Philipp Vecera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2585887/publications.pdf Version: 2024-02-01

Риннор Veceda

#	Article	IF	CITATIONS
1	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	12.8	921
2	Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angewandte Chemie - International Edition, 2014, 53, 7720-7738.	13.8	741
3	Covalent bulk functionalization of graphene. Nature Chemistry, 2011, 3, 279-286.	13.6	596
4	Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 2017, 46, 4464-4500.	38.1	356
5	Fewâ€Layer Antimonene by Liquidâ€Phase Exfoliation. Angewandte Chemie - International Edition, 2016, 55, 14345-14349.	13.8	346
6	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
7	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano, 2015, 9, 6018-6030.	14.6	293
8	Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus. Journal of the American Chemical Society, 2017, 139, 10432-10440.	13.7	232
9	Wet Chemical Functionalization of Graphene. Accounts of Chemical Research, 2013, 46, 87-96.	15.6	221
10	Noncovalent Functionalization of Black Phosphorus. Angewandte Chemie - International Edition, 2016, 55, 14557-14562.	13.8	199
11	Postâ€Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization. Angewandte Chemie - International Edition, 2018, 57, 4338-4354.	13.8	193
12	Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano, 2013, 7, 5472-5482.	14.6	143
13	Increasing the Fill Factor of Inverted P3HT:PCBM Solar Cells Through Surface Modification of Alâ€Doped ZnO via Phosphonic Acidâ€Anchored C60 SAMs. Advanced Energy Materials, 2012, 2, 532-535.	19.5	116
14	Graphene oxide: a stable carbon framework for functionalization. Journal of Materials Chemistry A, 2013, 1, 11559.	10.3	114
15	On the Way to Graphane—Pronounced Fluorescence of Polyhydrogenated Graphene. Angewandte Chemie - International Edition, 2013, 52, 754-757.	13.8	108
16	Covalent Sidewall Functionalization of SWNTs by Nucleophilic Addition of Lithium Amides. European Journal of Organic Chemistry, 2008, 2008, 2544-2550.	2.4	95
17	Statistical Raman Microscopy and Atomic Force Microscopy on Heterogeneous Graphene Obtained after Reduction of Graphene Oxide. Journal of Physical Chemistry C, 2014, 118, 7698-7704.	3.1	95
18	Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes. ACS Macro Letters, 2012, 1, 815-819.	4.8	91

#	Article	IF	CITATIONS
19	A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells. Energy and Environmental Science, 2019, 12, 1078-1087.	30.8	89
20	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie - International Edition, 2017, 56, 14389-14394.	13.8	83
21	Carbon Nanodots: Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides. Angewandte Chemie - International Edition, 2015, 54, 8292-8297.	13.8	80
22	Revealing Hidden UV Instabilities in Organic Solar Cells by Correlating Device and Material Stability. Advanced Energy Materials, 2019, 9, 1902124.	19.5	74
23	Direct Covalent Coupling of Porphyrins to Graphene. Journal of the American Chemical Society, 2017, 139, 11760-11765.	13.7	72
24	New Basic Insight into Reductive Functionalization Sequences of Single Walled Carbon Nanotubes (SWCNTs). Journal of the American Chemical Society, 2013, 135, 18385-18395.	13.7	71
25	Noncovalent Functionalization of Black Phosphorus. Angewandte Chemie, 2016, 128, 14777-14782.	2.0	71
26	Lowâ€Temperature and Hysteresisâ€Free Electronâ€Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501056.	19.5	69
27	Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie - International Edition, 2017, 56, 15267-15273.	13.8	69
28	Functionalization of graphene by electrophilic alkylation of reduced graphite. Chemical Communications, 2012, 48, 5025.	4.1	68
29	A General Approach To Study the Thermodynamics of Ligand Adsorption to Colloidal Surfaces Demonstrated by Means of Catechols Binding to Zinc Oxide Quantum Dots. Chemistry of Materials, 2015, 27, 358-369.	6.7	64
30	Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters. Nature Communications, 2019, 10, 509.	12.8	61
31	Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus. Angewandte Chemie - International Edition, 2019, 58, 5763-5768.	13.8	60
32	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	3.7	57
33	Mono―and Ditopic Bisfunctionalization of Graphene. Angewandte Chemie - International Edition, 2016, 55, 5861-5864.	13.8	56
34	Unifying Principles of the Reductive Covalent Graphene Functionalization. Journal of the American Chemical Society, 2017, 139, 5175-5182.	13.7	54
35	Chiral Waterâ€Soluble Perylenediimides. European Journal of Organic Chemistry, 2009, 2009, 5337-5349.	2.4	53
36	Solvent-driven electron trapping and mass transport in reduced graphites to access perfect graphene. Nature Communications, 2016, 7, 12411.	12.8	53

