
Siegfried Scherer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards low-spore milk powders: A review on microbiological challenges of dairy powder production with focus on aerobic mesophilic and thermophilic spores. International Dairy Journal, 2022, 126, 105252.	3.0	10
2	Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection. IScience, 2022, 25, 103844.	4.1	13
3	Pseudomonas cremoris sp. nov., a novel proteolytic species isolated from cream. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	8
4	Simultaneous quantification of the most common and proteolytic Pseudomonas species in raw milk by multiplex qPCR. Applied Microbiology and Biotechnology, 2021, 105, 1693-1708.	3.6	15
5	Amplicon-sequencing of raw milk microbiota: impact of DNA extraction and library-PCR. Applied Microbiology and Biotechnology, 2021, 105, 4761-4773.	3.6	5
6	A Strong Synergy Between the Thiopeptide Bacteriocin Micrococcin P1 and Rifampicin Against MRSA in a Murine Skin Infection Model. Frontiers in Immunology, 2021, 12, 676534.	4.8	14
7	Facklamia lactis sp. nov., isolated from raw milk. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	10
8	Biological factors in the synthetic construction of overlapping genes. BMC Genomics, 2021, 22, 888.	2.8	4
9	Thermally induced milk fouling: Survival of thermophilic spore formers and potential of contamination. International Dairy Journal, 2020, 101, 104582.	3.0	7
10	High counts of thermophilic spore formers in dairy powders originate from persisting strains in processing lines. International Journal of Food Microbiology, 2020, 335, 108888.	4.7	16
11	Are Antisense Proteins in Prokaryotes Functional?. Frontiers in Molecular Biosciences, 2020, 7, 187.	3.5	19
12	Genetic Organization of the aprX-lipA2 Operon Affects the Proteolytic Potential of Pseudomonas Species in Milk. Frontiers in Microbiology, 2020, 11, 1190.	3.5	14
13	Complementary Use of Cultivation and High-Throughput Amplicon Sequencing Reveals High Biodiversity Within Raw Milk Microbiota. Frontiers in Microbiology, 2020, 11, 1557.	3.5	16
14	A Novel pH-Regulated, Unusual 603 bp Overlapping Protein Coding Gene pop Is Encoded Antisense to ompA in Escherichia coli O157:H7 (EHEC). Frontiers in Microbiology, 2020, 11, 377.	3.5	15
15	Pseudomonas saxonica sp. nov., isolated from raw milk and skimmed milk concentrate. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 935-943.	1.7	10
16	Brevilactibacter flavus gen. nov., sp. nov., a novel bacterium of the family Propionibacteriaceae isolated from raw milk and dairy products and reclassification of Propioniciclava sinopodophylli as Brevilactibacter sinopodophylli comb. nov International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2186-2193.	1.7	25
17	Pseudomonas haemolytica sp. nov., isolated from raw milk and skimmed milk concentrate. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2339-2347.	1.7	15
18	Fundicoccus ignavus gen. nov., sp. nov., a novel genus of the family Aerococcaceae isolated from bulk tank milk. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4774-4781.	1.7	10

#	Article	IF	CITATIONS
19	Accurate quantification of thermophilic spores in dairy powders. International Dairy Journal, 2019, 98, 64-71.	3.0	10
20	Resistance of thermophilic spore formers isolated from milk and whey products towards cleaning-in-place conditions: Influence of pH, temperature and milk residues. Food Microbiology, 2019, 83, 150-158.	4.2	14
21	Proposal of Lysobacter pythonis sp. nov. isolated from royal pythons (Python regius). Systematic and Applied Microbiology, 2019, 42, 326-333.	2.8	10
22	Finding New Overlapping Genes and Their Theory (FOG Theory). Lecture Notes in Bioengineering, 2018, , 137-159.	0.4	0
23	Innenrücktitelbild: Neuprogrammierung von humanem Siderocalin zur Neutralisierung von Petrobactin, dem essenziellen Eisenfäger des Milzbrand-Bazillus (Angew. Chem. 44/2018). Angewandte Chemie, 2018, 130, 14867-14867.	2.0	0
24	The novel EHEC gene asa overlaps the TEGT transporter gene in antisense and is regulated by NaCl and growth phase. Scientific Reports, 2018, 8, 17875.	3.3	31
25	Dynamic Proteome Alteration and Functional Modulation of Human Saliva Induced by Dietary Chemosensory Stimuli. Journal of Agricultural and Food Chemistry, 2018, 66, 5621-5634.	5.2	22
