
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2585431/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Co-Support Compound Formation in Alumina-Supported Cobalt Catalysts. Journal of Catalysis, 2001, 204, 98-109.                                                                                                | 6.2  | 330       |
| 2  | Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catalysis Communications, 2009, 10, 1380-1385.                   | 3.3  | 179       |
| 3  | Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts. Journal of Catalysis, 2003, 215, 66-77.                                                                                       | 6.2  | 132       |
| 4  | Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye. Chemical Engineering Journal, 2010, 164, 77-84. | 12.7 | 131       |
| 5  | Effect of strong metal–support interaction on the catalytic performance of Pd/TiO2 in the liquid-phase semihydrogenation of phenylacetylene. Journal of Catalysis, 2009, 262, 199-205.                       | 6.2  | 118       |
| 6  | CO Hydrogenation on Ru-Promoted Co/MCM-41 Catalysts. Journal of Catalysis, 2002, 211, 530-539.                                                                                                               | 6.2  | 104       |
| 7  | Effect of TiO2 Crystalline Phase Composition on the Physicochemical and Catalytic Properties of<br>Pd/TiO2 in Selective Acetylene Hydrogenation. Journal of Physical Chemistry B, 2006, 110, 8019-8024.      | 2.6  | 88        |
| 8  | High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Applied<br>Catalysis B: Environmental, 2021, 281, 119471.                                                          | 20.2 | 85        |
| 9  | Effect of Cobalt Precursors on the Dispersion of Cobalt on MCM-41. Catalysis Letters, 2003, 91, 95-102.                                                                                                      | 2.6  | 71        |
| 10 | CO Hydrogenation on Ru-Promoted Co/MCM-41 Catalysts. Journal of Catalysis, 2002, 211, 530-539.                                                                                                               | 6.2  | 70        |
| 11 | A comparative study of Pd/SiO2 and Pd/MCM-41 catalysts in liquid-phase hydrogenation. Catalysis<br>Communications, 2004, 5, 583-590.                                                                         | 3.3  | 70        |
| 12 | Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization.<br>Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 246-252.                                         | 1.8  | 68        |
| 13 | Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed Î <sup>3</sup> - and χ-crystalline phases. Catalysis Communications, 2008, 9, 1955-1958.                                     | 3.3  | 67        |
| 14 | Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina. Catalysis Today, 2011, 164, 28-33.                                                            | 4.4  | 67        |
| 15 | Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catalysis Communications, 2008, 10, 86-91.                                               | 3.3  | 66        |
| 16 | Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2<br>supported Pd catalysts. Applied Catalysis A: General, 2006, 314, 128-133.                                | 4.3  | 64        |
| 17 | Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase hydrogenation. Applied Catalysis A: General, 2005, 292, 322-327.                        | 4.3  | 61        |
| 18 | Impact of palladium silicide formation on the catalytic properties of Pd/SiO2 catalysts in liquid-phase semihydrogenation of phenylacetylene. Journal of Molecular Catalysis A, 2007, 261, 29-35.            | 4.8  | 61        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4–ZrO2 catalysts. Fuel, 2010, 89, 2387-2392.                                                                                                  | 6.4  | 60        |
| 20 | Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma. Colloids and Surfaces B: Biointerfaces, 2013, 111, 579-586.                                                                                                               | 5.0  | 60        |
| 21 | Modification of acid properties and catalytic properties of AlPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether. Applied Catalysis A: General, 2010, 378, 119-123.                                                                    | 4.3  | 59        |
| 22 | Characteristics and catalytic properties of Pt–Sn/Al2O3 nanoparticles synthesized by one-step flame spray pyrolysis in the dehydrogenation of propane. Applied Catalysis A: General, 2009, 370, 1-6.                                                            | 4.3  | 58        |
| 23 | Effect of crystallite size on the surface defect of nano-TiO2 prepared via solvothermal synthesis.<br>Journal of Crystal Growth, 2006, 297, 234-238.                                                                                                            | 1.5  | 56        |
| 24 | Selective hydrogenation of acetylene over Pd catalysts supported on nanocrystalline α-Al2O3 and<br>Zn-modified α-Al2O3. Catalysis Communications, 2008, 9, 2297-2302.                                                                                           | 3.3  | 52        |
| 25 | A comparative study of strong metal–support interaction and catalytic behavior of Pd catalysts<br>supported on micron- and nano-sized TiO2 in liquid-phase selective hydrogenation of phenylacetylene.<br>Journal of Molecular Catalysis A, 2008, 279, 133-139. | 4.8  | 51        |
