José L Figueiredo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2584134/publications.pdf

Version: 2024-02-01

340 papers 22,586 citations

80 h-index 132 g-index

360 all docs

 $\begin{array}{c} 360 \\ \\ \text{docs citations} \end{array}$

times ranked

360

20204 citing authors

#	Article	IF	CITATIONS
1	Fe, Co, N-doped carbon nanotubes as bifunctional oxygen electrocatalysts. Applied Surface Science, 2022, 572, 151459.	6.1	3
2	In situ growth and crystallization of TiO2 on polymeric membranes for the photocatalytic degradation of diclofenac and 17î±-ethinylestradiol. Chemical Engineering Journal, 2022, 427, 131476.	12.7	32
3	Syngas production by bi-reforming of methane on a bimetallic Ni-ZnO doped zeolite 13X. Fuel, 2022, 311, 122592.	6.4	10
4	One-Pot Thermal Synthesis of g-C3N4/ZnO Composites for the Degradation of 5-Fluoruracil Cytostatic Drug under UV-LED Irradiation. Nanomaterials, 2022, 12, 340.	4.1	12
5	Specific adsorbents for the treatment of OMW phenolic compounds by activation of bio-residues from the olive oil industry. Journal of Environmental Management, 2022, 306, 114490.	7.8	12
6	Sustainable iron-olive stone-based catalysts for Fenton-like olive mill wastewater treatment: Development and performance assessment in continuous fixed-bed reactor operation. Chemical Engineering Journal, 2022, 435, 134809.	12.7	19
7	Optimization of the preparation conditions of cordierite honeycomb monoliths washcoated with cryptomelane-type manganese oxide for VOC oxidation. Environmental Technology (United Kingdom), 2021, 42, 2504-2515.	2.2	8
8	Graphene-based catalytic membranes for water treatment – A review. Journal of Environmental Chemical Engineering, 2021, 9, 104930.	6.7	20
9	Electrochemical oxidation of diclofenac on CNT and M/CNT modified electrodes. New Journal of Chemistry, 2021, 45, 12622-12633.	2.8	7
1		\	
10	Carbon Nanomaterials for Air and Water Remediation. , 2021, , 331-365.		1
10	Carbon Nanomaterials for Air and Water Remediation. , 2021, , 331-365. A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and Platinum-Catalysts Based on Carbon Gels. Journal of Carbon Research, 2021, 7, 21.	2.7	2
	A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and	2.7	
11	A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and Platinum-Catalysts Based on Carbon Gels. Journal of Carbon Research, 2021, 7, 21. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon		2
11 12	A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and Platinum-Catalysts Based on Carbon Gels. Journal of Carbon Research, 2021, 7, 21. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42. Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation. Catalysts,	2.7	83
11 12 13	A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and Platinum-Catalysts Based on Carbon Gels. Journal of Carbon Research, 2021, 7, 21. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42. Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation. Catalysts, 2021, 11, 578.	2.7 3.5	2 83 7
11 12 13	A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and Platinum-Catalysts Based on Carbon Gels. Journal of Carbon Research, 2021, 7, 21. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42. Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation. Catalysts, 2021, 11, 578. Green Chemistry and Environmental Processes. Catalysts, 2021, 11, 643. Dibenzothiophene adsorption onto carbon-based adsorbent produced from the coconut shell: Effect of the functional groups density and textural properties on kinetics and equilibrium. Fuel, 2021, 292,	2.7 3.5 3.5	2 83 7 0
11 12 13 14	A Comparative Study of Aromatization Catalysts: The Advantage of Hybrid Oxy/Carbides and Platinum-Catalysts Based on Carbon Gels. Journal of Carbon Research, 2021, 7, 21. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42. Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation. Catalysts, 2021, 11, 578. Green Chemistry and Environmental Processes. Catalysts, 2021, 11, 643. Dibenzothiophene adsorption onto carbon-based adsorbent produced from the coconut shell: Effect of the functional groups density and textural properties on kinetics and equilibrium. Fuel, 2021, 292, 120354. Supported Biofilms on Carbon–Oxide Composites for Nitrate Reduction in Agricultural Waste Water.	2.7 3.5 3.5	2 83 7 0

#	Article	IF	Citations
19	Photocatalytic Perfomance of ZnO-Graphene Oxide Composites towards the Degradation of Vanillic Acid under Solar Radiation and Visible-LED. Nanomaterials, 2021, 11, 1576.	4.1	21
20	Direct catalytic conversion of agro-forestry biomass wastes into ethylene glycol over CNT supported Ru and W catalysts. Industrial Crops and Products, 2021, 166, 113461.	5.2	19
21	Degradation and mineralization of oxalic acid using catalytic wet oxidation over carbon coated ceramic monoliths. Journal of Environmental Chemical Engineering, 2021, 9, 105369.	6.7	9
22	Solid acid carbon catalysts for sustainable production of biofuel enhancers via transesterification of glycerol with ethyl acetate. Fuel, 2021, 304, 121381.	6.4	9
23	Photocatalytic membranes: Synthesis, properties, and applications. , 2021, , 385-406.		0
24	Solvent-free oxidation of 1-phenylethanol catalysed by gold nanoparticles supported on carbon powder materials. Catalysis Today, 2020, 357, 22-31.	4.4	7
25	Electrochemical oxidation of amoxicillin on carbon nanotubes and carbon nanotube supported metal modified electrodes. Catalysis Today, 2020, 357, 322-331.	4.4	15
26	Commercial gold(III) complex supported on functionalized carbon materials as catalyst for cyclohexane hydrocarboxylation. Catalysis Today, 2020, 357, 39-45.	4.4	5
27	Hydroaminomethylation reaction as powerful tool for preparation of rhodium/phosphine-functionalized nanomaterials. Catalytic evaluation in styrene hydroformylation. Catalysis Today, 2020, 356, 456-463.	4.4	6
28	Metal-free carbon materials as catalysts for wet air oxidation. Catalysis Today, 2020, 356, 189-196.	4.4	20
29	Carbon nanotubes as catalysts for wet peroxide oxidation: The effect of surface chemistry. Catalysis Today, 2020, 357, 332-340.	4.4	18
30	Effect of ball milling on the catalytic activity of cryptomelane for VOC oxidation. Environmental Technology (United Kingdom), 2020, 41, 117-130.	2.2	14
31	The pH effect on the kinetics of 4-nitrophenol removal by CWPO with doped carbon black catalysts. Catalysis Today, 2020, 356, 216-225.	4.4	20
32	Preparation of ceramic and metallic monoliths coated with cryptomelane as catalysts for VOC abatement. Chemical Engineering Journal, 2020, 382, 122923.	12.7	23
33	Effect of porous structure on doping and the catalytic performance of carbon xerogels towards the oxygen reduction reaction. Microporous and Mesoporous Materials, 2020, 293, 109811.	4.4	16
34	Phosphorus-doped carbon/carbon nanotube hybrids as high-performance electrodes for supercapacitors. Electrochimica Acta, 2020, 354, 136713.	5.2	16
35	Influence of Electrostatic Interactions During the Resorcinol-Formaldehyde Polymerization on the Characteristics of Mo-Doped Carbon Gels. Processes, 2020, 8, 746.	2.8	8
36	Carbon-Supported Mo2C for Oxygen Reduction Reaction Electrocatalysis. Nanomaterials, 2020, 10, 1805.	4.1	9