26	Reprogramming Human Siderocalin To Neutralize Petrobactin, the Essential Iron Scavenger of Anthrax Bacillus. Angewandte Chemie - International Edition, 2018, 57, 14619-14623.	13.8	17
27	The Novel Anaerobiosis-Responsive Overlapping Gene ano Is Overlapping Antisense to the Annotated Gene ECs2385 of Escherichia coli O157:H7 Sakai. Frontiers in Microbiology, 2018, 9, 931.	3.5	27
28	A novel short L-arginine responsive protein-coding gene (laoB) antiparallel overlapping to a CadC-like transcriptional regulator in Escherichia coli O157:H7 Sakai originated by overprinting. BMC Evolutionary Biology, 2018, 18, 21.	3.2	32
29	Neuprogrammierung von humanem Siderocalin zur Neutralisierung von Petrobactin, dem essenziellen Eisenfäger des Milzbrandâ€Bazillus. Angewandte Chemie, 2018, 130, 14829-14833.	2.0	1
30	Growth inhibition of Listeria monocytogenes by bacteriocin-producing Staphylococcus equorum SE3 in cheese models. Food Control, 2017, 71, 50-56.	5.5	18
31	<i>VisExpress</i> : Visual exploration of differential gene expression data. Information Visualization, 2017, 16, 48-73.	1.9	5
32	Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics, 2017, 18, 216.	2.8	43
33	Thermal resistance of vegetative thermophilic spore forming bacilli in skim milk isolated from dairy environments. Food Control, 2017, 82, 114-120.	5.5	22
34	Transcriptional and translational regulation by RNA thermometers, riboswitches and the sRNA DsrA in <i>Escherichia coli</i> O157:H7 Sakai under combined cold and osmotic stress adaptation. FEMS Microbiology Letters, 2017, 364, fnw262.	1.8	15
35	Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination. Frontiers in Microbiology, 2017, 8, 135.	3.5	46
36	Simulating Intestinal Growth Conditions Enhances Toxin Production of Enteropathogenic Bacillus cereus. Frontiers in Microbiology, 2017, 8, 627.	3.5	31

#	Article	IF	CITATIONS
37	Complete Circular Genome Sequence and Temperature Independent Adaptation to Anaerobiosis of Listeria weihenstephanensis DSM 24698. Frontiers in Microbiology, 2017, 8, 1672.	3.5	1
38	Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1656-1664.	1.7	47
39	Discovery of numerous novel small genes in the intergenic regions of the Escherichia coli O157:H7 Sakai genome. PLoS ONE, 2017, 12, e0184119.	2.5	38
40	Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity. Frontiers in Microbiology, 2016, 7, 768.	3.5	25
41	Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Research Notes, 2016, 9, 269.	1.4	68
42	Permanent colonization of creek sediments, creek water and limnic water plants by four Listeria species in low population densities. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2016, 71, 335-345.	1.4	1
43	Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: Impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. International Dairy Journal, 2016, 59, 20-28.	3.0	75
44	Acidified nitrite inhibits proliferation of Listeria monocytogenes — Transcriptional analysis of a preservation method. International Journal of Food Microbiology, 2016, 226, 33-41.	4.7	7
45	Translatomics combined with transcriptomics and proteomics reveals novel functional, recently evolved orphan genes in Escherichia coli O157:H7 (EHEC). BMC Genomics, 2016, 17, 133.	2.8	42
46	A Sensitive and Robust Method for Direct Determination of Lipolytic Activity in Natural Milk Environment. Food Analytical Methods, 2016, 9, 646-655.	2.6	12
47	Draft Genome Sequences of Three European Laboratory Derivatives from Enterohemorrhagic Escherichia coli O157:H7 Strain EDL933, Including Two Plasmids. Genome Announcements, 2016, 4, .	0.8	22
48	Thermostability of peptidases secreted by microorganisms associated with raw milk. International Dairy Journal, 2016, 56, 186-197.	3.0	36
49	Depsipeptide Intermediates Interrogate Proposed Biosynthesis of Cereulide, the Emetic Toxin of Bacillus cereus. Scientific Reports, 2015, 5, 10637.	3.3	30
50	Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evolutionary Biology, 2015, 15, 246.	3.2	97
51	Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting. BMC Evolutionary Biology, 2015, 15, 283.	3.2	43
52	The Food Additives Nitrite and Nitrate and Microbiological Safety of Food Products. Current Research in Microbiology, 2015, 6, 1-3.	0.2	3