| 26 | Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH)2 catalysts. Catalysis<br>Communications, 2010, 12, 80-85.                                                                                                                        | 3.3  | 50        |
| 27 | Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today, 2015, 250, 218-225.                                                                                                                 | 4.4  | 45        |
| 28 | Effect of nanoscale SiO2 and ZrO2 as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene. Materials Letters, 2007, 61, 1376-1379.                                                                 | 2.6  | 44        |
| 29 | Effect of surface Ti3+ on the sol–gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2<br>catalysts. Catalysis Today, 2015, 245, 134-138.                                                                                                       | 4.4  | 44        |
| 30 | Characteristics and Catalytic Properties of Pd/SiO2 Synthesized by One-step Flame Spray Pyrolysis in<br>Liquid-phase Hydrogenation of 1-Heptyne. Catalysis Letters, 2007, 119, 346-352.                                                                         | 2.6  | 43        |
| 31 | Effect of quenching medium on photocatalytic activity of nano-TiO2 prepared by solvothermal method. Chemical Engineering Journal, 2008, 138, 622-627.                                                                                                           | 12.7 | 42        |
| 32 | The liquid-phase hydrogenation of 1-heptyne over Pd–Au/TiO 2 catalysts prepared by the combination<br>of incipient wetness impregnation and deposition–precipitation. Journal of Catalysis, 2013, 297, 155-164.                                                 | 6.2  | 40        |
| 33 | Effect of Ag addition on the properties of Pd–Ag/TiO2 catalysts containing different TiO2 crystalline phases. Catalysis Communications, 2007, 8, 2166-2170.                                                                                                     | 3.3  | 38        |
| 34 | The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts.<br>Journal of Environmental Chemical Engineering, 2018, 6, 1414-1423.                                                                                      | 6.7  | 38        |
| 35 | Development of bimetallic Ni-Cu/SiO2 catalysts for liquid phase selective hydrogenation of furfural to furfuryl alcohol. Catalysis Communications, 2021, 149, 106221.                                                                                           | 3.3  | 38        |
| 36 | Preparation of Nano-Pd/SiO <sub>2</sub> by One-Step Flame Spray Pyrolysis and Its Hydrogenation<br>Activities: Comparison to the Conventional Impregnation Method. Industrial & Engineering<br>Chemistry Research, 2009, 48, 2819-2825.                         | 3.7  | 37        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Performance of Pd catalysts supported on nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective<br>hydrogenation of acetylene. Catalysis Today, 2008, 131, 553-558.                                                                          | 4.4  | 35        |
| 38 | CO2 hydrogenation over Co/Al2O3 catalysts prepared via a solid-state reaction of fine gibbsite and cobalt precursors. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 179-188.                                                             | 1.7  | 35        |
| 39 | Copper-modified alumina as a support for iron Fischer–Tropsch synthesis catalysts. Applied Catalysis<br>A: General, 2007, 332, 130-137.                                                                                                            | 4.3  | 32        |
| 40 | Preparation of improved Ag–Pd/TiO <sub>2</sub> catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene. Catalysis Science and Technology, 2016, 6, 5608-5617. | 4.1  | 32        |
| 41 | Formation of CoAl <sub><b>2</b></sub> O <sub><b>4</b></sub> Nanoparticles via Low-Temperature<br>Solid-State Reaction of Fine Gibbsite and Cobalt Precursor. Journal of Nanomaterials, 2012, 2012, 1-8.                                            | 2.7  | 31        |
| 42 | Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Applied Catalysis A: General, 2018, 549, 1-7.                    | 4.3  | 31        |
| 43 | Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4. Ceramics International, 2019, 45, 22961-22971.                                                  | 4.8  | 31        |
| 44 | NaOH modified WO3/SiO2 catalysts for propylene production from 2-butene and ethylene metathesis.<br>Chinese Journal of Catalysis, 2014, 35, 232-241.                                                                                               | 14.0 | 30        |
| 45 | Effect of mixed Al2O3 structure between Î,- and α-Al2O3 on the properties of Pd/Al2O3 in the selective hydrogenation of 1,3-butadiene. Catalysis Communications, 2010, 11, 311-316.                                                                | 3.3  | 29        |
| 46 | Geometrical confinement effect in the liquid-phase semihydrogenation of phenylacetylene over mesostructured silica supported Pd catalysts. Catalysis Communications, 2011, 12, 910-916.                                                            | 3.3  | 28        |
| 47 | Effect of H2 partial pressure on surface reaction parameters during CO hydrogenation on Ru-promoted silica-supported Co catalysts. Journal of Catalysis, 2003, 213, 78-85.                                                                         | 6.2  | 27        |
