
Paul G. Wyatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of TAM16, a Benzofuran That Inhibits the Thioesterase Activity of Pks13; Evaluation toward a Preclinical Candidate for a Novel Antituberculosis Clinical Target. Journal of Medicinal Chemistry, 2022, 65, 409-423.	6.4	15
2	Structure–Activity Relationships of Pyrazolo[1,5- <i>a</i>]pyrimidin-7(4 <i>H</i>)-ones as Antitubercular Agents. ACS Infectious Diseases, 2021, 7, 479-492.	3.8	9
3	Antitubercular 2-Pyrazolylpyrimidinones: Structure–Activity Relationship and Mode-of-Action Studies. Journal of Medicinal Chemistry, 2021, 64, 719-740.	6.4	9
4	A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 2021, 19, e3001091.	5.6	163
5	Scaffold-Hopping Strategy on a Series of Proteasome Inhibitors Led to a Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 5905-5930.	6.4	25
6	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>l</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	3.8	3
7	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	30.7	32
8	Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS ONE, 2021, 16, e0253364.	2.5	55
9	Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chemical Biology, 2021, 28, 1180-1191.e20.	5.2	5
10	Ligand binding: evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method. Journal of Computer-Aided Molecular Design, 2021, 35, 1025-1036.	2.9	8
11	Spirocycle MmpL3 Inhibitors with Improved hERG and Cytotoxicity Profiles as Inhibitors of <i>Mycobacterium tuberculosis</i> Growth. ACS Omega, 2021, 6, 2284-2311.	3.5	19
12	Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nature Communications, 2021, 12, 143.	12.8	8
13	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	3.8	17
14	Targeting N-myristoylation for therapy of B-cell lymphomas. Nature Communications, 2020, 11, 5348.	12.8	35
15	Identification and Optimization of a Series of 8-Hydroxy Naphthyridines with Potent In Vitro Antileishmanial Activity: Initial SAR and Assessment of In Vivo Activity. Journal of Medicinal Chemistry, 2020, 63, 9523-9539.	6.4	8
16	Identification of 6-amino-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidines with <i>in vivo</i> efficacy against visceral leishmaniasis. RSC Medicinal Chemistry, 2020, 11, 1168-1177.	3.9	2
17	PE/PPE proteins mediate nutrient transport across the outer membrane of <i>Mycobacterium tuberculosis</i> . Science, 2020, 367, 1147-1151.	12.6	110
18	Inhibition of CorA-Dependent Magnesium Homeostasis Is Cidal in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9

#	Article	IF	CITATIONS
19	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
20	Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9318-9323.	7.1	119
21	Discovery of Soft-Drug Topical Tool Modulators of Sphingosine-1-phosphate Receptor 1 (S1PR1). ACS Medicinal Chemistry Letters, 2019, 10, 341-347.	2.8	5
22	Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2019, 62, 1180-1202.	6.4	33
23	Diversity-oriented synthesis of bicyclic fragments containing privileged azines. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 248-251.	2.2	10
24	Pharmacological Validation of <i>N</i> -Myristoyltransferase as a Drug Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2019, 5, 111-122.	3.8	55
25	A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semiâ€6aturated Heterobicyclic Fragments. European Journal of Organic Chemistry, 2019, 2019, 1341-1349.	2.4	6
26	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	3.8	49
27	Screening of a Novel Fragment Library with Functional Complexity against <i>Mycobacterium tuberculosis</i> InhA. ChemMedChem, 2018, 13, 672-677.	3.2	10
28	A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8374-8389.	6.4	41
29	Identification of Morpholino Thiophenes as Novel <i>Mycobacterium tuberculosis</i> Inhibitors, Targeting QcrB. Journal of Medicinal Chemistry, 2018, 61, 6592-6608.	6.4	43
30	2,4-Diamino-6-methylpyrimidines for the potential treatment of Chagas' disease. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3025-3030.	2.2	5
31	Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature, 2018, 560, 192-197.	27.8	112
32	Discovery of super soft-drug modulators of sphingosine-1-phosphate receptor 1. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3255-3259.	2.2	18
33	Generation of Polar Semiâ€Saturated Bicyclic Pyrazoles for Fragmentâ€Based Drugâ€Discovery Campaigns Chemistry - A European Journal, 2018, 24, 10443-10451.	3.3	13
34	Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nature Reviews Microbiology, 2017, 15, 217-231.	28.6	315
35	Drug discovery for male subfertility using high-throughput screening: a new approach to an unsolved problem. Human Reproduction, 2017, 32, 974-984.	0.9	19
36	Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2017, 60, 7284-7299.	6.4	31