3

#	Article	IF	CITATIONS
37	Novel λ ³ â€lodaneâ€Based Functionalization of Synthetic Carbon Allotropes (SCAs)—Common Concepts and Quantification of the Degree of Addition. Chemistry - A European Journal, 2014, 20, 16644-16651.	3.3	52
38	From White to Red: Electricâ€Field Dependent Chromaticity of Lightâ€Emitting Electrochemical Cells based on Archetypal Porphyrins. Advanced Functional Materials, 2016, 26, 6737-6750.	14.9	49
39	Reductive Retrofunctionalization of Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2010, 49, 3322-3325.	13.8	46
40	Basic Insights into Tunable Graphene Hydrogenation. Journal of the American Chemical Society, 2016, 138, 1647-1652.	13.7	45
41	Degree of functionalisation dependence of individual Raman intensities in covalent graphene derivatives. Scientific Reports, 2017, 7, 45165.	3.3	44
42	Atomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers. Chemical Communications, 2015, 51, 16553-16556.	4.1	39
43	Fundamental Insights into the Reductive Covalent Cross-Linking of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2018, 140, 3352-3360.	13.7	38
44	Highly Efficient and Reversible Covalent Patterning of Graphene: 2Dâ€Management of Chemical Information. Angewandte Chemie - International Edition, 2020, 59, 5602-5606.	13.8	36
45	Mechanical cleaning of graphene using in situ electron microscopy. Nature Communications, 2020, 11, 1743.	12.8	36
46	Dynamic Covalent Formation of Concave Disulfide Macrocycles Mechanically Interlocked with Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2020, 59, 18774-18785.	13.8	35
47	A Novel Diameterâ€Selective Functionalization of SWCNTs with Lithium Alkynylides. European Journal of Organic Chemistry, 2010, 2010, 1494-1501.	2.4	34
48	Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. Advanced Materials, 2021, 33, e2104060.	21.0	34
49	Highly Regioselective Alkylation of Hexabenzocoronenes: Fundamental Insights into the Covalent Chemistry of Graphene. Angewandte Chemie - International Edition, 2017, 56, 12184-12190.	13.8	31
50	Functionalization of fullerenes and carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3209-3212.	1.5	30
51	Screening of the chemical reactivity of three different graphite sources using the formation of reductively alkylated graphene as a model reaction. Chemical Communications, 2013, 49, 10811.	4.1	30
52	Reductive arylation of graphene: Insights into a reversible carbon allotrope functionalization reaction. Physica Status Solidi (B): Basic Research, 2014, 251, 2536-2540.	1.5	28
53	Monolayer black phosphorus by sequential wet-chemical surface oxidation. RSC Advances, 2019, 9, 3570-3576.	3.6	28
54	Substrate-Modulated Reductive Graphene Functionalization. Angewandte Chemie - International Edition, 2016, 55, 14858-14862.	13.8	26