| 48 | The influence of Si-modified TiO2 on the activity of Ag/TiO2 in CO oxidation. Journal of Industrial and Engineering Chemistry, 2010, 16, 703-707.                                                                                                  | 5.8  | 27        |
| 49 | Inhibition effect of Na+ form in ZSM-5 zeolite on hydrogen transfer reaction via 1-butene cracking.<br>Catalysis Today, 2020, 358, 237-245.                                                                                                        | 4.4  | 27        |
| 50 | Effect of transition metal dopants (M= Nb, La, Zr, and Y) on the M-TiO2 supported V2O5 catalysts in the selective oxidation of H2S to elemental sulfur. Journal of Environmental Chemical Engineering, 2018, 6, 5655-5661.                         | 6.7  | 26        |
| 51 | Impact of the Silica Support Structure on Liquid-Phase Hydrogenation on Pd Catalysts. Industrial<br>& Engineering Chemistry Research, 2004, 43, 6014-6020.                                                                                         | 3.7  | 25        |
| 52 | Dependence of Quenching Process on the Photocatalytic Activity of Solvothermal-Derived<br>TiO <sub>2</sub> with Various Crystallite Sizes. Industrial & Engineering Chemistry Research,<br>2008, 47, 693-697.                                      | 3.7  | 25        |
| 53 | Characteristics and Catalytic Properties of Mesocellular Foam Silica Supported Pd Nanoparticles in the Liquid-Phase Selective Hydrogenation of Phenylacetylene. Catalysis Letters, 2011, 141, 1149-1155.                                           | 2.6  | 25        |
| 54 | Liquid phase hydrogenation of phenylacetylene over Pd and PdZn catalysts in toluene: effects of alloying and CO2 pressurization. RSC Advances, 2014, 4, 24922.                                                                                     | 3.6  | 25        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of TiO2 structure and Co addition as a second metal on Ru-based catalysts supported on TiO2 for selective hydrogenation of furfural to FA. Scientific Reports, 2021, 11, 9786.                      | 3.3 | 25        |
| 56 | Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol–gel TiO2. Journal of Molecular Catalysis A, 2014, 383-384, 182-187.                           | 4.8 | 24        |
| 57 | One step synthesis of Pt–Co/TiO2 catalysts by flame spray pyrolysis for the hydrogenation of<br>3-nitrostyrene. Catalysis Communications, 2015, 61, 11-15.                                                  | 3.3 | 24        |
| 58 | Synthesis, Characterization, and Catalytic Properties of Pd and Pd–Ag Catalysts Supported on<br>Nanocrystalline TiO2 Prepared by the Solvothermal Method. Catalysis Letters, 2005, 103, 53-58.              | 2.6 | 23        |
| 59 | Application of Sulfonated Carbon-Based Catalyst for Reactive Extraction of 1,3-Propanediol from<br>Model Fermentation Mixture. Industrial & Engineering Chemistry Research, 2010, 49, 12352-12357.          | 3.7 | 23        |
| 60 | The effect of phosphorous precursor on the CO oxidation activity of P-modified TiO2 supported Ag catalysts. Catalysis Communications, 2010, 11, 1238-1243.                                                  | 3.3 | 23        |
| 61 | Effect of pretreatment atmosphere of WO <sub>x</sub> /SiO <sub>2</sub> catalysts on metathesis of ethylene and 2-butene to propylene. RSC Advances, 2018, 8, 11693-11704.                                   | 3.6 | 23        |
| 62 | Mono- and bi-metallic Au–Pd/TiO2 catalysts synthesized by one-step flame spray pyrolysis for<br>liquid-phase hydrogenation of 1-heptyne. Applied Catalysis A: General, 2013, 467, 132-141.                  | 4.3 | 22        |
| 63 | The effect of TiO2 particle size on the characteristics of Au–Pd/TiO2 catalysts. Catalysis<br>Communications, 2015, 58, 70-75.                                                                              | 3.3 | 22        |
| 64 | Microstructures and photocatalytic properties of ZnO films fabricated by Zn electrodeposition and heat treatment. Materials Science in Semiconductor Processing, 2018, 74, 232-237.                         | 4.0 | 22        |
| 65 | Effect of mixed γ- and χ-crystalline phases in nanocrystalline Al2O3 on the dispersion of cobalt on Al2O3. Catalysis Communications, 2008, 9, 207-212.                                                      | 3.3 | 21        |
| 66 | Glycothermal synthesis of nanocrystalline zirconia and their applications as cobalt catalyst supports. Materials Chemistry and Physics, 2005, 94, 207-212.                                                  | 4.0 | 20        |
| 67 | Effect of Ni-modified α-Al2O3 prepared by sol–gel and solvothermal methods on the characteristics<br>and catalytic properties of Pd/α-Al2O3 catalysts. Materials Chemistry and Physics, 2008, 111, 431-437. | 4.0 | 20        |
| 68 | Lewis acid transformation to Bronsted acid sites over supported tungsten oxide catalysts containing different surface WOx structures. Catalysis Today, 2020, 358, 354-369.                                  | 4.4 | 20        |
| 69 | Role of Al in Na-ZSM-5 zeolite structure on catalyst stability in butene cracking reaction. Scientific<br>Reports, 2020, 10, 13643.                                                                         | 3.3 | 20        |
| 70 | Enhanced Stability and Propene Yield in Propane Dehydrogenation on PtIn/Mg(Al)O Catalysts with<br>Various In Loadings. Topics in Catalysis, 2018, 61, 1624-1632.                                            | 2.8 | 19        |
