
David G Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. Current Biology, 2007, 17, 520-527.	3.9	586
2	Brefeldin A: Deciphering an Enigmatic Inhibitor of Secretion. Plant Physiology, 2002, 130, 1102-1108.	4.8	435
3	Endocytic and Secretory Traffic in <i>Arabidopsis</i> Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. Plant Cell, 2010, 22, 1344-1357.	6.6	435
4	ldentification of Multivesicular Bodies as Prevacuolar Compartments in Nicotiana tabacum BY-2 Cells[W]. Plant Cell, 2004, 16, 672-693.	6.6	386
5	Reevaluation of the Effects of Brefeldin A on Plant Cells Using Tobacco Bright Yellow 2 Cells Expressing Golgi-Targeted Green Fluorescent Protein and COPI Antisera. Plant Cell, 2002, 14, 237-261.	6.6	329
6	Rice SCAMP1 Defines Clathrin-Coated, trans-Golgi–Located Tubular-Vesicular Structures as an Early Endosome in Tobacco BY-2 Cells. Plant Cell, 2007, 19, 296-319.	6.6	258
7	Multivesicular Bodies Mature from the <i>Trans</i> -Golgi Network/Early Endosome in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3463-3481.	6.6	236
8	EXPO, an Exocyst-Positive Organelle Distinct from Multivesicular Endosomes and Autophagosomes, Mediates Cytosol to Cell Wall Exocytosis in <i>Arabidopsis</i> and Tobacco Cells Â. Plant Cell, 2011, 22, 4009-4030.	6.6	229
9	The Endosomal System of Plants: Charting New and Familiar Territories. Plant Physiology, 2008, 147, 1482-1492.	4.8	223
10	Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature, 2007, 448, 488-492.	27.8	215
11	In Situ Localization and in Vitro Induction of Plant COPI-Coated Vesicles. Plant Cell, 2000, 12, 2219-2235.	6.6	188
12	Unconventional protein secretion. Trends in Plant Science, 2012, 17, 606-615.	8.8	147
13	Plant neurobiology: no brain, no gain?. Trends in Plant Science, 2007, 12, 135-136.	8.8	146
14	Vacuolar Storage Proteins Are Sorted in the Cis-Cisternae of the Pea Cotyledon Golgi Apparatus. Journal of Cell Biology, 2001, 152, 41-50.	5.2	144
15	Plant Retromer, Localized to the Prevacuolar Compartment and Microvesicles in Arabidopsis, May Interact with Vacuolar Sorting Receptors. Plant Cell, 2006, 18, 1239-1252.	6.6	143
16	Secretory Bulk Flow of Soluble Proteins Is Efficient and COPII Dependent. Plant Cell, 2001, 13, 2005-2020.	6.6	136
17	Saturation of the Endoplasmic Reticulum Retention Machinery Reveals Anterograde Bulk Flow. Plant Cell, 1999, 11, 2233-2247.	6.6	133
18	Dynamics of COPII Vesicles and the Golgi Apparatus in Cultured <i>Nicotiana tabacum</i> BY-2 Cells Provides Evidence for Transient Association of Golgi Stacks with Endoplasmic Reticulum Exit Sites. Plant Cell, 2005, 17, 1513-1531.	6.6	131

#	Article	IF	CITATIONS
19	Protein Sorting to the Storage Vacuoles of Plants: A Critical Appraisal. Traffic, 2005, 6, 615-625.	2.7	128
20	BFA effects are tissue and not just plant specific. Trends in Plant Science, 2008, 13, 405-408.	8.8	116
21	Retromer recycles vacuolar sorting receptors from the <i>trans</i> -Golgi network. Plant Journal, 2010, 61, 107-121.	5.7	115
22	ArabidopsisuA-adaptin interacts with the tyrosine motif of the vacuolar sorting receptor VSR-PS1. Plant Journal, 2004, 37, 678-693.	5.7	114
23	Membrane Dynamics in the Early Secretory Pathway. Critical Reviews in Plant Sciences, 2007, 26, 199-225.	5.7	108
24	Golgi-Mediated Vacuolar Sorting of the Endoplasmic Reticulum Chaperone BiP May Play an Active Role in Quality Control within the Secretory Pathway. Plant Cell, 2006, 18, 198-211.	6.6	99
25	Unconventional protein secretion in plants: a critical assessment. Protoplasma, 2016, 253, 31-43.	2.1	96
26	Tracking down the elusive early endosome. Trends in Plant Science, 2007, 12, 497-505.	8.8	91
27	Transport vesicle formation in plant cells. Current Opinion in Plant Biology, 2009, 12, 660-669.	7.1	90
28	Arabidopsis Sec21p and Sec23p Homologs. Probable Coat Proteins of Plant COP-Coated Vesicles1. Plant Physiology, 1999, 119, 1437-1446.	4.8	89
29	The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2014, 141, 4139-4148.	2.5	88
30	Clathrin and post-Golgi trafficking: a very complicated issue. Trends in Plant Science, 2014, 19, 134-139.	8.8	83
31	Retention mechanisms for ER and Golgi membrane proteins. Trends in Plant Science, 2014, 19, 508-515.	8.8	83
32	Vesicles versus Tubes: Is Endoplasmic Reticulum-Golgi Transport in Plants Fundamentally Different from Other Eukaryotes?. Plant Physiology, 2015, 168, 393-406.	4.8	80
33	Sorting of plant vacuolar proteins is initiated in the ER. Plant Journal, 2010, 62, 601-614.	5.7	79
34	The Syntaxins SYP31 and SYP81 Control ER–Golgi Trafficking in the Plant Secretory Pathway. Traffic, 2008, 9, 1629-1652.	2.7	76
35	Plants Neither Possess nor Require Consciousness. Trends in Plant Science, 2019, 24, 677-687.	8.8	75
36	<i>In vivo</i> Trafficking and Localization of p24 Proteins in Plant Cells. Traffic, 2008, 9, 770-785.	2.7	74