53	The Mutation Glu151Asp in the B-Component of the Bacillus cereus Non-Hemolytic Enterotoxin (Nhe) Leads to a Diverging Reactivity in Antibody-Based Detection Systems. Toxins, 2015, 7, 4655-4667.	3.4	5
54	From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Frontiers in Microbiology, 2015, 6, 560.	3.5	96

#	Article	IF	CITATIONS
55	Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Frontiers in Microbiology, 2015, 6, 1101.	3.5	37
56	Draft Genome Sequence of Bacillus cytotoxicus CVUAS 2833, a Very Close Relative to Type Strain NVH 391-98 Isolated from a Different Location. Genome Announcements, 2015, 3, .	0.8	2
57	Chemodiversity of cereulide, the emetic toxin of Bacillus cereus. Analytical and Bioanalytical Chemistry, 2015, 407, 2439-2453.	3.7	53
58	Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. International Dairy Journal, 2015, 49, 23-29.	3.0	67
59	Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology, 2015, 211, 57-65.	4.7	176
60	Isolation and characterisation of a heat-resistant peptidase from Pseudomonas panacis withstanding general UHT processes. International Dairy Journal, 2015, 49, 46-55.	3.0	37
61	Multiparametric Quantitation of the <i>Bacillus cereus</i> Toxins Cereulide and Isocereulides A–G in Foods. Journal of Agricultural and Food Chemistry, 2015, 63, 8307-8313.	5.2	28
62	Biodiversity of the Surface Microbial Consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses. , 2014, , 219-250.		2
63	Temperature- and nitrogen source-dependent regulation of GlnR target genes in <i>Listeria monocytogenes</i> . FEMS Microbiology Letters, 2014, 355, 131-141.	1.8	20
64	Phenotype ofhtgA(mbiA), a recently evolved orphan gene ofEscherichia coliandShigella, completely overlapping in antisense toyaaW. FEMS Microbiology Letters, 2014, 350, 57-64.	1.8	44
65	Identification of genes essential for anaerobic growth of Listeria monocytogenes. Microbiology (United Kingdom), 2014, 160, 752-765.	1.8	43
66	Stress Response of Salmonella enterica Serovar Typhimurium to Acidified Nitrite. Applied and Environmental Microbiology, 2014, 80, 6373-6382.	3.1	26
67	Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics, 2014, 15, 353.	2.8	56
68	Contribution of the NO-detoxifying enzymes HmpA, NorV and NrfA toÂnitrosative stress protection of Salmonella Typhimurium in raw sausages. Food Microbiology, 2014, 42, 26-33.	4.2	11
69	Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. Journal of Microbiological Methods, 2014, 103, 44-52.	1.6	68
70	Biodiversity of the Surface Microbial Consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses. Microbiology Spectrum, 2014, 2, CM-0010-2012.	3.0	45
71	Mass spectrometric profiling of Bacillus cereus strains and quantitation of the emetic toxin cereulide by means of stable isotope dilution analysis and HEp-2 bioassay. Analytical and Bioanalytical Chemistry, 2013, 405, 191-201.	3.7	46
72	Life at Low Temperatures. , 2013, , 375-420.		7

72 Life at Low Temperatures. , 2013, , 375-420.

#	Article	IF	CITATIONS
73	Acid shock of Listeria monocytogenes at low environmental temperatures induces prfA, epithelial cell invasion, and lethality towards Caenorhabditis elegans. BMC Genomics, 2013, 14, 285.	2.8	29
74	ldentification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Applied Microbiology and Biotechnology, 2013, 97, 7111-7120.	3.6	123
75	Lysinibacillus meyeri sp. nov., isolated from a medical practice. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1512-1518.	1.7	23
76	Domibacillus robiginosus gen. nov., sp. nov., isolated from a pharmaceutical clean room. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2054-2061.	1.7	36
77	Bacillus gottheilii sp. nov., isolated from a pharmaceutical manufacturing site. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 867-872.	1.7	17
78	Micrococcus cohnii sp. nov., isolated from the air in a medical practice. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 80-85.	1.7	15
79	Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 641-647.	1.7	96
80	Naumannella halotolerans gen. nov., sp. nov., a Gram-positive coccus of the family Propionibacteriaceae isolated from a pharmaceutical clean room and from food. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 3042-3048.	1.7	11
81	Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1506-1511.	1.7	56