#	Article	IF	CITATIONS
37	Impact of Thermal Treatment of Nb2O5 on Its Performance in Glucose Dehydration to 5-Hydroxymethylfurfural in Water. Nanomaterials, 2020, 10, 1685.	4.1	16
38	Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts. Catalysts, 2020, 10, 1402.	3.5	9
39	Fitting Biochars and Activated Carbons from Residues of the Olive Oil Industry as Supports of Fe- Catalysts for the Heterogeneous Fenton-Like Treatment of Simulated Olive Mill Wastewater. Nanomaterials, 2020, 10, 876.	4.1	23
40	Functionalized Graphene Derivatives and TiO2 for High Visible Light Photodegradation of Azo Dyes. Nanomaterials, 2020, 10, 1106.	4.1	12
41	Syngas production by bi-reforming methane on an Ni–K-promoted catalyst using hydrotalcites and filamentous carbon as a support material. RSC Advances, 2020, 10, 21158-21173.	3.6	7
42	Advanced oxidation technologies combined with direct contact membrane distillation for treatment of secondary municipal wastewater. Chemical Engineering Research and Design, 2020, 140, 111-123.	5.6	25
43	Hydrothermal Carbon/Carbon Nanotube Composites as Electrocatalysts for the Oxygen Reduction Reaction. Journal of Composites Science, 2020, 4, 20.	3.0	6
44	Element-Doped Functional Carbon-Based Materials. Materials, 2020, 13, 333.	2.9	8
45	Hummers' and Brodie's graphene oxides as photocatalysts for phenol degradation. Journal of Colloid and Interface Science, 2020, 567, 243-255.	9.4	49
46	The impact of surface chemistry of carbon xerogels on their performance in phenol removal from wastewaters via combined adsorption-catalytic process. Applied Surface Science, 2020, 511, 145467.	6.1	22
47	Cellulose–TiO2 composites for the removal of water pollutants. , 2020, , 329-358.		8
48	Highly electroactive N–Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction. Journal of Energy Chemistry, 2020, 50, 260-270.	12.9	13
49	Ethanol Electrooxidation at Platinum-Rare Earth (RE = Ce, Sm, Ho, Dy) Binary Alloys. Energies, 2020, 13, 1658.	3.1	8
50	Functionalized Cellulose for the Controlled Synthesis of Novel Carbon–Ti Nanocomposites: Physicochemical and Photocatalytic Properties. Nanomaterials, 2020, 10, 729.	4.1	33
51	Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol. Cellulose, 2019, 26, 7337-7353.	4.9	24
52	Using square wave voltammetry for the electrochemical characterization of cerium oxide/multiwalled carbon nanotube composites in different aqueous electrolytes. Journal of Electroanalytical Chemistry, 2019, 847, 113269.	3.8	1
53	Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Applied Catalysis B: Environmental, 2019, 256, 117826.	20.2	61
54	Mechanothermal Approach for N-, S-, P-, and B-Doping of Carbon Nanotubes: Methodology and Catalytic Performance in Wet Air Oxidation. Journal of Carbon Research, 2019, 5, 30.	2.7	13

#	Article	IF	Citations
55	Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction. Beilstein Journal of Nanotechnology, 2019, 10, 1089-1102.	2.8	27
56	Metal-free graphene-based catalytic membrane for degradation of organic contaminants by persulfate activation. Chemical Engineering Journal, 2019, 369, 223-232.	12.7	104
57	Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes. Chemical Engineering Journal, 2019, 355, 974-985.	12.7	124
58	Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. Electrochimica Acta, 2019, 298, 541-551.	5.2	32
59	Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2019, 11, 6066-6077.	8.0	67
60	Carbon gels with tuned properties for catalysis and energy storage. Journal of Sol-Gel Science and Technology, 2019, 89, 12-20.	2.4	11
61	Cascade Conversion of Cellobiose to Gluconic Acid: The Large Impact of the Small Modification of Electronic Interaction on the Performance of Au/TiO ₂ Bifunctional Catalysts. Energy Technology, 2018, 6, 1675-1686.	3.8	8
62	Ethyl and butyl acetate oxidation over manganese oxides. Chinese Journal of Catalysis, 2018, 39, 27-36.	14.0	9
63	Heterogenized Câ€Scorpionate Iron(II) Complex on Nanostructured Carbon Materials as Recyclable Catalysts for Microwaveâ€Assisted Oxidation Reactions. ChemCatChem, 2018, 10, 1821-1828.	3.7	35
64	Electrocatalytic Activity of Ionicâ€Liquidâ€Derived Porous Carbon Materials for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1037-1046.	3.4	22
65	Commercial Gold(I) and Gold(III) Compounds Supported on Carbon Materials as Greener Catalysts for the Oxidation of Alkanes and Alcohols. ChemCatChem, 2018, 10, 1804-1813.	3.7	25
66	Commercial Gold(I) and Gold(III) Compounds Supported on Carbon Materials as Greener Catalysts for the Oxidation of Alkanes and Alcohols. ChemCatChem, 2018, 10, 1661-1662.	3.7	0
67	N/S-doped graphene derivatives and TiO2 for catalytic ozonation and photocatalysis of water pollutants. Chemical Engineering Journal, 2018, 348, 888-897.	12.7	84
68	Oxygen surface groups analysis of carbonaceous samples pyrolysed at low temperature. Carbon, 2018, 134, 255-263.	10.3	48
69	Bifunctional gold catalysts: Relationship between preparation method and catalytic performance in tandem cellobiose valorization. Catalysis Today, 2018, 301, 55-64.	4.4	7
70	CoMn-LDH@carbon nanotube composites: Bifunctional electrocatalysts for oxygen reactions. Catalysis Today, 2018, 301, 17-24.	4.4	44
71	On the Interactions and Synergism between Phases of Carbon–Phosphorus–Titanium Composites Synthetized from Cellulose for the Removal of the Orange-G Dye. Materials, 2018, 11, 1766.	2.9	27
72	Study of the Electroreactivity of Amoxicillin on Carbon Nanotubeâ€Supported Metal Electrodes. ChemCatChem, 2018, 10, 4900-4909.	3.7	7