| 71 | Formation of isolated tungstate sites on hierarchical structured SiO2- and HY zeolite-supported WOx catalysts for propene metathesis. Journal of Catalysis, 2019, 376, 150-160.                             | 6.2 | 19        |
| 72 | Effect of Support Crystallite Size on Catalytic Activity and Deactivation of Nanocrystalline<br>ZnAl2O4-Supported Pd Catalysts in Liquid-Phase Hydrogenation. Catalysis Letters, 2008, 126, 313.            | 2.6 | 18        |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Color improvment of C <sub>9</sub> hydrocarbon resin by hydrogenation over 2% Pd/γâ€alumina<br>catalyst: Effect of degree of aromatic rings hydrogenation. Journal of Applied Polymer Science, 2010,<br>117, 2862-2869.                                                               | 2.6 | 18        |
| 74 | Influence of Crystallite Size of TiO2 Supports on the Activity of Dispersed Pt Catalysts in Liquid-Phase<br>Selective Hydrogenation of 3-Nitrostyrene, Nitrobenzene, and Styrene. Catalysis Letters, 2015, 145,<br>606-611.                                                           | 2.6 | 18        |
| 75 | The key to catalytic stability on sol–gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehydrogenation. Catalysis Today, 2021, 375, 343-351.                                                                                | 4.4 | 18        |
| 76 | Effect of nanocrystalline χ-Al2O3 structure on the catalytic behavior of Co/Al2O3 in CO<br>hydrogenation. Catalysis Today, 2011, 164, 302-307.                                                                                                                                        | 4.4 | 17        |
| 77 | Role of support nature (γ-Al2O3 and SiO2-Al2O3) on the performances of rhenium oxide catalysts in the metathesis of ethylene and 2-pentene. Journal of Natural Gas Chemistry, 2012, 21, 158-164.                                                                                      | 1.8 | 17        |
| 78 | Flame-made Pt/TiO2 catalysts for the liquid-phase selective hydrogenation of 3-nitrostyrene. Applied<br>Catalysis A: General, 2015, 490, 193-200.                                                                                                                                     | 4.3 | 17        |
| 79 | Effect of preparation method on the Pt-In modified Mg(Al)O catalysts over dehydrogenation of propane. Catalysis Today, 2020, 358, 100-108.                                                                                                                                            | 4.4 | 17        |
| 80 | Flame spray-synthesized Pt-Co/TiO2 catalysts for the selective hydrogenation of furfural to furfuryl alcohol. Catalysis Communications, 2021, 149, 106246.                                                                                                                            | 3.3 | 17        |
| 81 | Influence of Preparation Method on the Nanocrystalline Porosity of α-Al <sub>2</sub> O <sub>3</sub><br>and the Catalytic Properties of Pd/α-Al <sub>2</sub> O <sub>3</sub> in Selective Acetylene<br>Hydrogenation. Industrial & Engineering Chemistry Research, 2009, 48, 6273-6279. | 3.7 | 16        |
| 82 | Liquid-Phase Selective Hydrogenation of 1-Heptyne over Pd/TiO2 Catalyst Synthesized by One-Step Flame<br>Spray Pyrolysis. Catalysis Letters, 2010, 136, 164-170.                                                                                                                      | 2.6 | 16        |
| 83 | Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles. Powder Technology, 2011, 210, 328-331.                                                                                                                                        | 4.2 | 16        |
| 84 | A comparative study of liquid-phase hydrogenation on Pd/SiO2 in organic solvents and under<br>pressurized carbon dioxide: Activity change and metal leaching/sintering. Journal of Molecular<br>Catalysis A, 2006, 253, 20-24.                                                        | 4.8 | 15        |
| 85 | Production of propylene from an unconventional metathesis of ethylene and 2-pentene over Re2O7/SiO2-Al2O3 catalysts. Journal of Natural Gas Chemistry, 2012, 21, 83-90.                                                                                                               | 1.8 | 15        |
| 86 | Effect of reduction temperature on the characteristics and catalytic properties of TiO2 supported<br>AuPd alloy particles prepared by one-step flame spray pyrolysis in the selective hydrogenation of<br>1-heptyne. Applied Catalysis A: General, 2015, 506, 278-287.                | 4.3 | 15        |
| 87 | Enhanced metathesis activity of low loading Re2O7/Al2O3 catalysts for propylene production by using aluminum nitrate as Al2O3 precursor. Applied Catalysis A: General, 2016, 517, 39-46.                                                                                              | 4.3 | 15        |
| 88 | An Alternative Correlation Equation between Particle Size and Structure Stability of Hâ^'Y Zeolite<br>under Hydrothermal Treatment Conditions. Industrial & Engineering Chemistry Research, 2004, 43,<br>4066-4072.                                                                   | 3.7 | 14        |
| 89 | Differences in characteristics and catalytic properties of Co catalysts supported on micron- and nano-sized zirconia. Catalysis Communications, 2006, 7, 192-197.                                                                                                                     | 3.3 | 14        |