82	Psychroflexus halocasei sp. nov., isolated from a microbial consortium on a cheese. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1850-1856.	1.7	24
83	Bacillus kochii sp. nov., isolated from foods and a pharmaceuticals manufacturing site. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1092-1097.	1.7	28
84	Predicting Statistical Properties of Open Reading Frames in Bacterial Genomes. PLoS ONE, 2012, 7, e45103.	2.5	36
85	Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland. International Journal of Food Microbiology, 2012, 154, 1-9.	4.7	98
86	CodY orchestrates the expression of virulence determinants in emetic <i>Bacillus cereus</i> by impacting key regulatory circuits. Molecular Microbiology, 2012, 85, 67-88.	2.5	70
87	Anti-listerial potential of food-borne yeasts in red smear cheese. International Dairy Journal, 2011, 21, 83-89.	3.0	20
88	Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiology, 2011, 28, 284-290.	4.2	44
89	Surface microbial consortia from Livarot, a French smear-ripened cheese. Canadian Journal of Microbiology, 2011, 57, 651-660.	1.7	76
90	Inhibition of Cereulide Toxin Synthesis by Emetic <i>Bacillus cereus</i> via Long-Chain Polyphosphates. Applied and Environmental Microbiology, 2011, 77, 1475-1482.	3.1	23

#	Article	IF	CITATIONS
91	High biodiversity and potent anti-listerial action of complex red smear cheese microbial ripening consortia. Annals of Microbiology, 2010, 60, 531-539.	2.6	10
92	Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks. Journal of Biophotonics, 2010, 3, 493-505.	2.3	38
93	Differentiation of probiotic and environmental Saccharomyces cerevisiae strains in animal feed. Journal of Applied Microbiology, 2010, 109, 783-791.	3.1	18
94	Vibrio casei sp. nov., isolated from the surfaces of two French red smear soft cheeses. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1745-1749.	1.7	29
95	Identification of the Main Promoter Directing Cereulide Biosynthesis in Emetic <i>Bacillus cereus</i> and Its Application for Real-Time Monitoring of <i>ces</i> Gene Expression in Foods. Applied and Environmental Microbiology, 2010, 76, 1232-1240.	3.1	55
96	<i>Yersinia enterocolitica</i> Infection and <i>tcaA</i> -Dependent Killing of <i>Caenorhabditis elegans</i> . Applied and Environmental Microbiology, 2010, 76, 6277-6285.	3.1	33
97	Potent antilisterial cell-free supernatants produced by complex red-smear cheese microbial consortia. Journal of Dairy Science, 2010, 93, 4497-4505.	3.4	9
98	Towards Automatic Detecting of Overlapping Genes - Clustered BLAST Analysis of Viral Genomes. Lecture Notes in Computer Science, 2010, , 228-239.	1.3	3
99	Both Thiamine Uptake and Biosynthesis of Thiamine Precursors Are Required for Intracellular Replication of <i>Listeria monocytogenes</i> . Journal of Bacteriology, 2009, 191, 2218-2227.	2.2	55
100	Bavariicoccus seileri gen. nov., sp. nov., isolated from the surface and smear water of German red smear soft cheese. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2437-2443.	1.7	27
101	Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology (United Kingdom), 2009, 155, 922-931.	1.8	74
102	Identification of five Listeria species based on infrared spectra (FTIR) using macrosamples is superior to a microsample approach. Analytical and Bioanalytical Chemistry, 2008, 390, 1629-1635.	3.7	23
103	Reliable identification of closely related <i>Issatchenkia</i> and <i>Pichia</i> species using artificial neural network analysis of Fourierâ€transform infrared spectra. Yeast, 2008, 25, 787-798.	1.7	22
104	Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiology, 2008, 8, 214.	3.3	58
105	Commercial Ripening Starter Microorganisms Inoculated into Cheese Milk Do Not Successfully Establish Themselves in the Resident Microbial Ripening Consortia of a South German Red Smear Cheese. Applied and Environmental Microbiology, 2008, 74, 2210-2217.	3.1	95
106	Presence of a functional flagellar cluster Flag-2 and low-temperature expression of flagellar genes in Yersinia enterocolitica W22703. Microbiology (United Kingdom), 2008, 154, 196-206.	1.8	24
107	Differentiation of Listeria monocytogenes Serovars by Using Artificial Neural Network Analysis of Fourier-Transformed Infrared Spectra. Applied and Environmental Microbiology, 2007, 73, 1036-1040.	3.1	75