#	Article	IF	CITATIONS
73	Cutting the Green Waste. Structureâ€Performance Relationship in Functionalized Carbon Xerogels for Hydrolysis of Cellobiose. ChemCatChem, 2018, 10, 4934-4946.	3.7	10
74	Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation. Applied Surface Science, 2018, 458, 839-848.	6.1	38
75	Nanostructured porous carbons for electrochemical energy conversion and storage. Surface and Coatings Technology, 2018, 350, 307-312.	4.8	16
76	Metal-Free Catalytic Wet Oxidation: From Powder to Structured Catalyst Using N-Doped Carbon Nanotubes. Topics in Catalysis, 2018, 61, 1957-1966.	2.8	7
77	Composite Materials Based on (Cymene)Ru(II) Curcumin Additives Loaded on Porous Carbon Adsorbents from Agricultural Residues Display Efficient Antibacterial Activity. ACS Applied Bio Materials, 2018, 1, 153-159.	4.6	6
78	Hybrid magnetic graphitic nanocomposites for catalytic wet peroxide oxidation applications. Catalysis Today, 2017, 280, 184-191.	4.4	21
79	Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catalysis Today, 2017, 279, 244-251.	4.4	41
80	Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides. Journal of Colloid and Interface Science, 2017, 496, 141-149.	9.4	64
81	Supported Câ€Scorpionate Vanadium(IV) Complexes as Reusable Catalysts for Xylene Oxidation. Chemistry - an Asian Journal, 2017, 12, 1915-1919.	3.3	23
82	An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water. Journal of Environmental Management, 2017, 200, 511-529.	7.8	75
83	Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24085-24099.	8.0	92
84	Bifunctionality of the pyrone functional group in oxidized carbon nanotubes towards oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 1868-1879.	4.1	16
85	Gold nanoparticles deposited on surface modified carbon materials as reusable catalysts for hydrocarboxylation of cyclohexane. Applied Catalysis A: General, 2017, 547, 124-131.	4.3	25
86	Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation. Applied Catalysis A: General, 2017, 548, 62-70.	4.3	39
87	Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution. Applied Catalysis B: Environmental, 2017, 219, 372-378.	20.2	52
88	Hybrid magnetic graphitic nanocomposites towards catalytic wet peroxide oxidation of the liquid effluent from a mechanical biological treatment plant for municipal solid waste. Applied Catalysis B: Environmental, 2017, 219, 645-657.	20.2	26
89	A "Nanopore Lithography―Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. ACS Applied Materials & Amp; Interfaces, 2017, 9, 44740-44755.	8.0	46
90	The role of cobalt in bimetallic iron-cobalt magnetic carbon xerogels developed for catalytic wet peroxide oxidation. Catalysis Today, 2017, 296, 66-75.	4.4	23

#	Article	IF	Citations
91	Volatile organic compounds abatement over copper-based catalysts: Effect of support. Inorganica Chimica Acta, 2017, 455, 473-482.	2.4	33
92	Gold Nanoparticles Deposited on Surface Modified Carbon Xerogels as Reusable Catalysts for Cyclohexane C-H Activation in the Presence of CO and Water. Molecules, 2017, 22, 603.	3.8	21
93	Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules, 2016, 21, 644.	3.8	29
94	Tuning CNT Properties for Metal-Free Environmental Catalytic Applications. Journal of Carbon Research, 2016, 2, 17.	2.7	17
95	Role of Nitrogen Doping on the Performance of Carbon Nanotube Catalysts: A Catalytic Wet Peroxide Oxidation Application. ChemCatChem, 2016, 8, 2068-2078.	3.7	34
96	Nanostructured mesoporous carbons: Tuning texture and surface chemistry. Carbon, 2016, 108, 79-102.	10.3	149
97	Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials. Journal of Membrane Science, 2016, 520, 326-336.	8.2	72
98	Oxidovanadium(V) Complexes Anchored on Carbon Materials as Catalysts for the Oxidation of 1â∈Phenylethanol. ChemCatChem, 2016, 8, 2254-2266.	3.7	46
99	Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Lowâ€Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis. ChemSusChem, 2016, 9, 1200-1208.	6.8	56
100	Oxidation of mixtures of ethyl acetate and butyl acetate over cryptomelane and the effect of water vapor. Environmental Progress and Sustainable Energy, 2016, 35, 1324-1329.	2.3	12
101	Highly efficient and reusable CNT supported iron(<scp>ii</scp>) catalyst for microwave assisted alcohol oxidation. Dalton Transactions, 2016, 45, 6816-6819.	3.3	46
102	Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192, 296-303.	20.2	90
103	Electrochemical storage mechanisms in non-stoichiometric cerium oxide/multiwalled carbon nanotube composites. Electrochimica Acta, 2016, 209, 25-35.	5.2	17
104	Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids. Carbon, 2016, 105, 474-483.	10.3	66
105	CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials. Journal of Colloid and Interface Science, 2016, 480, 17-29.	9.4	15
106	Nâ€doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Medium: Synergistic Relationship between Pyridinic and Quaternary Nitrogen. ChemistrySelect, 2016, 1, 2522-2530.	1.5	36
107	Photocatalytic Reduction of CO2 with Water into Methanol and Ethanol Using Graphene Derivative–TiO2 Composites: Effect of pH and Copper(I) Oxide. Topics in Catalysis, 2016, 59, 1279-1291.	2.8	42
108	Catalytic wet oxidation of organic compounds over N-doped carbon nanotubes in batch and continuous operation. Applied Catalysis B: Environmental, 2016, 199, 361-371.	20.2	27