| 90 | Effects of Co dopants and flame conditions on the formation of Co/ZrO2 nanoparticles by flame spray pyrolysis and their catalytic properties in CO hydrogenation. Catalysis Communications, 2011, 12, 917-922.                                                                        | 3.3 | 14        |

| #   | Article                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Influence of preparation method on the catalytic performances of Re2O7/SiO2-Al2O3 catalysts in the metathesis of ethylene and 2-pentene. Journal of Industrial and Engineering Chemistry, 2014, 20, 145-152.                                                                                        | 5.8 | 14        |
| 92  | Comparative incorporation of Sn and In in Mg(Al)O for the enhanced stability of Pt/MgAl(X)O catalysts in propane dehydrogenation. Applied Catalysis A: General, 2021, 615, 118053.                                                                                                                  | 4.3 | 14        |
| 93  | Effect of Particle Size on the Hydrothermal Stability and Catalytic Activity of Polycrystalline Beta<br>Zeolite. Journal of Porous Materials, 2005, 12, 293-299.                                                                                                                                    | 2.6 | 13        |
| 94  | Synthesis of LLDPE/TiO2 nanocomposites by in situ polymerization with zirconocene/dMMAO catalyst: effect of [Al]/[Zr] ratios and TiO2 phases. Polymer Bulletin, 2011, 66, 479-490.                                                                                                                  | 3.3 | 13        |
| 95  | In situ-DRIFTS study: influence of surface acidity of rhenium-based catalysts in the metathesis of various olefins for propylene production. RSC Advances, 2017, 7, 38659-38665.                                                                                                                    | 3.6 | 13        |
| 96  | Effects of calcination and pretreatment temperatures on the catalytic activity and stability of<br>H <sub>2</sub> -treated WO <sub>3</sub> /SiO <sub>2</sub> catalysts in metathesis of ethylene and<br>2-butene. RSC Advances, 2018, 8, 28555-28568.                                               | 3.6 | 13        |
| 97  | Acidic nanomaterials (TiO <sub>2</sub> , ZrO <sub>2</sub> , and Al <sub>2</sub> O <sub>3</sub> ) are coke storage components that reduce the deactivation of the Pt–Sn/γ-Al <sub>2</sub> O <sub>3</sub> catalyst in propane dehydrogenation. Catalysis Science and Technology, 2020, 10, 5100-5112. | 4.1 | 13        |
| 98  | Observation of reduction on alkane products in butene cracking over ZSM-5 modified with Fe, Cu, and<br>Ni catalysts. Fuel, 2021, 291, 120265.                                                                                                                                                       | 6.4 | 13        |
| 99  | Characterization of cobalt dispersed on the mixed nanoscale alumina and zirconia supports. Journal of Materials Processing Technology, 2008, 206, 352-358.                                                                                                                                          | 6.3 | 12        |
| 100 | Effect of TiO2 Crystallite Size on the Activity of CO Oxidation. Catalysis Letters, 2009, 133, 76-83.                                                                                                                                                                                               | 2.6 | 12        |
| 101 | Effect of Nano-sized TiO2 Additional Support in WO3/SiO2 Catalyst Systems on Metathesis of Ethylene and Trans-2-Butene to Propylene. Catalysis Letters, 2013, 143, 919-925.                                                                                                                         | 2.6 | 12        |
| 102 | Comparative Effect of Nano-Sized ZrO2 and TiO2 Additional Supports in Silica-Supported Tungsten<br>Catalysts on Performance in Metathesis of Ethylene and 2-Butene to Propylene. Catalysis Letters, 2014,<br>144, 1524-1529.                                                                        | 2.6 | 12        |
| 103 | Hydrogen activated WOx-supported catalysts for Lewis acid transformation to Bronsted acid<br>observed by in situ DRIFTS of adsorbed ammonia: Effect of different supports on the Lewis acid<br>transformation. Catalysis Today, 2020, 358, 370-386.                                                 | 4.4 | 12        |
| 104 | Hydrogen and power generation via integrated bio-oil sorption-enhanced steam reforming and solid<br>oxide fuel cell systems: Economic feasibility analysis. International Journal of Hydrogen Energy, 2021,<br>46, 11482-11493.                                                                     | 7.1 | 12        |
| 105 | A study of alumina–zirconia mixed oxides prepared by the modified Pechini method as Co catalyst<br>supports in CO hydrogenation. Applied Catalysis A: General, 2006, 303, 268-272.                                                                                                                  | 4.3 | 11        |
| 106 | Effect of SiO2–Al2O3 Composition on the Catalytic Performance of the Re2O7/SiO2–Al2O3 Catalysts in the Metathesis of Ethylene and 2-Pentene for Propylene Production. Catalysis Letters, 2012, 142, 1141-1149.                                                                                      | 2.6 | 11        |