#	Article	IF	CITATIONS
55	Polyhydrogenated Graphene: Excited State Dynamics in Photo- and Electroactive Two-Dimensional Domains. Journal of the American Chemical Society, 2015, 137, 13079-13086.	13.7	25
56	Quantifying the Covalent Functionalization of Black Phosphorus. Angewandte Chemie - International Edition, 2020, 59, 20230-20234.	13.8	25
57	Spatially Resolved Bottomâ€6ide Fluorination of Graphene by Twoâ€Dimensional Substrate Patterning. Angewandte Chemie - International Edition, 2020, 59, 6700-6705.	13.8	25
58	Molecular embroidering of graphene. Nature Communications, 2021, 12, 552.	12.8	25
59	Zweidimensionale Chemie jenseits von Graphen: das aufstrebende Gebiet der Funktionalisierung von MolybdÃ ¤ disulfid und schwarzem Phosphor. Angewandte Chemie, 2018, 130, 4421-4437.	2.0	24
60	Perovskite solar cells fabricated using dicarboxylic fullerene derivatives. New Journal of Chemistry, 2016, 40, 2829-2834.	2.8	23
61	Effect of the Structure and Morphology of Natural, Synthetic and Post-processed Graphites on Their Dispersibility and Electronic Properties. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 804-823.	2.1	21
62	Hydrogen bonding mediated orthogonal and reversible self-assembly of porphyrin sensitizers onto TiO ₂ nanoparticles. Chemical Communications, 2016, 52, 8842-8845.	4.1	21
63	Photoswitchable Norbornadiene–Quadricyclane Interconversion Mediated by Covalently Linked C 60. Chemistry - A European Journal, 2020, 26, 5220-5230.	3.3	21
64	Covalently Doped Graphene Superlattices: Spatially Resolved Supratopic- and Janus-Binding. Journal of the American Chemical Society, 2020, 142, 16016-16022.	13.7	21
65	Amphiphilic architectures based on fullerene and calixarene platforms: From buckysomes to shape-persistent micelles. Pure and Applied Chemistry, 2008, 80, 571-587.	1.9	20
66	Reciprocal principle of molecular recognition in supramolecular chromatography—highly selective analytical separation of cyclodextrin congeners on a silica-bonded [60]fullerene stationary phase. New Journal of Chemistry, 2010, 34, 693.	2.8	20
67	Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches. Chemistry - A European Journal, 2021, 27, 4993-5002.	3.3	20
68	Benzâ€Bisimidazoleâ€Bridged Perylenes – Linearly Expanded Chromophores. European Journal of Organic Chemistry, 2015, 2015, 2167-2174.	2.4	19
69	Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field Effect Transistors. Advanced Materials Interfaces, 2020, 7, 2001290.	3.7	19
70	Investigation of pentaarylazafullerenes as acceptor systems for bulk-heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 450-454.	6.2	18
71	Oxoâ€Functionalized Graphene: A Versatile Precursor for Alkylated Graphene Sheets by Reductive Functionalization. Chemistry - A European Journal, 2018, 24, 13348-13354.	3.3	18
72	Synthesis and Aggregation Properties of Polycationic Perylenetetracarboxylic Acid Diimides. European Journal of Organic Chemistry, 2012, 2012, 6179-6186.	2.4	17

#	Article	IF	CITATIONS
73	Facile synthesis and photovoltaic applications of a new alkylated bismethano fullerene as electron acceptor for high open circuit voltage solar cells. RSC Advances, 2015, 5, 64724-64730.	3.6	17
74	Electronic and Magnetic Properties of Black Phosphorus. Physica Status Solidi (B): Basic Research, 2017, 254, 1700232.	1.5	17
75	Covalent Interâ€Carbonâ€Allotrope Architectures Consisting of the Endohedral Fullerene Sc ₃ N@C ₈₀ and Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 8058-8062.	13.8	17
76	Modular Covalent Graphene Functionalization with C ₆₀ and the Endohedral Fullerene Sc ₃ N@C ₈₀ : A Facile Entry to Syntheticâ€Carbonâ€Allotrope Hybrids. Angewandte Chemie - International Edition, 2019, 58, 816-820.	13.8	16
77	Understanding the Electron-Doping Mechanism in Potassium-Intercalated Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2020, 142, 2327-2337.	13.7	16
78	Ï€â€Extended Diaza[7]helicenes by Hybridization of Naphthalene Diimides and Hexa―peri â€hexabenzocoronenes. Chemistry - A European Journal, 2021, 27, 2332-2341.	3.3	16
79	Coronenohelicenes with Dynamic Chirality. Chemistry - A European Journal, 2020, 26, 14100-14108.	3.3	16
80	Interface Amorphization of Twoâ€Dimensional Black Phosphorus upon Treatment with Diazonium Salts. Chemistry - A European Journal, 2021, 27, 3361-3366.	3.3	15
81	Carbon Nano-onions: Potassium Intercalation and Reductive Covalent Functionalization. Journal of the American Chemical Society, 2021, 143, 18997-19007.	13.7	15
82	Synthesis and Magnetic Properties of a Nitrogen ontaining Fullerene Dimer. European Journal of Organic Chemistry, 2011, 2011, 117-121.	2.4	14
83	Highly Regioselective Alkylation of Hexabenzocoronenes: Fundamental Insights into the Covalent Chemistry of Graphene. Angewandte Chemie, 2017, 129, 12352-12358.	2.0	14
84	Understanding the Role of Surface Charge in Cellular Uptake and X-ray-Induced ROS Enhancing of Au–Fe ₃ O ₄ Nanoheterodimers. ACS Applied Bio Materials, 2018, 1, 2002-2011.	4.6	14
85	Characterizing the maximum number of layers in chemically exfoliated graphene. Scientific Reports, 2019, 9, 19480.	3.3	14
86	Fewâ€layer Black Phosphorous Catalyzes Radical Additions to Alkenes Faster than Lowâ€valence Metals. ChemCatChem, 2020, 12, 2226-2232.	3.7	14
87	Selfâ€Assembling Depsipeptide Dendrimers and Dendritic Fullerenes with New <i>cis</i> ―and <i>trans</i> â€Symmetric Hamilton Receptor Functionalized Zn–Porphyrins: Synthesis, Photophysical Properties and Cooperativity Phenomena. European Journal of Organic Chemistry, 2010, 2010, 5010-5029.	2.4	13
88	Facile Access to Functional Building Blocks of C ₆₀ Involving <i>C</i> ₃ ‣ymmetrical Addition Patterns. European Journal of Organic Chemistry, 2013, 2013, 5093-5105.	2.4	13
89	Naphthalenebisimides as photofunctional surfactants for SWCNTs – towards water-soluble electron donor–acceptor hybrids. Chemical Science, 2015, 6, 6886-6895.	7.4	13
90	Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie, 2017, 129, 15469-15475.	2.0	12