108	Gene Expression Analysis of Corynebacterium glutamicum Subjected to Long-Term Lactic Acid Adaptation. Journal of Bacteriology, 2007, 189, 5582-5590.	2.2	48

#	Article	IF	CITATIONS
109	Pathogenomics of Listeria spp International Journal of Medical Microbiology, 2007, 297, 541-557.	3.6	84
110	Stability of the Biodiversity of the Surface Consortia of Gubbeen, a Red-Smear Cheese. Journal of Dairy Science, 2007, 90, 2200-2210.	3.4	82
111	Diagnostic Real-Time PCR Assays for the Detection of Emetic Bacillus cereus Strains in Foods and Recent Food-Borne Outbreaks. Applied and Environmental Microbiology, 2007, 73, 1892-1898.	3.1	230
112	Life at Low Temperatures. , 2006, , 210-262.		22
113	Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy. Environmental Microbiology, 2006, 8, 848-857.	3.8	43
114	Sources of the adventitious microflora of a smear-ripened cheese. Journal of Applied Microbiology, 2006, 101, 668-681.	3.1	108
115	Low temperature-induced insecticidal activity ofYersinia enterocolitica. Molecular Microbiology, 2006, 59, 503-512.	2.5	59
116	Biochemical evidence for the proteolytic degradation of infectious prion protein PrPsc in hamster brain homogenates by foodborne bacteria. Systematic and Applied Microbiology, 2006, 29, 165-171.	2.8	23
117	Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiology, 2006, 6, 20.	3.3	199
118	Reliable and Rapid Identification of Listeria monocytogenes and Listeria Species by Artificial Neural Network-Based Fourier Transform Infrared Spectroscopy. Applied and Environmental Microbiology, 2006, 72, 994-1000.	3.1	107
119	Inhibition of Listeria monocytogenes by Food-Borne Yeasts. Applied and Environmental Microbiology, 2006, 72, 313-318.	3.1	65
120	Transcriptional Analysis of Long-Term Adaptation of Yersinia enterocolitica to Low-Temperature Growth. Journal of Bacteriology, 2006, 188, 2945-2958.	2.2	59
121	Degradation of scrapie associated prion protein (PrPSc) by the gastrointestinal microbiota of cattle. Veterinary Research, 2006, 37, 695-703.	3.0	31
122	Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology (United Kingdom), 2005, 151, 183-197.	1.8	324
123	Surface Microflora of Four Smear-Ripened Cheeses. Applied and Environmental Microbiology, 2005, 71, 6489-6500.	3.1	152
124	Identification and Partial Characterization of the Nonribosomal Peptide Synthetase Gene Responsible for Cereulide Production in Emetic Bacillus cereus. Applied and Environmental Microbiology, 2005, 71, 105-113.	3.1	249
125	UV Irradiation and Desiccation Modulate the Three-dimensional Extracellular Matrix of Nostoc commune (Cyanobacteria). Journal of Biological Chemistry, 2005, 280, 40271-40281.	3.4	103
126	Anti-listerial activity and biodiversity of cheese surface cultures: influence of the ripening temperature regime. European Food Research and Technology, 2004, 218, 242-247.	3.3	22

#	Article	IF	CITATIONS
127	Identification of emetic toxin producingBacillus cereusstrains by a novel molecular assay. FEMS Microbiology Letters, 2004, 232, 189-195.	1.8	167
128	Bacillus cereus, the causative agent of an emetic type of food-borne illness. Molecular Nutrition and Food Research, 2004, 48, 479-487.	3.3	310
129	Fourier-transform infrared (FT–IR) spectroscopy is a promising tool for monitoring the population dynamics of microorganisms in food stuff. European Food Research and Technology, 2003, 216, 434-439.	3.3	17
130	The AGUAAA motif in cspA1/A2 mRNA is important for adaptation of Yersinia enterocolitica to grow at low temperature. Molecular Microbiology, 2003, 50, 1629-1645.	2.5	18
131	Functional regulation of the Listeria monocytogenes bacteriophage A118 holin by an intragenic inhibitor lacking the first transmembrane domain. Molecular Microbiology, 2003, 48, 173-186.	2.5	23
132	A Pediocin-Producing Lactobacillus plantarum Strain Inhibits Listeria monocytogenes in a Multispecies Cheese Surface Microbial Ripening Consortium. Applied and Environmental Microbiology, 2003, 69, 1854-1857.	3.1	88
133	High Deleterious Genomic Mutation Rate in Stationary Phase of Escherichia coli. Science, 2003, 302, 1558-1560.	12.6	80
134	Temporal Stability and Biodiversity of Two Complex Antilisterial Cheese-Ripening Microbial Consortia. Applied and Environmental Microbiology, 2003, 69, 4012-4018.	3.1	104