| 107 | Deposition of Pt nanoparticles on TiO2 by pulsed direct current magnetron sputtering for selective hydrogenation of vanillin to vanillyl alcohol. Catalysis Today, 2020, 358, 51-59.                                                                                                                | 4.4 | 11        |
| 108 | Highly active and stable Ni-incorporated spherical silica catalysts for CO2methanation. Catalysis<br>Today, 2020, 358, 30-36.                                                                                                                                                                       | 4.4 | 11        |

| #   | Article                                                                                                                                                                                                                                        | lF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Flame sprayed tri-metallic Pt–Sn–X/Al2O3 catalysts (X = Ce, Zn, and K) for propane dehydration.<br>Catalysis Communications, 2011, 12, 1161-1165.                                                                                              | 3.3  | 10        |
| 110 | Comparative Study of Lewis Acid Transformation on Non-reducible and Reducible Oxides Under<br>Hydrogen Atmosphere by In Situ DRIFTS of Adsorbed NH3. Topics in Catalysis, 2018, 61, 1641-1652.                                                 | 2.8  | 10        |
| 111 | Effect of Surface Tungstate W5+ Species on the Metathesis Activity of W-Doped Spherical Silica<br>Catalysts. Topics in Catalysis, 2018, 61, 1615-1623.                                                                                         | 2.8  | 10        |
| 112 | Electrochemical Evaluation of Corrosion Resistance of Trivalent Chromate Conversion Coatings with Different Organic Additives. ISIJ International, 2018, 58, 1316-1323.                                                                        | 1.4  | 10        |
| 113 | The H2-Treated TiO2 Supported Pt Catalysts Prepared by Strong Electrostatic Adsorption for Liquid-Phase Selective Hydrogenation. Catalysts, 2018, 8, 87.                                                                                       | 3.5  | 10        |
| 114 | Preparation of aluminum magnesium oxide by different methods for use as PtSn catalyst supports in propane dehydrogenation. Catalysis Today, 2020, 358, 90-99.                                                                                  | 4.4  | 10        |
| 115 | Active Site Formation in WO <sub><i>x</i></sub> Supported on Spherical Silica Catalysts for Lewis<br>Acid Transformation to BrÃ,nsted Acid Activity. Journal of Physical Chemistry C, 2020, 124, 15935-15943.                                  | 3.1  | 10        |
| 116 | Growing 3D-nanostructured carbon allotropes from CO2 at room temperature under the dynamic CO2 electrochemical reduction environment. Carbon, 2022, 187, 241-255.                                                                              | 10.3 | 10        |
| 117 | Metal-support interaction in mesoporous silica supported cobalt Fischer-Tropsch catalysts. Reaction<br>Kinetics and Catalysis Letters, 2005, 85, 299-304.                                                                                      | 0.6  | 9         |
| 118 | Impact of Si and Zr addition on the surface defect and photocatalytic activity of the nanocrystalline<br>TiO2 synthesized by the solvothermal method. Ceramics International, 2010, 36, 1439-1446.                                             | 4.8  | 9         |
| 119 | Influence of micro- and nano-sized SiO2 excess support on the metathesis of ethylene and trans-2-butene to propylene over silica-supported tungsten catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 225-240.                | 1.7  | 9         |
| 120 | Effect of Dispersion of the Active Phase on the Activity and Coke Formation over WO3/SiO2 Catalysts in the Metathesis of Ethylene and 2-Butene. Catalysis Letters, 2015, 145, 1868-1875.                                                       | 2.6  | 9         |
| 121 | Preparation of \$\$hbox {TiO}_{2}\$\$ TiO 2 supported Au–Pd and Cu–Pd by the combined strong electrostatic adsorption and electroless deposition for selective hydrogenation of acetylene. Journal of Chemical Sciences, 2017, 129, 1721-1734. | 1.5  | 9         |
| 122 | Photocatalytic Liquid-Phase Selective Hydrogenation of 3-Nitrostyrene to 3-vinylaniline of Various<br>Treated-TiO2 Without Use of Reducing Gas. Catalysts, 2019, 9, 329.                                                                       | 3.5  | 9         |
| 123 | Characteristics and Catalytic Properties of Alumina–Zirconia Mixed Oxides Prepared by a Modified<br>Pechini Method. Catalysis Letters, 2005, 103, 63-68.                                                                                       | 2.6  | 8         |
| 124 | Effect of Milling on the Formation of Nanocrystalline χâ€Al <sub>2</sub> O <sub>3</sub> from Gibbsite.<br>Journal of the American Ceramic Society, 2010, 93, 3377-3383.                                                                        | 3.8  | 8         |
| 125 | TRANSESTERIFICATION OF PALM OIL AT NEAR-CRITICAL CONDITIONS USING SULFONATED CARBON-BASED ACID CATALYST. Chemical Engineering Communications, 2013, 200, 1542-1552.                                                                            | 2.6  | 8         |