#	Article	IF	CITATIONS
91	A Straightforward Approach to Multifunctional Graphene. Chemistry - A European Journal, 2019, 25, 13218-13223.	3.3	12
92	Gitteröffnung durch reduktive kovalente Volumenâ€Funktionalisierung von schwarzem Phosphor. Angewandte Chemie, 2019, 131, 5820-5826.	2.0	12
93	The reactivity of reduced graphene depends on solvation. 2D Materials, 2019, 6, 025009.	4.4	12
94	Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. Jacs Au, 2021, 1, 786-794.	7.9	12
95	Laser-Triggered Bottom-Up Transcription of Chemical Information: Toward Patterned Graphene/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2022, 144, 9645-9650.	13.7	12
96	Highly Efficient Encapsulation and Phase Separation of Apolar Molecules by Magnetic Shellâ€byâ€Shellâ€Coated Nanocarriers in Water. Chemistry - A European Journal, 2018, 24, 13589-13595.	3.3	11
97	Exohedral Addition Chemistry of the Fullerenide Anions C 60 2â^' and C 60 â‹â^'. Chemistry - A European Journal, 2019, 25, 5186-5201.	3.3	11
98	Solar Energy Storage: Competition between Delocalized Charge Transfer and Localized Excited States in the Norbornadiene to Quadricyclane Photoisomerization. Journal of the American Chemical Society, 2022, 144, 153-162.	13.7	11
99	Tuning the adsorption of perylene-based surfactants on the surface of single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2592-2598.	1.5	10
100	Fractal-seaweeds type functionalization of graphene. Carbon, 2020, 158, 435-448.	10.3	10
101	Mixed Organic Ligand Shells: Controlling the Nanoparticle Surface Morphology toward Tuning the Optoelectronic Properties. Small, 2020, 16, e1903729.	10.0	10
102	Tunable Photocatalytic Activity of PEO‧tabilized ZnO–Polyoxometalate Nanostructures in Aqueous Solution. Advanced Materials Interfaces, 2021, 8, 2002130.	3.7	10
103	Highly Integrated Organic–Inorganic Hybrid Architectures by Noncovalent Exfoliation of Graphite and Assembly with Zinc Oxide Nanoparticles. Advanced Materials Interfaces, 2016, 3, 1600365.	3.7	9
104	Shellâ€by‣hell Functionalization of Inorganic Nanoparticles. Chemistry - A European Journal, 2020, 26, 8483-8498.	3.3	9
105	Hypervalent Iodine Compounds as Versatile Reagents for Extremely Efficient and Reversible Patterning of Graphene with Nanoscale Precision. Advanced Materials, 2021, 33, e2101653.	21.0	9
106	Covalent Patterning of 2D MoS ₂ . Chemistry - A European Journal, 2021, 27, 13117-13122.	3.3	9
107	Topology-Driven Reductive Silylation of Synthetic Carbon Allotropes. Journal of the American Chemical Society, 2016, 138, 15642-15647.	13.7	8
108	Synthesis of Magnetic Molecular Complexes with Fullerene Anchor Groups. European Journal of Organic Chemistry, 2017, 2017, 790-798.	2.4	8