#	Article	IF	Citations
109	Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Applied Catalysis B: Environmental, 2016, 187, 428-460.	20.2	143
110	One-pot oxidation of cellobiose to gluconic acid. Unprecedented high selectivity on bifunctional gold catalysts over mesoporous carbon by integrated texture and surface chemistry optimization. Applied Catalysis B: Environmental, 2016, 184, 381-396.	20.2	54
111	Electrochemical synthesis of TiO2/Graphene oxide composite films for photocatalytic applications. Journal of Alloys and Compounds, 2016, 654, 514-522.	5.5	30
112	(<i>S</i>)â€BINOL Immobilized onto Multiwalled Carbon Nanotubes through Covalent Linkage: A New Approach for Hybrid Nanomaterials Characterization. ChemNanoMat, 2015, 1, 178-187.	2.8	5
113	Coupling Noble Metals and Carbon Supports in the Development of Combustion Catalysts for the Abatement of BTX Compounds in Air Streams. Catalysts, 2015, 5, 774-799.	3.5	25
114	Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 2015, 249, 192-198.	4.4	62
115	Carbon-based TiO2 materials for the degradation of Microcystin-LA. Applied Catalysis B: Environmental, 2015, 170-171, 74-82.	20.2	66
116	Carbon-supported Mo ₂ C electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 15505-15512.	10.3	85
117	Oxidative dehydrogenation of isobutane catalyzed by an activated carbon fiber cloth exposed to supercritical fluids. Applied Catalysis A: General, 2015, 502, 71-77.	4.3	12
118	Carbonized polyacrylonitrile fibers for the catalytic ozonation of oxalic acid. Catalysis Today, 2015, 249, 59-62.	4.4	9
119	Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon, 2015, 91, 114-121.	10.3	111
120	Oxidative dehydrogenation of isobutane on carbon xerogel catalysts. Catalysis Today, 2015, 249, 176-183.	4.4	34
121	Graphene-based materials for the catalytic wet peroxide oxidation of highly concentrated 4-nitrophenol solutions. Catalysis Today, 2015, 249, 204-212.	4.4	59
122	Effect of preparation method on the solid state properties and the deN ₂ O performance of CuO–CeO ₂ oxides. Catalysis Science and Technology, 2015, 5, 3714-3727.	4.1	88
123	Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Research, 2015, 77, 179-190.	11.3	108
124	Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance. Carbon, 2015, 95, 72-83.	10.3	102
125	Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH. Journal of Colloid and Interface Science, 2015, 459, 189-198.	9.4	35
126	Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation. Desalination, 2015, 357, 233-245.	8.2	158

#	Article	IF	CITATIONS
127	Development of glycerol-based metal-free carbon materials for environmental catalytic applications. Catalysis Today, 2015, 240, 61-66.	4.4	32
128	Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catalysis Today, 2015, 241, 73-79.	4.4	48
129	Catalytic oxidation of toluene on Ce–Co and La–Co mixed oxides synthesized by exotemplating and evaporation methods. Catalysis Today, 2015, 244, 161-171.	4.4	129
130	Ceramic photocatalytic membranes for water filtration under UV and visible light. Applied Catalysis B: Environmental, 2015, 178, 12-19.	20.2	132
131	Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015, 244, 103-114.	4.4	99
132	Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chemical Engineering Journal, 2015, 260, 309-315.	12.7	32
133	The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation. Applied Catalysis B: Environmental, 2014, 147, 314-321.	20.2	52
134	Catalytic oxidation of ethyl acetate on cerium-containing mixed oxides. Applied Catalysis A: General, 2014, 472, 101-112.	4.3	58
135	Catalytic oxidation of ethyl acetate over La-Co and La-Cu oxides. Journal of Environmental Chemical Engineering, 2014, 2, 344-355.	6.7	37
136	Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO2 composites. Applied Catalysis B: Environmental, 2014, 158-159, 329-340.	20.2	117
137	Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. Journal of Catalysis, 2014, 309, 58-65.	6.2	83
138	Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon, 2014, 69, 311-326.	10.3	95
139	Modification of the surface chemistry of single- and multi-walled carbon nanotubes by HNO ₃ and H ₂ SO ₄ hydrothermal oxidation for application in direct contact membrane distillation. Physical Chemistry Chemical Physics, 2014, 16, 12237-12250.	2.8	52
140	Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light. Applied Catalysis B: Environmental, 2014, 158-159, 361-372.	20.2	95
141	Developing highly active photocatalysts: Gold-loaded ZnO for solar phenol oxidation. Journal of Catalysis, 2014, 316, 182-190.	6.2	65
142	Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chinese Journal of Catalysis, 2014, 35, 896-905.	14.0	46
143	The influence of structure and surface chemistry of carbon materials on the decomposition of hydrogen peroxide. Carbon, 2013, 62, 97-108.	10.3	103
144	Nanodiamond–TiO ₂ Composites for Heterogeneous Photocatalysis. ChemPlusChem, 2013, 78, 801-807.	2.8	33

#	Article	IF	Citations
145	Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Applied Catalysis A: General, 2013, 467, 279-290.	4.3	93
146	Heterogenisation of a Câ€6corpionate Fe ^{II} Complex on Carbon Materials for Cyclohexane Oxidation with Hydrogen Peroxide. ChemCatChem, 2013, 5, 3847-3856.	3.7	80
147	Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts. Journal of Energy Chemistry, 2013, 22, 195-201.	12.9	45
148	Removal of 2-nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties. Applied Catalysis B: Environmental, 2013, 140-141, 356-362.	20.2	48
149	Carbon as a catalyst: Esterification of acetic acid with ethanol. Catalysis Today, 2013, 218-219, 51-56.	4.4	28
150	Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1â^'xSmxOδ mixed oxides. Journal of Hazardous Materials, 2013, 261, 512-521.	12.4	92
151	Homogeneous and heterogenised new gold C-scorpionate complexes as catalysts for cyclohexane oxidation. Catalysis Science and Technology, 2013, 3, 3056.	4.1	91
152	Photoactive Zn(II)Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages. Materials Chemistry and Physics, 2013, 143, 296-304.	4.0	26
153	Nanodiamond–TiO ₂ Composites for Heterogeneous Photocatalysis. ChemPlusChem, 2013, 78, 750-750.	2.8	6
154	Photocatalytic degradation of caffeine: Developing solutions for emerging pollutants. Catalysis Today, 2013, 209, 108-115.	4.4	88
155	Platinum–rare earth electrodes for hydrogen evolution in alkaline water electrolysis. International Journal of Hydrogen Energy, 2013, 38, 3137-3145.	7.1	102
156	Simultaneous production of H2 and C2 hydrocarbons by using a novel configuration solid-electrolyteÂ+Âfixed bed reactor. International Journal of Hydrogen Energy, 2013, 38, 3111-3122.	7.1	13
157	Exotemplated copper, cobalt, iron, lanthanum and nickel oxides for catalytic oxidation of ethyl acetate. Journal of Environmental Chemical Engineering, 2013, 1, 795-804.	6.7	39
158	Coupling catalysis and gas phase electrocatalysis for the simultaneous production and separation of pure H2 and C2 hydrocarbons from methane and natural gas. Applied Catalysis B: Environmental, 2013, 142-143, 298-306.	20.2	10
159	The electrochemical mineralization of oxalic and oxamic acids using modified electrodes based on carbon nanotubes. Chemical Engineering Journal, 2013, 228, 374-380.	12.7	12
160	Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum-dysprosium alloys. Energy, 2013, 50, 486-492.	8.8	54
161	Spontaneous gold decoration of activated carbons. Inorganica Chimica Acta, 2013, 408, 235-239.	2.4	4
162	Functionalization of porous carbons for catalytic applications. Journal of Materials Chemistry A, 2013, 1, 9351.	10.3	217