135	Sensitive In Situ Monitoring of a Recombinant Bioluminescent Yersinia enterocolitica Reporter Mutant in Real Time on Camembert Cheese. Applied and Environmental Microbiology, 2002, 68, 5737-5740.	3.1	26
136	The Murein Hydrolase of the Bacteriophage φ3626 Dual Lysis System Is Active against All Tested <i>Clostridium perfringens</i> Strains. Applied and Environmental Microbiology, 2002, 68, 5311-5317.	3.1	120
137	Genomic Analysis of <i>Clostridium perfringens</i> Bacteriophage φ3626, Which Integrates into <i>guaA</i> and Possibly Affects Sporulation. Journal of Bacteriology, 2002, 184, 4359-4368.	2.2	80
138	Fourier-Transform Infrared Microspectroscopy, a Novel and Rapid Tool for Identification of Yeasts. Applied and Environmental Microbiology, 2002, 68, 4717-4721.	3.1	134
139	C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Molecular Microbiology, 2002, 44, 335-349.	2.5	322
140	The UV-B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins. Molecular Microbiology, 2002, 46, 827-843.	2.5	66
141	Pathogenic potential of fiftyBacillus weihenstephanensisstrains. FEMS Microbiology Letters, 2002, 215, 47-51.	1.8	91
142	Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 91-100.	1.7	124
143	erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy The GenBank accession numbers for the 16S rDNA gene sequences reported in this paper are AY017065 to AY017067, AY017069 to AY017087, and AF426135 to AF426143 for Brevibacterium linens; AY017088 to AY017091, AY017093 to AY017104, AY017107 to AY017111, and AF426144 to AF426149 for	1.8	45
144	Corynebacterium glutamicum; an. Microbiology (United Kingdom), 2002, 148, 1523-1532. Pyridinyl polythiazole class peptide antibiotic micrococcin P1 , secreted by foodborne Staphylococcus equorum WS2733, is biosynthesized nonribosomally. FEBS Journal, 2001, 268, 6390-6401.	0.2	33

#	Article	IF	CITATIONS
145	High incidence of Listeria monocytogenes in European red smear cheese. International Journal of Food Microbiology, 2001, 63, 91-98.	4.7	184
146	Quantification of micro-organisms in binary mixed populations by Fourier transform infrared (FT-IR) spectroscopy. Letters in Applied Microbiology, 2000, 30, 85-89.	2.2	24
147	Functional analysis of heterologous holin proteins in a λΔS genetic background. FEMS Microbiology Letters, 2000, 184, 179-186.	1.8	15
148	Restart of Exponential Growth of Cold-Shocked Yersinia enterocolitica Occurs after Down-Regulation ofcspA1/A2 mRNA. Journal of Bacteriology, 2000, 182, 3285-3288.	2.2	51
149	Gene Cloning and Expression and Secretion of <i>Listeria monocytogenes</i> Bacteriophage-Lytic Enzymes in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2000, 66, 2951-2958.	3.1	122
150	Functional analysis of heterologous holin proteins in a λΔS genetic background. FEMS Microbiology Letters, 2000, 184, 179-186.	1.8	16
151	The Macrocyclic Peptide Antibiotic Micrococcin P 1 Is Secreted by the Food-Borne Bacterium Staphylococcus equorum WS 2733 and Inhibits Listeria monocytogenes on Soft Cheese. Applied and Environmental Microbiology, 2000, 66, 2378-2384.	3.1	85
152	The Hemolytic Enterotoxin HBL Is Broadly Distributed among Species of the <i>Bacillus cereus</i> Group. Applied and Environmental Microbiology, 1999, 65, 5436-5442.	3.1	169
153	Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environmental Microbiology, 1999, 1, 503.	3.8	69
154	Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential. International Journal of Food Microbiology, 1999, 47, 89-97.	4.7	53
155	UV protection in cyanobacteria. European Journal of Phycology, 1999, 34, 329-338.	2.0	204
156	UV protection in cyanobacteria. European Journal of Phycology, 1999, 34, 329-338.	2.0	3
157	Long-Chain Polyphosphate Causes Cell Lysis and Inhibits <i>Bacillus cereus</i> Septum Formation, Which Is Dependent on Divalent Cations. Applied and Environmental Microbiology, 1999, 65, 3942-3949.	3.1	61
158	Evidence for a Holin-Like Protein Gene Fully Embedded Out of Frame in the Endolysin Gene of Staphylococcus aureus Bacteriophage 187. Journal of Bacteriology, 1999, 181, 4452-4460.	2.2	66
159	Pathogenic <i>Yersinia</i> Species Carry a Novel, Cold-Inducible Major Cold Shock Protein Tandem Gene Duplication Producing both Bicistronic and Monocistronic mRNA. Journal of Bacteriology, 1999, 181, 6449-6455.	2.2	29