#	Article	IF	CITATIONS
109	Individualization and Stabilization of Zinc Oxide Nanorods by Covalent Functionalization with Positively Charged Catechol Derivatives. Chemistry - A European Journal, 2017, 23, 17257-17268.	3.3	8
110	Synergy of Catecholâ€Functionalized Zinc Oxide Nanorods and Porphyrins in Layerâ€byâ€Layer Assemblies. Chemistry - A European Journal, 2018, 24, 7896-7905.	3.3	8
111	Isomerically Pure Starâ€Shaped Triphenylene–Perylene Hybrids Involving Highly Extended π onjugation. Chemistry - A European Journal, 2018, 24, 4671-4679.	3.3	8
112	Covalent Interâ€Carbonâ€Allotrope Architectures Consisting of the Endohedral Fullerene Sc ₃ N@C ₈₀ and Singleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2019, 131, 8142-8146.	2.0	8
113	A straightforward reductive approach for the deoxygenation, activation and functionalization of ultrashort single-walled carbon nanotubes. Carbon, 2021, 171, 768-776.	10.3	8
114	Covalent and non-covalent chemistry of 2D black phosphorus. RSC Advances, 2021, 11, 26093-26101.	3.6	8
115	Surface Modification of ZnO Nanorods with Hamilton Receptors. International Journal of Molecular Sciences, 2015, 16, 8186-8200.	4.1	7
116	Diastereospecific and Highly Site-Selective Functionalization of C ₇₀ Fullerene by a Reaction with Diethyl <i>N</i> -Arylaziridine-2,3-dicarboxylates. Journal of Organic Chemistry, 2018, 83, 14146-14151.	3.2	7
117	Spatially Resolved Bottomâ€ S ide Fluorination of Graphene by Twoâ€Dimensional Substrate Patterning. Angewandte Chemie, 2020, 132, 6766-6771.	2.0	7
118	Diameter selectivity of nanotube sidewall functionalization probed by optical spectroscopy. Physica Status Solidi (B): Basic Research, 2008, 245, 1954-1956.	1.5	6
119	Sequential Fullerenylation of Bisâ€malonates – Efficient Access to Oligoclusters with Different Fullerene Building Blocks. European Journal of Organic Chemistry, 2013, 2013, 2355-2361.	2.4	6
120	Physical Vapor Growth of Double Position Boundary Free, Quasi-Bulk 3C-SiC on High Quality 3C-SiC on Si CVD Templates. Materials Science Forum, 0, 858, 89-92.	0.3	6
121	Synthesis and Atropisomerism of Cascaded Tetraphenylporphyrin–[60]Fullerene Hybrids. Chemistry - A European Journal, 2015, 21, 12421-12430.	3.3	5
122	Transport, magnetic and vibrational properties of chemically exfoliated few-layer graphene. Physica Status Solidi (B): Basic Research, 2015, 252, 2438-2443.	1.5	5
123	Electroluminescence: From White to Red: Electricâ€Field Dependent Chromaticity of Lightâ€Emitting Electrochemical Cells based on Archetypal Porphyrins (Adv. Funct. Mater. 37/2016). Advanced Functional Materials, 2016, 26, 6736-6736.	14.9	5
124	Exfoliation of Graphene by Dendritic Waterâ€Soluble Zinc Phthalocyanine Amphiphiles in Polar Media. Chemistry - A European Journal, 2018, 24, 18696-18704.	3.3	5
125	Electronic Communication in Confined Space Coronas of Shellâ€byâ€5hell Structured Al 2 O 3 Nanoparticle Hybrids Containing Two Layers of Functional Organic Ligands. Chemistry - A European Journal, 2019, 25, 11864-11875.	3.3	5
126	Tunable Photoswitching in Norbornadiene (NBD)/Quadricyclane (QC) – Fullerene Hybrids. Chemistry - A European Journal, 2021, 27, 14501-14507.	3.3	5

