
Sihai Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2585782/publications.pdf Version: 2024-02-01

SILLAI HII

#	Article	IF	CITATIONS
1	Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Advances, 2014, 4, 22101-22105.	3.6	98
2	Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems. Environmental Research, 2020, 191, 110069.	7.5	73
3	A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox. Chemosphere, 2018, 208, 793-799.	8.2	54
4	Dissolved oxygen disturbs nitrate transformation by modifying microbial community, co-occurrence networks, and functional genes during aerobic-anoxic transition. Science of the Total Environment, 2021, 790, 148245.	8.0	47
5	Heavy metals pollution and the identification of their sources in soil over Xiaoqinling gold-mining region, Shaanxi, China. Environmental Earth Sciences, 2011, 64, 1585-1592.	2.7	37
6	Intensify Removal of Nitrobenzene from Aqueous Solution Using Nano-Zero Valent Iron/Granular Activated Carbon Composite as Fenton-Like Catalyst. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	34
7	Dynamic characteristics of heavy metal accumulation in the farmland soil over Xiaoqinling gold-mining region, Shaanxi, China. Environmental Earth Sciences, 2019, 78, 1.	2.7	32
8	Aromatic compounds releases aroused by sediment resuspension alter nitrate transformation rates and pathways during aerobic-anoxic transition. Journal of Hazardous Materials, 2022, 424, 127365.	12.4	30
9	NH4+-N/NO3â^'-N ratio controlling nitrogen transformation accompanied with NO2â^'-N accumulation in the oxic-anoxic transition zone. Environmental Research, 2020, 189, 109962.	7.5	29
10	A lab-scale study on heterotrophic nitrification-aerobic denitrification for nitrogen control in aquatic ecosystem. Environmental Science and Pollution Research, 2020, 27, 9307-9317.	5.3	29
11	Effects of fresh and degraded dissolved organic matter derived from maize straw on copper sorption onto farmland loess. Journal of Soils and Sediments, 2016, 16, 327-338.	3.0	27
12	Nitrate Removal from Groundwater by Heterotrophic/Autotrophic Denitrification Using Easily Degradable Organics and Nano-Zero Valent Iron as Co-Electron Donors. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	25
13	Microbial Heterotrophic Nitrification-Aerobic Denitrification Dominates Simultaneous Removal of Aniline and Ammonium in Aquatic Ecosystems. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	24
14	Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite. Water Science and Technology, 2016, 73, 153-160.	2.5	18
15	Wetting–drying cycles enhance the release and transport of autochthonous colloidal particles in Chinese loess. Human and Ecological Risk Assessment (HERA), 2019, 25, 335-353.	3.4	18
16	Influence of dissolved organic matter from corn straw on Zn andCusorption to Chinese loess. Toxicological and Environmental Chemistry, 2013, 95, 1318-1327.	1.2	17
17	An exploratory study on low-concentration hexavalent chromium adsorption by Fe(III)-cross-linked chitosan beads. Royal Society Open Science, 2017, 4, 170905.	2.4	16
18	Chemical properties of dissolved organic matter derived from sugarcane rind and the impacts on copper adsorption onto red soil. Environmental Science and Pollution Research, 2017, 24, 21750-21760.	5.3	15

Sінаі Hu

#	Article	IF	CITATIONS
19	The correlation analyses of bacterial community composition and spatial factors between freshwater and sediment in Poyang Lake wetland by using artificial neural network (ANN) modeling. Brazilian Journal of Microbiology, 2020, 51, 1191-1207.	2.0	13
20	Characteristics and mechanisms of 4A zeolite supported nanoparticulate zero-valent iron as Fenton-like catalyst to degrade methylene blue. Toxicological and Environmental Chemistry, 2014, 96, 227-242.	1.2	12
21	Simultaneous removal of nitrate and aniline from groundwater by cooperating heterotrophic denitrification with anaerobic ammonium oxidation. Desalination and Water Treatment, 2014, 52, 7937-7950.	1.0	12
22	Intensify chemical reduction to remove nitrate from groundwater via internal microelectrolysis existing in nano-zero valent iron/granular activated carbon composite. Desalination and Water Treatment, 2016, 57, 14158-14168.	1.0	12
23	Controls on the spatial distribution of iodine in groundwater in the Hebei Plain, China. Environmental Science and Pollution Research, 2018, 25, 16702-16709.	5.3	12
24	Improvement of interfacial adhesion between PBO fibers and cyanate ester matrix. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
25	Batch Adsorption and Column Leaching Studies of Aniline in Chinese Loess Under Different Hydrochemical Conditions. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 511-519.	2.7	8
26	Adsorptive Removal of Low-Concentration Cr(VI) in Aqueous Solution by Mg–Al Layered Double Oxides. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 134-145.	2.7	8
27	Adsorption Performance and Mechanism of Synthetic Schwertmannite to Remove Low-Concentration Fluorine in Water. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1191-1201.	2.7	8
28	Batch Adsorption and Column Transport Studies of 2,4,6-Trinitrotoluene in Chinese Loess. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 75-81.	2.7	6
29	lodine enrichment and the underlying mechanism in deep groundwater in the Cangzhou Region, North China. Environmental Science and Pollution Research, 2021, 28, 10552-10563.	5.3	6
30	Changes in the fluorescence intensity, degradability, and aromaticity of organic carbon in ammonium and phenanthrene-polluted aquatic ecosystems. RSC Advances, 2021, 11, 1066-1076.	3.6	5
31	Laboratory tests on effects of wetting–drying cycles and loess layer thickness on release and transport of loess colloidal particles in artificial loess columns. Environmental Earth Sciences, 2019, 78, 1.	2.7	4
32	The distribution and influencing factors of chromium in regional groundwater at Sanmenxia Basin north-central China. , 0, 150, 114-123.		4
33	Nitrogen species control the interaction between NO3–N reduction and aniline degradation and microbial community structure in the oxic-anoxic transition zone. Environmental Science and Pollution Research, 2021, 28, 29650-29664.	5.3	3
34	Sources and hydrogeological conditions that cause high iodine concentrations in deep groundwater in the Zhangwei watershed, North China Plain. Environmental Earth Sciences, 2021, 80, 1.	2.7	2
35	Notice of Retraction: Removal of nitrate and refractory organics simultaneous using combined heterotrophic/autotrophic denitrification. , 2010, , .		0
36	Synergistic effects of inorganic salt and surfactant on phenanthrene removal from aqueous solution by sediment. Water Science and Technology, 2014, 70, 1329-1334.	2.5	0