#	Article	IF	Citations
163	Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Surface Science, 2013, 275, 361-368.	6.1	145
164	Promotional effect of Cu on the structure and chloronitrobenzene hydrogenation performance of carbon nanotube and activated carbon supported Pt catalysts. Applied Catalysis A: General, 2013, 464-465, 28-34.	4.3	24
165	Chemical control of the characteristics of Mo-doped carbon xerogels by surfactant-mediated synthesis. Carbon, 2013, 51, 213-223.	10.3	18
166	TiO2, surface modified TiO2 and graphene oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light. Chemical Engineering Journal, 2013, 224, 17-23.	12.7	87
167	Photocatalytic behaviour of nanocarbon–TiO2 composites and immobilization into hollow fibres. Applied Catalysis B: Environmental, 2013, 142-143, 101-111.	20.2	7 5
168	Modified activated carbon as catalyst for NO oxidation. Fuel Processing Technology, 2013, 106, 727-733.	7.2	73
169	Ce-Doped La2O3 based catalyst for the oxidative coupling of methane. Catalysis Communications, 2013, 42, 50-53.	3.3	65
170	Hydrogen production by alkaline water electrolysis. Quimica Nova, 2013, 36, 1176-1193.	0.3	322
171	Carbon Xerogel Catalyst for NO Oxidation. Catalysts, 2012, 2, 447-465.	3.5	13
172	Design of graphene-based TiO2 photocatalystsâ€"a review. Environmental Science and Pollution Research, 2012, 19, 3676-3687.	5.3	272
173	Effect of Mg, Ca, and Sr on CeO ₂ Based Catalysts for the Oxidative Coupling of Methane: Investigation on the Oxygen Species Responsible for Catalytic Performance. Industrial & Description on the Oxygen Species Responsible for Catalytic Performance. Industrial & Description of Methane: Engineering Chemistry Research, 2012, 51, 10535-10541.	3.7	96
174	Nanostructured iron oxide catalysts with gold for the oxidation of carbon monoxide. RSC Advances, 2012, 2, 2957.	3.6	74
175	NO oxidation over nitrogen doped carbon xerogels. Applied Catalysis B: Environmental, 2012, 125, 398-408.	20.2	7 5
176	Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. Journal of Catalysis, 2012, 293, 165-174.	6.2	165
177	Tuning the textural and surface properties of carbon xerogels to be used as supports for gold catalysts. Open Chemistry, 2012, 10, 1867-1874.	1.9	3
178	Porous Texture Versus Surface Chemistry in Applications of Adsorption by Carbons., 2012,, 471-498.		6
179	New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon, 2012, 50, 3280-3294.	10.3	99
180	A thermodynamic approach to assess organic solute adsorption onto activated carbon in water. Carbon, 2012, 50, 3774-3781.	10.3	18

#	Article	IF	Citations
181	Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180, 148-154.	4.4	85
182	Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 2012, 186, 29-34.	4.4	311
183	Highly selective hydrogenation of CC double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188, 155-159.	12.7	21
184	Pt–Ru catalysts supported on carbon xerogels for PEM fuel cells. International Journal of Hydrogen Energy, 2012, 37, 7200-7211.	7.1	44
185	Preparation of carbon aerogel supported platinum catalysts for the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2012, 425-426, 161-169.	4.3	36
186	Evaluation of ion exchange-modified Y and ZSM5 zeolites in Cr(VI) biosorption and catalytic oxidation of ethyl acetate. Applied Catalysis B: Environmental, 2012, 117-118, 406-413.	20.2	46
187	Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental, 2012, 123-124, 241-256.	20.2	270
188	Electrocatalytic oxidation of oxalic and oxamic acids in aqueous media at carbon nanotube modified electrodes. Electrochimica Acta, 2012, 60, 278-286.	5.2	17
189	Supported Pt-particles on multi-walled carbon nanotubes with controlled surface chemistry. Materials Letters, 2012, 66, 64-67.	2.6	6
190	Gold on oxide-doped alumina supports as catalysts for CO oxidation. Applied Nanoscience (Switzerland), 2012, 2, 35-46.	3.1	24
191	Controlling and Quantifying Oxygen Functionalities on Hydrothermally and Thermally Treated Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 8534-8546.	3.1	55
192	Facile one-pot synthesis of Pt nanoparticles /SBA-15: an active and stable material for catalytic applications. Energy and Environmental Science, 2011, 4, 2020.	30.8	49
193	Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 2011, 45, 4583-4591.	11.3	289
194	Gold nanoparticles supported on magnesium oxide for CO oxidation. Nanoscale Research Letters, 2011, 6, 435.	5.7	31
195	Catalytic oxidation of NO to NO2 on N-doped activated carbons. Catalysis Today, 2011, 176, 383-387.	4.4	91
196	Carbon formation and gasification on metals. Bulk diffusion mechanism: A reassessment. Catalysis Today, 2011, 178, 110-116.	4.4	26
197	Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis. Chemical Engineering Journal, 2011, 172, 634-640.	12.7	22
198	Selective Oxidation of Glycerol Catalyzed by Rh/Activated Carbon: Importance of Support Surface Chemistry. Catalysis Letters, 2011, 141, 420-431.	2.6	48