#	Article	IF	CITATIONS
37	Design and Synthesis of Brain Penetrant Trypanocidal <i>N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 9790-9806.	6.4	14
38	Fragment library design, synthesis and expansion: nurturing a synthesis and training platform. Drug Discovery Today, 2017, 22, 43-56.	6.4	35
39	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
40	Screening a protein kinase inhibitor library against Plasmodium falciparum. Malaria Journal, 2017, 16, 446.	2.3	12
41	Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. Journal of Medicinal Chemistry, 2016, 59, 9672-9685.	6.4	66
42	Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infectious Diseases, 2016, 2, 552-563.	3.8	110
43	Discovery of Inhibitors of <i>Trypanosoma brucei</i> by Phenotypic Screening of a Focused Protein Kinase Library. ChemMedChem, 2015, 10, 1809-1820.	3.2	15
44	Development of Smallâ€Molecule <i>Trypanosoma brucei N</i> â€Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode. ChemMedChem, 2015, 10, 1821-1836.	3.2	20
45	<i>N</i> -Myristoyltransferase Is a Cell Wall Target in <i>Aspergillus fumigatus</i> . ACS Chemical Biology, 2015, 10, 1425-1434.	3.4	38
46	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
47	Identification and structure solution of fragment hits against kinetoplastid <i>N</i> -myristoyltransferase. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 586-593.	0.8	2
48	Discovery of Indoline-2-carboxamide Derivatives as a New Class of Brain-Penetrant Inhibitors of <i>Trypanosoma brucei</i> . Journal of Medicinal Chemistry, 2015, 58, 7695-7706.	6.4	28
49	A Target Repurposing Approach Identifies N-myristoyltransferase as a New Candidate Drug Target in Filarial Nematodes. PLoS Neglected Tropical Diseases, 2014, 8, e3145.	3.0	20
50	Lead Optimization of a Pyrazole Sulfonamide Series of <i>Trypanosoma brucei</i> <i>N</i> -Myristoyltransferase Inhibitors: Identification and Evaluation of CNS Penetrant Compounds as Potential Treatments for Stage 2 Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014, 57, 9855-9869.	6.4	57
51	Respiratory Flexibility in Response to Inhibition of Cytochrome <i>c</i> Oxidase in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6962-6965.	3.2	116
52	Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity. Human Reproduction, 2014, 29, 2123-2135.	0.9	44
53	The Design and Synthesis of Potent and Selective Inhibitors ofTrypanosoma bruceiGlycogen Synthase Kinase 3 for the Treatment of Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014, 57, 7536-7549.	6.4	28
54	Fragment-based hit identification: thinking in 3D. Drug Discovery Today, 2013, 18, 1221-1227.	6.4	132

#	Article	IF	CITATIONS
55	<i>De Novo</i> Design of Protein Kinase Inhibitors by <i>in Silico</i> Identification of Hinge Region-Binding Fragments. ACS Chemical Biology, 2013, 8, 1044-1052.	3.4	47
56	Comparison of a High-Throughput High-Content Intracellular Leishmania donovani Assay with an Axenic Amastigote Assay. Antimicrobial Agents and Chemotherapy, 2013, 57, 2913-2922.	3.2	135
57	Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design. PLoS Neglected Tropical Diseases, 2013, 7, e2492.	3.0	34
58	Structure–Activity Relationship Studies of Pyrrolone Antimalarial Agents. ChemMedChem, 2013, 8, 1537-1544.	3.2	32
59	From Onâ€Target to Offâ€Target Activity: Identification and Optimisation of <i>Trypanosoma brucei</i> GSK3 Inhibitors and Their Characterisation as Antiâ€ <i>Trypanosoma brucei</i> Drug Discovery Lead Molecules. ChemMedChem, 2013, 8, 1127-1137.	3.2	30
60	Chemical Proteomic Analysis Reveals the Drugability of the Kinome of <i>Trypanosoma brucei</i> . ACS Chemical Biology, 2012, 7, 1858-1865.	3.4	53
61	Discovery of a Novel Class of Orally Active Trypanocidal <i>N</i> Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 140-152.	6.4	102
62	Quinol derivatives as potential trypanocidal agents. Bioorganic and Medicinal Chemistry, 2012, 20, 1607-1615.	3.0	17
63	Design, Synthesis and Biological Evaluation of <i>Trypanosoma brucei</i> Trypanothione Synthetase Inhibitors. ChemMedChem, 2012, 7, 95-106.	3.2	42
64	Dihydroquinazolines as a Novel Class of Trypanosoma brucei Trypanothione Reductase Inhibitors: Discovery, Synthesis, and Characterization of their Binding Mode by Protein Crystallography. Journal of Medicinal Chemistry, 2011, 54, 6514-6530.	6.4	110
65	Editorial [Hot Topic: Progress in Neglected Disease Drug Discovery (Guest Editors: Andrew L. Hopkins) Tj ETQq1	l 0,78431 2.1	4 rgBT /Ove
66	Target Validation: Linking Target and Chemical Properties to Desired Product Profile. Current Topics in Medicinal Chemistry, 2011, 11, 1275-1283.	2.1	99
67	Design, Synthesis and Biological Evaluation of Novel Inhibitors of <i>Trypanosoma brucei</i> Pteridine Reductaseâ€1. ChemMedChem, 2011, 6, 302-308.	3.2	39
68	Optimisation of the Antiâ€ <i>Trypanosoma brucei</i> Activity of the Opioid Agonist U50488. ChemMedChem, 2011, 6, 1832-1840.	3.2	7
69	Identification of Inhibitors of the <i>Leishmania</i> cdc2â€Related Protein Kinase CRK3. ChemMedChem, 2011, 6, 2214-2224.	3.2	45
70	Antitumor Quinol PMX464 Is a Cytocidal Anti-trypanosomal Inhibitor Targeting Trypanothione Metabolism. Journal of Biological Chemistry, 2011, 286, 8523-8533.	3.4	31
71	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	27.8	272
72	Nuclear DBF-2-related Kinases Are Essential Regulators of Cytokinesis in Bloodstream Stage Trypanosoma brucei. Journal of Biological Chemistry, 2010, 285, 15356-15368.	3.4	35