160	Correlation of 16S Ribosomal DNA Signature Sequences with Temperature-Dependent Growth Rates of Mesophilic and Psychrotolerant Strains of the <i>Bacillus cereus</i> Group. Journal of Bacteriology, 1999, 181, 2624-2630.	2.2	64
161	The two-component lysis system ofStaphylococcus aureusbacteriophage Twort: a large TTG-start holin and an associated amidase endolysin. FEMS Microbiology Letters, 1998, 162, 265-274.	1.8	90
162	Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA. Journal of Microbiological Methods, 1998, 34, 99-106.	1.6	56

#	Article	lF	CITATIONS
163	Discrimination of Psychrotrophic and Mesophilic Strains of the <i>Bacillus cereus</i> Group by PCR Targeting of Major Cold Shock Protein Genes. Applied and Environmental Microbiology, 1998, 64, 3525-3529.	3.1	115
164	Rapid and Reliable Identification of Food-Borne Yeasts by Fourier-Transform Infrared Spectroscopy. Applied and Environmental Microbiology, 1998, 64, 2207-2214.	3.1	210
165	The two-component lysis system of Staphylococcus aureus bacteriophage Twort: a large TTG-start holin and an associated amidase endolysin. FEMS Microbiology Letters, 1998, 162, 265-274.	1.8	2
166	UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology, 1997, 179, 1940-1945.	2.2	340
167	Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. Journal of Bacteriology, 1997, 179, 2845-2851.	2.2	123
168	Long-Chain Polyphosphates Inhibit Growth of Clostridium tyrobutyricum in Processed Cheese Spreads. Journal of Food Protection, 1997, 60, 493-498.	1.7	42
169	Identification of Yoghurt-spoiling Yeasts with 18S rRNA-targeted Oligonucleotide Probes. Systematic and Applied Microbiology, 1997, 20, 468-480.	2.8	38
170	Identification of yeasts and coryneform bacteria from the surface microflora of brick cheeses. International Journal of Food Microbiology, 1997, 34, 115-129.	4.7	118
171	Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology (United Kingdom), 1996, 142, 985-992.	1.8	119
172	Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. Journal of Bacteriology, 1996, 178, 2916-2925.	2.2	89
173	Organization and transcriptional analysis of the Listeria phage A511 late gene region comprising the major capsid and tail sheath protein genes cps and tsh. Journal of Bacteriology, 1995, 177, 6601-6609.	2.2	48
174	Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Molecular Microbiology, 1995, 16, 1231-1241.	2.5	171
175	Structure of a Novel Oligosaccharide-Mycosporine-Amino Acid Ultraviolet A/B Sunscreen Pigment from the Terrestrial Cyanobacterium Nostoc commune. Journal of Biological Chemistry, 1995, 270, 8536-8539.	3.4	146
176	Taxonomical Classification of 20 Newly Isolated <i>Listeria</i> Bacteriophages by Electron Microscopy and Protein Analysis. Intervirology, 1994, 37, 31-35.	2.8	19
177	Supplementary Listeria-typing with defective Listeria phage particles (monocins). Letters in Applied Microbiology, 1994, 19, 99-101.	2.2	13
178	psbD sequences of Bumilleriopsis filiformis (Heterokontophyta, Xanthophyceae) and Porphyridium purpureum (Rhodophyta, Bangiophycidae): evidence for polyphyletic origins of plastids. Current Genetics, 1993, 24, 437-442.	1.7	3
179	Elimination of sample diffusion and lateral band spreading in isoelectric focusing employing ready-made immobilized pH gradient gels. Electrophoresis, 1992, 13, 461-463.	2.4	10
180	Evidence for multiple xenogenous origins of plastids: comparison of psbA-genes with a xanthophyte sequence. Current Genetics, 1991, 19, 503-507.	1.7	28

#	Article	IF	CITATIONS
181	Mikroorganismen in extremen LebensrÄ ¤ men. Cyanobakterien in Wüsten-gebieten. Biologie in Unserer Zeit, 1991, 21, 220-222.	0.2	4
182	Desiccation independence of terrestrialNostoc commune ecotypes (cyanobacteria). Microbial Ecology, 1991, 22, 271-283.	2.8	48
183	Cellular localization of cytochrome c 553 in the N2-fixing cyanobacterium Anabaena variabilis. Archives of Microbiology, 1990, 154, 614.	2.2	24
184	Do photosynthetic and respiratory electron transport chains share redox proteins?. Trends in Biochemical Sciences, 1990, 15, 458-462.	7.5	164
185	Cytochrome c Oxidase of the Cyanobacterium Phormidium foveolarum. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1989, 44, 378-383.	1.4	3