| 126 | Comparison of the effects of χ phase- and Si- modified γ-Al2O3 supported Pt catalysts in CO oxidation.<br>Catalysis Communications, 2014, 56, 92-95.                                                                                           | 3.3  | 8         |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | CuAl2O4–CuO–Al2O3 catalysts prepared by flame-spray pyrolysis for glycerol hydrogenolysis.<br>Molecular Catalysis, 2022, 523, 111426.                                                                                      | 2.0 | 8         |
| 128 | Effects of Si- and Y-modified nanocrystalline zirconia on the properties of Co/ZrO2 catalysts.<br>Catalysis Communications, 2006, 7, 761-767.                                                                              | 3.3 | 7         |
| 129 | Effects of impregnation solvent and reduction temperature on the catalytic performance of Pd/Al2O3<br>in the selective hydrogenation of 1,3-butadiene. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103,<br>405-417. | 1.7 | 7         |
| 130 | Pd/TiO2 catalysts prepared by electroless deposition with and without SnCl2 sensitization for the liquid-phase hydrogenation of 3-hexyn-1-ol. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 123-135.             | 1.7 | 7         |
| 131 | Effect of N2O pretreatment on fresh and regenerated Pd-Ag $\hat{h}$ ±-Al2O3 catalysts during selective hydrogenation of acetylene. Reaction Kinetics and Catalysis Letters, 2007, 91, 195-202.                             | 0.6 | 6         |
| 132 | Impact of quenching process on the surface defect of titanium dioxide for hydrogen production from photocatalytic decomposition of water. Journal of Industrial and Engineering Chemistry, 2009, 15, 77-81.                | 5.8 | 6         |
| 133 | Effect of Fe-modified α-Al2O3 on the properties of Pd/α-Al2O3 catalysts in selective acetylene hydrogenation. Reaction Kinetics and Catalysis Letters, 2009, 97, 115-123.                                                  | 0.6 | 6         |
| 134 | Improvement of propane oxidation activity over Pt/Al2O3 by the use of MIXED γ- and χ-Al2O3 supports.<br>Reaction Kinetics, Mechanisms and Catalysis, 2010, 100, 441.                                                       | 1.7 | 6         |
| 135 | CHARACTERISTICS OF ACTIVATED CARBONS DERIVED FROM DEOILED RICE BRAN RESIDUES. Chemical Engineering Communications, 2013, 200, 1309-1321.                                                                                   | 2.6 | 6         |
| 136 | Liquid-Phase Hydrogenation of Phenylacetylene Over the Nano-Sized Pd/TiO <sub>2</sub> Catalysts.<br>Journal of Nanoscience and Nanotechnology, 2014, 14, 3170-3175.                                                        | 0.9 | 6         |
| 137 | CO2 hydrogenation over FSP-made iron supported on cerium modified alumina catalyst. Catalysis<br>Today, 2021, 375, 307-313.                                                                                                | 4.4 | 6         |
| 138 | Effect of the Nanostructured Zn/Cu Electrocatalyst Morphology on the Electrochemical Reduction of CO2 to Value-Added Chemicals. Nanomaterials, 2021, 11, 1671.                                                             | 4.1 | 6         |
| 139 | Formation and growth characteristics of nanostructured carbon films on nascent Ag clusters during room-temperature electrochemical CO <sub>2</sub> reduction. Nanoscale Advances, 2022, 4, 2255-2267.                      | 4.6 | 6         |
| 140 | Sugarcane Bagasse Ash as a Catalyst Support for Facile and Highly Scalable Preparation of Magnetic<br>Fenton Catalysts for Ultra-Highly Efficient Removal of Tetracycline. Catalysts, 2022, 12, 446.                       | 3.5 | 6         |
| 141 | Effects of the support crystallite size and the reduction temperature on the properties of Pd/α-Al2O3 catalysts in selective acetylene hydrogenation. Reaction Kinetics and Catalysis Letters, 2008, 94, 233-241.          | 0.6 | 5         |
| 142 | Tuning Pt dispersion and oxygen mobility of Pt/γ-Al2O3 by Si addition for CO oxidation. Reaction<br>Kinetics, Mechanisms and Catalysis, 2016, 117, 565-581.                                                                | 1.7 | 5         |
| 143 | Influence of acidity on the performance of silica supported tungsten oxide catalysts assessed by in situ and Operando DRIFTS. Catalysis Today, 2020, 358, 345-353.                                                         | 4.4 | 5         |
| 144 | Sequential electrodeposition of Cu–Pt bimetallic nanocatalysts on boron-doped diamond electrodes<br>for the simple and rapid detection of methanol. Scientific Reports, 2021, 11, 14354.                                   | 3.3 | 5         |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Porous Electrodeposited Cu as a Potential Electrode for Electrochemical Reduction Reactions of CO2. Applied Sciences (Switzerland), 2021, 11, 11104.                                                                      | 2.5 | 5         |
| 146 | Effect of TiO2 crystallite size on the dispersion of Co on nanocrystalline TiO2. Reaction Kinetics and Catalysis Letters, 2007, 91, 119-126.                                                                              | 0.6 | 4         |
| 147 | Effect of N <sub>2</sub> pretreatment on the basicity, structural change, and isomerization activity<br>of MgO and MgO/Mg(OH) <sub>2</sub> catalysts. Asia-Pacific Journal of Chemical Engineering, 2015, 10,<br>248-258. | 1.5 | 4         |
| 148 | Catalytic Cracking of Biodiesel Waste Using Metal Supported SBA-15 Mesoporous Catalysts. Catalysts, 2019, 9, 291.                                                                                                         | 3.5 | 4         |