#	Article	IF	Citations
199	Adsorption of dyes on carbon xerogels and templated carbons: influence of surface chemistry. Adsorption, 2011, 17, 431-441.	3.0	50
200	Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104, 330-336.	20.2	76
201	The role of activated carbons functionalized with thiol and sulfonic acid groups in catalytic wet peroxide oxidation. Applied Catalysis B: Environmental, 2011, 106, 390-397.	20.2	73
202	Gold supported on metal oxides for carbon monoxide oxidation. Nano Research, 2011, 4, 180-193.	10.4	76
203	Reaction Mechanism of Aerobic Oxidation of Alcohols Conducted on Activated arbonâ€5upported Cobalt Oxide Catalysts. Chemistry - A European Journal, 2011, 17, 7112-7117.	3.3	63
204	Pt-catalysts supported on activated carbons for catalytic wet air oxidation of aniline: Activity and stability. Applied Catalysis B: Environmental, 2011, 105, 86-94.	20.2	37
205	Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon, 2011, 49, 3441-3453.	10.3	55
206	Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst. Journal of Hazardous Materials, 2011, 185, 1236-1240.	12.4	38
207	Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds. Journal of Hazardous Materials, 2011, 192, 545-553.	12.4	29
208	Adsorption of phenol on supercritically activated carbon fibres: Effect of texture and surface chemistry. Journal of Colloid and Interface Science, 2011, 357, 210-214.	9.4	26
209	Carbon Monoxide Oxidation Catalysed by Exotemplated Manganese Oxides. Catalysis Letters, 2010, 134, 217-227.	2.6	65
210	Pt nanoparticles supported over Ce–Ti–O: the solvothermal and photochemical approaches for the preparation of catalytic materials. Journal of Nanoparticle Research, 2010, 12, 121-133.	1.9	18
211	Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. Journal of Catalysis, 2010, 273, 191-198.	6.2	99
212	Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon. Journal of Catalysis, 2010, 274, 207-214.	6.2	81
213	Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A: General, 2010, 381, 150-160.	4.3	74
214	Wet air oxidation of trinitrophenol with activated carbon catalysts: Effect of textural properties on the mechanism of degradation. Applied Catalysis B: Environmental, 2010, 100, 310-317.	20.2	29
215	Hydrogen production via methane decomposition on Raney-type catalysts. International Journal of Hydrogen Energy, 2010, 35, 9795-9800.	7.1	55
216	Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Applied Catalysis B: Environmental, 2010, 99, 198-205.	20.2	221

#	Article	IF	Citations
217	The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2010, 99, 353-363.	20.2	562
218	The role of surface chemistry in catalysis with carbons. Catalysis Today, 2010, 150, 2-7.	4.4	558
219	Carbon xerogel supported noble metal catalysts for fine chemical applications. Catalysis Today, 2010, 149, 358-364.	4.4	35
220	Stability of a cryptomelane catalyst in the oxidation of toluene. Catalysis Today, 2010, 154, 308-311.	4.4	22
221	Effect of chloride on the sinterization of Au/CeO2 catalysts. Catalysis Today, 2010, 154, 293-302.	4.4	48
222	Gold nanoparticles on ceria supports for the oxidation of carbon monoxide. Catalysis Today, 2010, 154, 21-30.	4.4	65
223	Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon, 2010, 48, 4369-4381.	10.3	176
224	Preparation of Au nanoparticles on Ce-Ti-O supports. Studies in Surface Science and Catalysis, 2010, 175, 457-461.	1.5	2
225	Wet Air Oxidation of Aniline Using Carbon Foams and Fibers Enriched with Nitrogen. Separation Science and Technology, 2010, 45, 1546-1554.	2.5	26
226	Photodeposition of Au and Pt on ZnO and TiO2. Studies in Surface Science and Catalysis, 2010, 175, 629-633.	1.5	6
227	Textural and mechanical characteristics of carbon aerogels synthesized by polymerization of resorcinol and formaldehyde using alkali carbonates as basification agents. Physical Chemistry Chemical Physics, 2010, 12, 10365.	2.8	46
228	Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. Journal of Catalysis, 2009, 261, 23-33.	6.2	129
229	Synthesis and Characterization of Manganese Oxide Catalysts for the Total Oxidation of Ethyl Acetate. Topics in Catalysis, 2009, 52, 470-481.	2.8	97
230	Methane decomposition on Fe–Cu Raney-type catalysts. Fuel Processing Technology, 2009, 90, 1234-1240.	7.2	55
231	Methane decomposition on Ni–Cu alloyed Raney-type catalysts. International Journal of Hydrogen Energy, 2009, 34, 4763-4772.	7.1	95
232	Jacobsen catalyst anchored onto modified carbon xerogel as enantioselective heterogeneous catalyst for alkene epoxidation. Journal of Molecular Catalysis A, 2009, 305, 135-141.	4.8	34
233	Catalytic oxidation of ethyl acetate over a cesium modified cryptomelane catalyst. Applied Catalysis B: Environmental, 2009, 88, 550-556.	20.2	67
234	Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation. Carbon, 2009, 47, 1670-1679.	10.3	83

#	Article	IF	Citations
235	Synthesis and characterization of nitrogen-doped carbon xerogels. Carbon, 2009, 47, 2032-2039.	10.3	129
236	Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol. Applied Catalysis B: Environmental, 2009, 93, 30-37.	20.2	109
237	Methane Decomposition on La ₂ O ₃ -Promoted Raney-Type Fe Catalysts. Energy & Lamp; Fuels, 2009, 23, 4047-4050.	5.1	25
238	Mixed Platinumâ^'Manganese Oxide Catalysts for Combustion of Volatile Organic Compounds. Industrial & Dampiering Chemistry Research, 2009, 48, 2795-2800.	3.7	13
239	Hydrogenation of chloronitrobenzenes over filamentous carbon stabilized nickel nanoparticles. Catalysis Communications, 2009, 10, 1203-1206.	3.3	56
240	Preparation and characterization of poly[Ni(salen)(crown receptor)]/multi-walled carbon nanotube composite films. Electrochimica Acta, 2008, 53, 6722-6731.	5.2	30
241	Tuning of texture and surface chemistry of carbon xerogels. Journal of Colloid and Interface Science, 2008, 324, 150-155.	9.4	81
242	Pore tuned activated carbons as supports for an enantioselective molecular catalyst. Journal of Colloid and Interface Science, 2008, 328, 314-323.	9.4	22
243	Catalytic properties of carbon materials for wet oxidation of aniline. Journal of Hazardous Materials, 2008, 159, 420-426.	12.4	129
244	Catalytic decomposition of methane on Raney-type catalysts. Applied Catalysis A: General, 2008, 348, 103-112.	4.3	78
245	Wet air oxidation of nitro-aromatic compounds: Reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Applied Catalysis B: Environmental, 2008, 84, 75-86.	20.2	52
246	Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon. Applied Surface Science, 2008, 254, 3497-3503.	6.1	37
247	MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation. Carbon, 2008, 46, 1194-1207.	10.3	172
248	Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon, 2008, 46, 1544-1555.	10.3	162
249	Importance of palladium dispersion in Pd/Al2O3 catalysts for complete oxidation of humid low-methane–air mixtures. Catalysis Today, 2008, 137, 329-334.	4.4	54
250	Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst. Applied Catalysis A: General, 2008, 339, 159-168.	4.3	104
251	Hydrogenation of nitrobenzene over nickel nanoparticles stabilized by filamentous carbon. Applied Catalysis A: General, 2008, 351, 204-209.	4.3	84
252	Au/activated-carbon catalysts for selective oxidation of alcohols with molecular oxygen under atmospheric pressure: Role of basicity. Catalysis Communications, 2008, 9, 2395-2397.	3.3	71

