.1	180
51	Floral and ecological isolation between Aquilegia formosa and Aquilegia pubescens Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2493-2496.	7.1	130
52	Consistent Interplant Variation in Nectar Characteristics of Mirabilis Multiflora. Ecology, 1993, 74, 542-548.	3.2	33