| 149 | Influence of surface Sn species and hydrogen interactions on the OH group formation over spherical silica-supported tin oxide catalysts. Reaction Chemistry and Engineering, 2020, 5, 1814-1823.                          | 3.7 | 4         |
| 150 | Catalytic performance of ZnO nanoparticle in formation of LLDPE/ZnO nanocomposites. Iranian<br>Polymer Journal (English Edition), 2012, 21, 51-63.                                                                        | 2.4 | 3         |
| 151 | LLDPE/TiO2 nanocomposites produced from different crystallite sizes of TiO2 via in situ polymerization. Science Bulletin, 2012, 57, 2177-2184.                                                                            | 1.7 | 3         |
| 152 | One-step preparation of Pt–Ce and Pt–Sn–Ce/Al2O3 catalysts by flame spray pyrolysis in propane<br>dehydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 149-158.                                       | 1.7 | 3         |
| 153 | Propylsulfonic acid functionalized MCA cubic mesoporous and ZSM-5-MCA composite catalysts for anisole alkylation. Microporous and Mesoporous Materials, 2017, 239, 253-262.                                               | 4.4 | 3         |
| 154 | Identification of extremely hard coke generation by low-temperature reaction on tungsten catalysts<br>via Operando and in situ techniques. Scientific Reports, 2021, 11, 8071.                                            | 3.3 | 3         |
| 155 | Deactivation of silica supported Pd catalysts during liquid-phase hydrogenation. Reaction Kinetics and Catalysis Letters, 2005, 86, 141-147.                                                                              | 0.6 | 2         |
| 156 | Role of ruthenium in the reduction behavior of ruthenium-promoted cobalt/titania Fischer-Tropsch catalystsÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 65-71.                                                    | 0.6 | 2         |
| 157 | Characteristics and Catalytic Behavior of Pd Catalysts Supported on Nanostructure Titanate in<br>Liquid-Phase Hydrogenation. Journal of Nanoscience and Nanotechnology, 2013, 13, 3062-3067.                              | 0.9 | 2         |
| 158 | Influence of autogeneous pressure under hydrothermal reaction on the structural and thermal stability of nanostructured titanates. Ceramics International, 2014, 40, 2323-2329.                                           | 4.8 | 2         |
| 159 | Synthesis and Characteristics of CaO/MgO Mixed Oxides for the Double Bond Isomerization of 1-Butene. Journal of Nanoscience and Nanotechnology, 2018, 18, 439-444.                                                        | 0.9 | 2         |
| 160 | Differences in acid and catalytic properties of W incorporated spherical SiO2 and 1%Al-doped SiO2 in propene metathesis. Catalysis Today, 2020, , .                                                                       | 4.4 | 2         |
| 161 | Metathesis of Ethylene and Trans-2-Butene over MgO Admixed WO3/SiO2 Catalysts. Engineering<br>Journal, 2017, 21, 1-16.                                                                                                    | 1.0 | 2         |
| 162 | Characteristics and catalytic properties of La-modified ZrO2 supported cobalt catalysts in CO hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 367-378.                                             | 1.7 | 1         |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Ethylene and mixed 2-butene cis/trans isomers metathesis: Influence of lanthanum as a second metal on the WO3/SiO2 catalysts. Korean Journal of Chemical Engineering, 2016, 33, 140-146.                                               | 2.7 | 1         |
| 164 | Second metals (Lanthanum, Cerium, and Yttrium) modified W/SiO 2 catalysts for metathesis of ethylene and 2-butene. Catalysis Today, 2018, 309, 43-50.                                                                                  | 4.4 | 1         |
| 165 | Zirconia Modification on Nanocrystalline Titania-Supported Cobalt Catalysts for Methanation.<br>Engineering Journal, 2012, 16, 29-38.                                                                                                  | 1.0 | 1         |
| 166 | Liquid-Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol over Ferromagnetic Element<br>(Fe, Co, Ni, Nd)-Promoted Pt Catalysts Supported on Activated Carbon. Catalysts, 2022, 12, 393.                                     | 3.5 | 1         |
| 167 | Effect of Si addition on the properties of nanocrystalline ZrO2-supported cobalt catalysts. Reaction<br>Kinetics and Catalysis Letters, 2005, 87, 185-190.                                                                             | 0.6 | 0         |
| 168 | Solvothermal-Derived Nanocrystalline TiO <sub>2</sub> Supported Co Catalysts in the Hydrogenation of Carbonmonoxide. Advanced Materials Research, 2013, 634-638, 595-598.                                                              | 0.3 | 0         |
| 169 | Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst. AIP Conference<br>Proceedings, 2015, , .                                                                                                               | 0.4 | Ο         |
| 170 | Aqueous-phase Selective Hydrogenation of Furfural to Furfuryl Alcohol over Ordered-mesoporous<br>Carbon Supported Pt Catalysts Prepared by One-step Modified Soft-template Self-assembly Method.<br>Journal of Oleo Science, 2022, , . | 1.4 | 0         |