#	Article	IF	Citations
253	Characterization of Active Sites on Carbon Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 4110-4115.	3.7	308
254	Thermal treatments of activated carbon catalysts under N2O. Carbon, 2007, 45, 212-214.	10.3	4
255	Catalytic wet air oxidation of olive mill wastewater. Catalysis Today, 2007, 124, 254-259.	4.4	39
256	Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Applied Catalysis A: General, 2007, 317, 299-309.	4.3	133
257	Anchoring of a [Mn(salen)Cl] complex onto mesoporous carbon xerogels. Journal of Colloid and Interface Science, 2007, 311, 152-158.	9.4	42
258	Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate. Applied Catalysis B: Environmental, 2007, 72, 129-135.	20.2	142
259	A comparison of different carbon filaments on the nanometer and atomic scales by scanning tunneling microscopy. Materials Letters, 2007, 61, 4787-4790.	2.6	2
260	Synthesis of carbon filaments and nanotubes on a graphitic substrate: optimization studies. Carbon, 2006, 44, 2350-2353.	10.3	2
261	Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon, 2006, 44, 2384-2391.	10.3	105
262	Oxidative dehydrogenation of isobutane over activated carbon catalysts. Applied Catalysis A: General, 2006, 311, 51-57.	4.3	54
263	Styrene oxidation by manganese Schiff base complexes in zeolite structures. Journal of Molecular Catalysis A, 2006, 258, 327-333.	4.8	80
264	Enhanced electrocatalytic activity of carbon-supported MnOx/Ru catalysts for methanol oxidation in fuel cells. Journal of Power Sources, 2006, 153, 36-40.	7.8	43
265	Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells. Carbon, 2006, 44, 2516-2522.	10.3	68
266	Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science, 2006, 293, 128-136.	9.4	236
267	Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. Journal of Catalysis, 2006, 240, 160-171.	6.2	89
268	Synergistic effect between Pt and K in the catalytic reduction of NO and N2O. Applied Catalysis B: Environmental, 2006, 62, 181-192.	20.2	15
269	Carbon supports for methanol oxidation catalyst. Journal of Power Sources, 2005, 151, 79-84.	7.8	52
270	Transition metal (Cu, Cr, and V) modified MCM-41 for the catalytic wet air oxidation of aniline. Microporous and Mesoporous Materials, 2005, 86, 287-294.	4.4	87

#	Article	IF	Citations
271	Platinum catalysts supported on MWNT for catalytic wet air oxidation of nitrogen containing compounds. Catalysis Today, 2005, 102-103, 101-109.	4.4	84
272	Copper(II) acetylacetonate anchored onto an activated carbon as a heterogeneous catalyst for the aziridination of styrene. Catalysis Today, 2005, 102-103, 154-159.	4.4	47
273	Carbon xerogel supported Pt and Pt–Ni catalysts for electro-oxidation of methanol in basic medium. Catalysis Today, 2005, 102-103, 173-176.	4.4	49
274	Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges. Chemical Engineering Journal, 2005, 108, 169-177.	12.7	97
275	Catalytic oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2005, 57, 117-123.	20.2	100
276	Mesoporous carbon supported Pt and Pt–Sn catalysts for hydrogenation of cinnamaldehyde. Catalysis Today, 2005, 102-103, 183-188.	4.4	42
277	Carbon supported platinum catalysts for catalytic wet air oxidation of refractory carboxylic acids. Topics in Catalysis, 2005, 33, 59-68.	2.8	24
278	Characterization of activated carbons by FT-IR/PAS and TPD. European Physical Journal Special Topics, 2004, 117, 57-63.	0.2	5
279	Development of carbon supported metal catalysts for the simultaneous reduction of NO and N2O. Applied Catalysis B: Environmental, 2004, 50, 271-278.	20.2	30
280	Catalytic oxidation of methyl-isobutyl-ketone over basic zeolites. Applied Catalysis B: Environmental, 2004, 51, 129-133.	20.2	30
281	Carbon nanotubes and xerogels as supports of well-dispersed Pt catalysts for environmental applications. Applied Catalysis B: Environmental, 2004, 54, 175-182.	20.2	87
282	Enantioselective hydrogenations with highly mesoporous carbon supported Pd catalysts. Journal of Molecular Catalysis A, 2004, 212, 245-250.	4.8	31
283	Oscillations in the catalytic oxidation of volatile organic compounds. Journal of Catalysis, 2004, 225, 147-154.	6.2	25
284	Influence of the textural properties of an activated carbon catalyst on the oxidative dehydrogenation of ethylbenzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 165-171.	4.7	27
285	Surface activation of a polymer based carbon. Carbon, 2004, 42, 1321-1325.	10.3	80
286	Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon, 2004, 42, 2807-2813.	10.3	150
287	Simultaneous N2O and NO reduction over carbon supported catalysts. Reaction Kinetics and Catalysis Letters, 2003, 80, 153-159.	0.6	5
288	Catalytic oxidation of volatile organic compounds (VOCs) Oxidation of o-xylene over Pt/HBEA catalysts. Applied Catalysis B: Environmental, 2003, 46, 371-379.	20.2	70