186	Nature of the Light-Induced H ⁺ Efflux and Na ⁺ Uptake in Cyanobacteria. Plant Physiology, 1989, 89, 1220-1225.	4.8	41
187	The respiratory NADH dehydrogenase of the cyanobacterium Anabaena variabilis: purification and characterization. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 973, 41-46.	1.0	30
188	Interaction of photosynthesis, respiration and nitrogen fixation in cyanobacteria. Photosynthesis Research, 1988, 15, 95-114.	2.9	132
189	Respiration, cyanide-insensitive oxygen uptake and oxidative phosphorylation in cyanobacteria. Physiologia Plantarum, 1988, 72, 379-384.	5.2	19
190	Ferredoxin-NADP+ oxidoreductase is the respiratory NADPH dehydrogenase of the cyanobacterium Anabaena variabilis. Archives of Biochemistry and Biophysics, 1988, 267, 228-235.	3.0	39
191	Cytochrome aa3 from heterocysts of the cyanobacterium Anabaena variabilis: Isolation and spectral characterization. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 934, 186-190.	1.0	36
192	Light-Induced Proton Release by the Cyanobacterium Anabaena variabilis. Plant Physiology, 1988, 86, 769-772.	4.8	21
193	Bioenergetics Studies of the Cyanobacterium Anabaena variabilis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1987, 42, 1280-1284.	1.4	5
194	Recovery of adenine-nucleotide pools in terrestrial blue-green algae after prolonged drought periods. Oecologia, 1986, 68, 585-588.	2.0	37
195	Effect of Monochromatic Light on Proton Efflux of the Blue-Green Alga <i>Anabaena variabilis</i> . Plant Physiology, 1986, 81, 939-941.	4.8	8
196	Different enzymes involved in NADH- and NADPH-dependent respiration in the cyanobacteriumAnabaena variabilis. FEMS Microbiology Letters, 1985, 26, 147-151.	1.8	13
197	Could life have arisen in the primitive atmosphere?. Journal of Molecular Evolution, 1985, 22, 91-94.	1.8	9
198	Fructose-Stimulated Ferrievanide Reduction by Intact Blue-Green Algae. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1985, 40, 138-141.	1.4	5

#	Article	IF	CITATIONS
199	Interaction of Photosynthetic and Respiratory Electron Transport in Blue-Green Algae: Effect of a Cytochrome c-553 Specific Antibody. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1984, 39, 623-626.	1.4	19
200	Photoinhibition of respiratory CO2 release in the green alga Scenedesmus. Physiologia Plantarum, 1984, 60, 557-560.	5.2	7
201	Interaction of respiratory and photosynthetic electron transport, and evidence for membrane-bound pyridine-nucleotide dehydrogenases in Anabaena variabilis. Physiologia Plantarum, 1984, 60, 479-483.	5.2	22
202	Vanadate-sensitive proton efflux by filamentous cyanobacteria. FEMS Microbiology Letters, 1984, 22, 215-218.	1.8	16
203	Transmembrane electron transport and the neutral theory of evolution. Origins of Life and Evolution of Biospheres, 1984, 14, 725-731.	0.6	1
204	Rewetting of drought-resistant blue-green algae: Time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia, 1984, 62, 418-423.	2.0	167
205	Respiratory and Photosynthetic Electron Transport in Anabaena Variabilis: Light-Dark Activities of Pyridine-Nucleotide Dehydrogenases. , 1984, , 635-638.		0
206	Basic functional states in the evolution of light-driven cyclic electron transport. Journal of Theoretical Biology, 1983, 104, 289-299.	1.7	6
207	Hybridisierung und Verwandtschaftsgrade innerhalb der Anatidae — eine systematische und evolutionstheoretische Betrachtung. Journal Fur Ornithologie, 1982, 123, 357-380.	1.2	32
208	Respiration of blue-green algae in the light. Archives of Microbiology, 1982, 132, 329-332.	2.2	61
209	Interaction of respiratory and photosynthetic electron transport in Anabaena variabilis K�tz Archives of Microbiology, 1982, 132, 333-337.	2.2	42
210	Reconstitution of electron transport by cytochrome c-553 in a cell-free system of Nostoc muscorum. Photosynthesis Research, 1982, 3, 191-201.	2.9	27
211	Arrhenius Plots Indicate Localization of Photosynthetic and Respiratory Electron Transport in Different Membrane Regions of Anabaena. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1981, 36, 1036-1040.	1.4	27
212	Increase of Nitrogenase Activity in the Blue-Green Alga Nostoc muscorum (Cyanobacterium). Journal of Bacteriology, 1980, 144, 1017-1023.	2.2	28
213	Bacillus cereus. , 0, , 147-164.		12