#	Article	IF	CITATIONS
73	Drug discovery in academia: the third way?. Expert Opinion on Drug Discovery, 2010, 5, 909-919.	5.0	52
74	Chemical Validation of Trypanothione Synthetase. Journal of Biological Chemistry, 2009, 284, 36137-36145.	3.4	68
75	The emerging academic drug-discovery sector. Future Medicinal Chemistry, 2009, 1, 1013-1017.	2.3	15
76	Synthesis and Evaluation of 1â€{1â€{Benzo[<i>b</i>]thiophenâ€2â€yl)cyclohexyl)piperidine (BTCP) Analogues as Inhibitors of Trypanothione Reductase. ChemMedChem, 2009, 4, 1341-1353.	3.2	45
77	Investigation of Trypanothione Reductase as a Drug Target in <i>Trypanosoma brucei</i> . ChemMedChem, 2009, 4, 2060-2069.	3.2	54
78	Fragment-Based Discovery of the Pyrazol-4-yl Urea (AT9283), a Multitargeted Kinase Inhibitor with Potent Aurora Kinase Activity. Journal of Medicinal Chemistry, 2009, 52, 379-388.	6.4	304
79	One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening. Journal of Medicinal Chemistry, 2009, 52, 4454-4465.	6.4	96
80	Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem, 2008, 3, 435-444.	3.2	409
81	ldentification of <i>N</i> -(4-Piperidinyl)-4-(2,6-dichlorobenzoylamino)-1 <i>H</i> -pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. Journal of Medicinal Chemistry, 2008, 51, 4986-4999.	6.4	317
82	Identification of Inhibitors of Protein Kinase B Using Fragment-Based Lead Discoveryâ€. Journal of Medicinal Chemistry, 2007, 50, 2293-2296.	6.4	128
83	Target assessment for antiparasitic drug discovery. Trends in Parasitology, 2007, 23, 589-595.	3.3	130
84	Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B. Bioorganic and Medicinal Chemistry, 2006, 14, 1255-1273.	3.0	40
85	2,5-Diketopiperazines as potent and selective oxytocin antagonists 1: identification, stereochemistry and initial SAR. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2579-2582.	2.2	65
86	2,5-Diketopiperazines as Potent, Selective, and Orally Bioavailable Oxytocin Antagonists. 2. Synthesis, Chirality, and Pharmacokinetics. Journal of Medicinal Chemistry, 2005, 48, 6956-6969.	6.4	50
87	Detection of Ligands from a Dynamic Combinatorial Library by X-ray Crystallography. Angewandte Chemie - International Edition, 2003, 42, 4479-4482.	13.8	92
88	Identification of potent and selective oxytocin antagonists. Part 1: indole and benzofuran derivatives. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1399-1404.	2.2	30
89	Identification of potent and selective oxytocin antagonists. Part 2: further investigation of benzofuran derivatives. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1405-1411.	2.2	47
90	Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4H-pyran-2-carboxylic acid-6-propylamides. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 669-673.	2.2	46

#	Article	IF	CITATIONS
91	Structure–activity relationship investigations of a potent and selective benzodiazepine oxytocin antagonist. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1301-1305.	2.2	41
92	Dihydropyrancarboxamides Related to Zanamivir:Â A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structureâ ''Activity Relationships of 4-Guanidino- and 4-Amino-4H-pyran-6-carboxamides. Journal of Medicinal Chemistry, 1998, 41, 787-797.	6.4	324