#	Article	IF	CITATIONS
127	Dendritic Architectures with Positively Charged Cores and Negatively Charged Shells. European Journal of Organic Chemistry, 2012, 2012, 1130-1137.	2.4	4
128	The Graphene Flagship-A Giant European Research Project. Angewandte Chemie - International Edition, 2015, 54, 9132-9133.	13.8	4
129	Formation of Highly Charged Quasiâ€Molecular Ions of a Polycationic [60]Fullerene Hexakisâ€Adduct and Their Fragmentation Behavior in the Gas Phase. European Journal of Organic Chemistry, 2015, 2015, 2282-2290.	2.4	4
130	Reductive Functionalization of Graphenides With Nickel(II) Porphyrin Diazonium Compounds. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700306.	2.4	4
131	Nonâ€Covalent Postfunctionalization of Dye Layers on TiO ₂ — A Tool for Enhancing Injection in Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2021, 27, 5041-5050.	3.3	4
132	Quantifizierung der kovalenten Funktionalisierung von schwarzem Phosphor. Angewandte Chemie, 2020, 132, 20406-20411.	2.0	3
133	A general concept for highly efficient covalent laser patterning of graphene based on silver carboxylates. Chemical Communications, 2021, 57, 4654-4657.	4.1	3
134	Controlling the Formation of Sodium/Black Phosphorus IntercalationCompounds Towards High Sodium Content. Batteries and Supercaps, 2021, 4, 1304-1309.	4.7	3
135	Hostâ€Guest Systems on the Surface of Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Utilizing Hamilton Receptors and Cyanurate Derivative Molecules. Chemistry - A European Journal, 2021, 27, 16429-16439.	3.3	3
136	Atomically resolved TEM imaging of covalently functionalised graphene. Npj 2D Materials and Applications, 2022, 6, .	7.9	3
137	Modular Covalent Graphene Functionalization with C ₆₀ and the Endohedral Fullerene Sc ₃ N@C ₈₀ : A Facile Entry to Synthetic arbonâ€Allotrope Hybrids. Angewandte Chemie, 2019, 131, 826-830.	2.0	2
138	Spatial Control of Graphene Functionalization by Patterning a 2D Substrate: Implications for Graphene Based van-der-Waals Heterostructures. ACS Applied Nano Materials, 0, , .	5.0	2
139	Hierarchical Assembly and Sensing Activity of Patterned Grapheneâ€Hamilton Receptor Nanostructures. Advanced Materials Interfaces, 2022, 9, .	3.7	2
140	Carbon Functionalization: The Potential of Perylene Bisimide Derivatives for the Solubilization of Carbon Nanotubes and Graphene (Adv. Mater. 22-23/2011). Advanced Materials, 2011, 23, 2534-2534.	21.0	1
141	Tuning Conductivity and Spin Dynamics in Few‣ayer Graphene via In Situ Potassium Exposure. Physica Status Solidi (B): Basic Research, 2020, 257, 2000368.	1.5	1
142	Smart Shellâ€byâ€Shell Nanoparticles with Tunable Perylene Fluorescence in the Organic Interlayer. Chemistry - A European Journal, 2021, 27, 1655-1669.	3.3	1
143	Perfect nanospheres from polymerized lipofullerenes. , 1999, , .		0
144	Carbon nanotube characterization: Optical Visualization of Carbon Nanotubes-a Unifying Linkage Between Microscopic and Spectroscopic Characterization Techniques (Small 18/2010). Small, 2010, 6, n/a-n/a.	10.0	0

#	Article	IF	CITATIONS
145	Front Cover: Synthesis of Magnetic Molecular Complexes with Fullerene Anchor Groups (Eur. J. Org.) Tj ETQq1 1	0.784314 2.4	∙rgBT /Over¦o
146	Organic Field Effect Transistors: Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field Effect Transistors (Adv. Mater.) Tj ETQq0 0 0 rgBT	Ö ler lock	2 1@Tf 50 697
147	Nanoparticle Surfaces: Mixed Organic Ligand Shells: Controlling the Nanoparticle Surface Morphology toward Tuning the Optoelectronic Properties (Small 2/2020). Small, 2020, 16, 2070009.	10.0	0

148 Molecular Stacking on Graphene. Angewandte Chemie, 0, , .

2.0 0