#	Article	IF	Citations
289	Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 2003, 41, 811-821.	10.3	492
290	Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD: a comparison with wet impregnated catalysts. Applied Catalysis A: General, 2003, 243, 357-365.	4.3	39
291	Activated carbons with immobilised manganese(iii) salen complexes as heterogeneous catalysts in the epoxidation of olefins: influence of support and ligand functionalisation on selectivity and reusability. New Journal of Chemistry, 2003, 27, 1511.	2.8	59
292	Oscillations in the oxidation of MIBK over a Pt/HFAU catalyst: role of coke combustion. Catalysis Communications, 2003, 4, 651-656.	3.3	14
293	Preparation of activated carbons with controlled pore size. Studies in Surface Science and Catalysis, 2002, 144, 261-265.	1.5	1
294	Heterogenization of a Functionalized Copper(II) Schiff Base Complex by Direct Immobilization onto an Oxidized Activated Carbon. Langmuir, 2002, 18, 8017-8024.	3.5	75
295	Enantioselective hydrogenation of isophorone with titania supported Pd catalysts modified by (â^')-dihydroapovincaminic acid ethyl ester effect of the support and the reduction method. Journal of Molecular Catalysis A, 2002, 179, 107-112.	4.8	11
296	Carbon-supported iridium catalysts in the catalytic wet air oxidation of carboxylic acids: kinetics and mechanistic interpretation. Journal of Molecular Catalysis A, 2002, 182-183, 47-60.	4.8	38
297	Immobilisation of amine-functionalised nickel(II) Schiff base complexes onto activated carbon treated with thionyl chloride. Microporous and Mesoporous Materials, 2002, 55, 275-284.	4.4	75
298	Catalytic wet air oxidation of butyric acid solutions using carbon-supported iridium catalysts. Catalysis Today, 2002, 75, 23-28.	4.4	25
299	Oxidative dehydrogenation of ethylbenzene on activated carbon fibers. Carbon, 2002, 40, 2393-2401.	10.3	39
300	Properties of Carbon-Supported Platinum Catalysts: Role of Carbon Surface Sites. Journal of Catalysis, 2002, 209, 355-364.	6.2	207
301	Novel carbon supported material: highly dispersed platinum particles on carbon nanospheres. Journal of Materials Chemistry, 2001, 11, 1980-1981.	6.7	47
302	A simplified method for determination of lignocellulosic materials pyrolysis kinetics from isothermal thermogravimetric experiments. Thermochimica Acta, 2001, 380, 67-78.	2.7	39
303	Enantioselective hydrogenation of isophorone over Pd catalysts in the presence of(â°')-dihydroapovincaminic acid ethyl ester. Journal of Molecular Catalysis A, 2001, 170, 101-107.	4.8	19
304	Anchoring of a nickel(II) Schiff base complex onto activated carbon mediated by cyanuric chloride. Microporous and Mesoporous Materials, 2001, 46, 211-221.	4.4	64
305	Formation of two metal phases in the preparation of activated carbon-supported nickel catalysts. Applied Catalysis A: General, 2001, 209, 145-154.	4.3	22
306	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. Applied Catalysis A: General, 2001, 218, 307-318.	4.3	98

#	Article	IF	CITATIONS
307	Anchoring of organic molecules onto activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 189, 75-84.	4.7	25
308	A New OMCVD Iridium Precursor for Thin Film Deposition. Chemical Vapor Deposition, 2001, 7, 59-62.	1.3	14
309	The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon, 2001, 39, 175-185.	10.3	234
310	A chemical vapour deposition process for the production of carbon nanospheres. Carbon, 2001, 39, 621-626.	10.3	187
311	Preparation of carbon molecular sieves for gas separations by modification of the pore sizes of activated carbons. Fuel, 2001, 80, 1-6.	6.4	67
312	Production of SiC and Si3N4 whiskers in C+SiO2 solid mixtures. Materials Chemistry and Physics, 2001, 72, 326-331.	4.0	72
313	Bimetallic Pt–Sn catalysts supported on activated carbon. II. CO oxidation. Catalysis Today, 2000, 62, 337-346.	4.4	44
314	Encapsulation of copper(II) complexes with pentadentate N3O2 Schiff base ligands derived from acetylacetone in NaX zeolite. Microporous and Mesoporous Materials, 2000, 38, 391-401.	4.4	41
315	Bimetallic Pt–Sn catalysts supported on activated carbon. Applied Catalysis A: General, 2000, 192, 29-42.	4.3	98
316	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. Applied Catalysis A: General, 2000, 196, 43-54.	4.3	82
317	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Applied Catalysis A: General, 1999, 184, 153-160.	4.3	240
318	Production of vapour-grown carbon fibres: influence of the catalyst precursor and operating conditions. Fuel, 1999, 78, 837-844.	6.4	22
319	Modification of the surface chemistry of activated carbons. Carbon, 1999, 37, 1379-1389.	10.3	2,642
320	Single-step preparation of activated carbon supported platinum catalysts by fluidized bed organometallic chemical vapor deposition. Carbon, 1999, 37, 527-530.	10.3	17
321	Surface treatments of vapor-grown carbon fibers produced on a substrate. Carbon, 1999, 37, 1809-1816.	10.3	22
322	Reactivity of coke deposited on metal surfaces. Materials and Corrosion - Werkstoffe Und Korrosion, 1999, 50, 696-699.	1.5	8
323	The effect of morphology on the properties of vapour-grown carbon fibres. Carbon, 1997, 35, 860-863.	10.3	25
324	Zeolite-encapsulated copper (II) complexes with N3O2 Schiff bases: synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 115, 249-256.	4.7	22

#	Article	IF	CITATIONS
325	Evaluation of the efficiency of activation in the production of carbon adsorbents. Carbon, 1996, 34, 679-681.	10.3	6
326	Adsorption of propene and coke formation on a cracking catalyst (FCC). Applied Catalysis A: General, 1993, 104, 1-9.	4.3	17
327	Simulation of dynamical thermogravimetric curves: single and complex reactions. Thermochimica Acta, 1993, 217, 151-173.	2.7	5
328	Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions. Journal of Analytical and Applied Pyrolysis, 1989, 17, 37-46.	5 . 5	43
329	Interpreting isothermal thermogravimetric data of complex reactions: Application to cellulose pyrolysis at low temperatures. Journal of Analytical and Applied Pyrolysis, 1989, 15, 347-355.	5.5	14
330	Carbon deposits on metal catalysts - mechanisms of formation and gasification. Catalysis Today, 1989, 5, 385-393.	4.4	7
331	A model for pyrolysis of wet wood. Chemical Engineering Science, 1989, 44, 2861-2869.	3.8	151
332	Pyrolysis of holm-oak wood: influence of temperature and particle size. Fuel, 1989, 68, 1012-1016.	6.4	45
333	Pyrolysis of olive wood. Biological Wastes, 1989, 28, 217-225.	0.2	8
334	Pyrolysis kinetics of lignocellulosic materials by multistage isothermal thermogravimetry. Journal of Analytical and Applied Pyrolysis, 1988, 13, 123-134.	5.5	71
335	Gasification of active carbons of different texture impregnated with nickel, cobalt and iron. Carbon, 1987, 25, 703-708.	10.3	35
336	Gasification of carbon deposited on supported Ni-Cu catalysts. Fuel, 1986, 65, 1392-1395.	6.4	4
337	Preparation Of Active Carbon Supported Oxidation Catalysts. Studies in Surface Science and Catalysis, 1983, , 571-577.	1.5	0
338	Textural modifications in impregnated active carbons. Studies in Surface Science and Catalysis, 1982, 10, 239-244.	1.5	0
339	Gasification of carbon deposits on nickel catalysts. Journal of Catalysis, 1975, 40, 154-159.	6.2	89
340	Graphene-Based Membranes for Separation Engineering. , 0, , 133-154.		0