Cécile Engrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	3.7	4
2	PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars. Publications of the Astronomical Society of the Pacific, 2022, 134, 054301.	3.1	26
3	Heterogeneous nature of the carbonaceous chondrite breccia Aguas Zarcas – Cosmochemical characterization and origin of new carbonaceous chondrite lithologies. Geochimica Et Cosmochimica Acta, 2022, 334, 155-186.	3.9	7
4	D/H in the refractory organics of comet 67P/Churyumov-Gerasimenko measured by <i>Rosetta</i> /COSIMA. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4940-4951.	4.4	11
5	Electrical properties of cometary dust particles derived from line shapes of TOF-SIMS spectra measured by the ROSETTA/COSIMA instrument. Planetary and Space Science, 2020, 182, 104758.	1.7	2
6	Optical properties of cometary particles collected by COSIMA: Assessing the differences between microscopic and macroscopic scales. Planetary and Space Science, 2020, 182, 104815.	1.7	4
7	On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. Space Science Reviews, 2020, 216, 102.	8.1	42
8	Interplanetary Dust, Meteoroids, Meteors and Meteorites. Space Science Reviews, 2019, 215, 1.	8.1	49
9	Identification of organic molecules with a laboratory prototype based on the Laser Ablation-CosmOrbitrap. Planetary and Space Science, 2019, 170, 42-51.	1.7	18
10	Nanometre-scale infrared chemical imaging of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMs). Astronomy and Astrophysics, 2019, 622, A160.	5.1	20
11	Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometer scale. Astronomy and Astrophysics, 2019, 630, A26.	5.1	61
12	H/C elemental ratio of the refractory organic matter in cometary particles of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A27.	5.1	22
13	The oxygen isotopic composition (18O/16O) in the dust of comet 67P/Churyumov-Gerasimenko measured by COSIMA on-board Rosetta. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3836-3844.	4.4	10
14	Cometary Dust. Space Science Reviews, 2018, 214, 1.	8.1	88
15	The Rosetta Mission and the Chemistry of Organic Species in Comet 67P/Churyumov–Gerasimenko. Elements, 2018, 14, 95-100.	0.5	12
16	Dome C ultracarbonaceous Antarctic micrometeorites. Astronomy and Astrophysics, 2018, 609, A65.	5.1	38
17	Evidence for depletion of heavy silicon isotopes at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 601, A123.	5.1	26
18	Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160255.	3.4	19

CéCILE ENGRAND

#	Article	IF	CITATIONS
19	Nitrogen-to-carbon atomic ratio measured by COSIMA in the particles of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S506-S516.	4.4	49
20	Similarities in element  content between comet 67P/Churyumov–Gerasimenko coma dust and selected meteorite samples. Monthly Notices of the Royal Astronomical Society, 2017, 469, S492-S505.	4.4	14
21	Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S712-S722.	4.4	177
22	Optical properties of cometary particles collected by the COSIMA mass spectrometer on-board Rosetta during the rendezvous phase around comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S535-S549.	4.4	17
23	Irradiation of nitrogen-rich ices by swift heavy ions. Astronomy and Astrophysics, 2016, 592, A99.	5.1	20
24	Variations in cometary dust composition from <i>Giotto</i> to <i>Rosetta</i> , clues to their formation mechanisms. Monthly Notices of the Royal Astronomical Society, 2016, 462, S323-S330.	4.4	28
25	Composition of Cosmic Dust: Sources and Implications for the Early Solar System. Elements, 2016, 12, 177-183.	0.5	20
26	Organic Matter in Cosmic Dust. Elements, 2016, 12, 185-189.	0.5	16
27	High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 538, 72-74.	27.8	124
28	Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype. Planetary and Space Science, 2016, 131, 33-45.	1.7	47
29	A first assessment of the strength of cometary particles collected in-situ by the COSIMA instrument onboard ROSETTA. Planetary and Space Science, 2016, 133, 63-75.	1.7	65
30	Searching for calciumâ€aluminumâ€rich inclusions in cometary particles with Rosetta/ <scp>COSIMA</scp> . Meteoritics and Planetary Science, 2016, 51, 1340-1352.	1.6	22
31	COMET 67P/CHURYUMOV–GERASIMENKO: CLOSE-UP ON DUST PARTICLE FRAGMENTS. Astrophysical Journal Letters, 2016, 816, L32.	8.3	84
32	Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko. Icarus, 2016, 271, 76-97.	2.5	141
33	The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites. Proceedings of the International Astronomical Union, 2015, 11, 253-256.	0.0	2
34	Cometary Isotopic Measurements. Space Science Reviews, 2015, 197, 47-83.	8.1	112
35	Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years. Nature, 2015, 518, 216-218.	27.8	144
36	COSIMA-Rosetta calibration for in situ characterization of 67P/Churyumov–Gerasimenko cometary inorganic compounds. Planetary and Space Science, 2015, 117, 35-44.	1.7	15

CéCILE ENGRAND

#	Article	IF	CITATIONS
37	Collecting cometary dust particles on metal blacks with the COSIMA instrument onboard ROSETTA. Planetary and Space Science, 2014, 103, 309-317.	1.7	28
38	UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line. Icarus, 2013, 224, 243-252.	2.5	103
39	Transmission Electron Microscopy of CONCORDIA UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs): Mineralogical properties. Geochimica Et Cosmochimica Acta, 2012, 76, 68-82.	3.9	78
40	Random projection for dimensionality reduction—Applied to time-of-flight secondary ion mass spectrometry data. Analytica Chimica Acta, 2011, 705, 48-55.	5.4	13
41	Extreme Deuterium Excesses in Ultracarbonaceous Micrometeorites from Central Antarctic Snow. Science, 2010, 328, 742-745.	12.6	160
42	Cosima – High Resolution Time-of-Flight Secondary Ion Mass Spectrometer for the Analysis of Cometary Dust Particles onboard Rosetta. Space Science Reviews, 2007, 128, 823-867.	8.1	139
43	Micrometeorites from Central Antarctic snow: The CONCORDIA collection. Advances in Space Research, 2007, 39, 605-611.	2.6	95
44	Chemometric evaluation of time-of-flight secondary ion mass spectrometry data of minerals in the frame of futurein situ analyses of cometary material by COSIMA onboard ROSETTA. Rapid Communications in Mass Spectrometry, 2006, 20, 1361-1368.	1.5	13
45	Clues to the origin of interplanetary dust particles from the isotopic study of their hydrogen-bearing phases. Geochimica Et Cosmochimica Acta, 2001, 65, 4399-4412.	3.9	81
46	Carbonaceous micrometeorites from Antarctica. Meteoritics and Planetary Science, 1998, 33, 565-580.	1.6	176