#	Article	IF	CITATIONS
37	Localization of Vacuolar Transport Receptors and Cargo Proteins in the Golgi Apparatus of Developing Arabidopsis Embryos. Traffic, 2007, 8, 1452-1464.	2.7	73
38	Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Molecular Biology of the Cell, 2014, 25, 412-426.	2.1	71
39	Protein Mobilization in Germinating Mung Bean Seeds Involves Vacuolar Sorting Receptors and Multivesicular Bodies. Plant Physiology, 2007, 143, 1628-1639.	4.8	70
40	Anti-microtubular herbicides and fungicides affect Ca2+ transport in plant mitochondria. Planta, 1980, 149, 336-340.	3.2	64
41	Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biology, 2012, 12, 164.	3.6	62
42	Newly Formed Vacuoles in Root Meristems of Barley and Pea Seedlings Have Characteristics of Both Protein Storage and Lytic Vacuoles. Plant Physiology, 2007, 145, 1383-1394.	4.8	61
43	One Vacuole or two Vacuoles: Do Protein Storage Vacuoles Arise de novo during Pea Cotyledon Development?. Journal of Plant Physiology, 1995, 145, 654-664.	3.5	60
44	Sorting Signals in the Cytosolic Tail of Plant p24 Proteins Involved in the Interaction with the COPII Coat. Plant and Cell Physiology, 2004, 45, 1779-1786.	3.1	57
45	Differential effects of the brefeldin A analogue (6R)-hydroxy-BFA in tobacco and Arabidopsis. Journal of Experimental Botany, 2011, 62, 2949-2957.	4.8	55
46	Production of monoclonal antibodies with a controlled <i>N</i> â€glycosylation pattern in seeds of <i>Arabidopsis thaliana</i> . Plant Biotechnology Journal, 2011, 9, 179-192.	8.3	50
47	Vacuolar Sorting Receptor (VSR) Proteins Reach the Plasma Membrane in Germinating Pollen Tubes. Molecular Plant, 2011, 4, 845-853.	8.3	47
48	Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. Journal of Experimental Botany, 2016, 67, 4435-4449.	4.8	47
49	Golgi-mediated Transport of Seed Storage Proteins. Seed Science Research, 1999, 9, 267-283.	1.7	44
50	Trying to make sense of retromer. Trends in Plant Science, 2012, 17, 431-439.	8.8	44
51	Golgi Regeneration after Brefeldin A Treatment in BY-2 Cells Entails Stack Enlargement and Cisternal Growth followed by Division. Plant Physiology, 2007, 145, 527-538.	4.8	43
52	EXPO and Autophagosomes are Distinct Organelles in Plants. Plant Physiology, 2015, 169, pp.00953.2015.	4.8	43
53	Coupled transport of Arabidopsis p24 proteins at the ER–Golgi interface. Journal of Experimental Botany, 2012, 63, 4243-4261.	4.8	41
54	Secretory Pathway Research: The More Experimental Systems the Better. Plant Cell, 2012, 24, 1316-1326.	6.6	39

#	Article	IF	CITATIONS
55	Lack of a Vacuolar Sorting Receptor Leads to Non-Specific Missorting of Soluble Vacuolar Proteins in Arabidopsis Seeds. Traffic, 2008, 9, 408-416.	2.7	35
56	ER Import Sites and Their Relationship to ER Exit Sites: A New Model for Bidirectional ER-Golgi Transport in Higher Plants. Frontiers in Plant Science, 2012, 3, 143.	3.6	35
57	Debunking a myth: plant consciousness. Protoplasma, 2021, 258, 459-476.	2.1	35
58	Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma, 2013, 250, 235-240.	2.1	32
59	Is the 6 kDa tobacco etch viral protein a bona fide ERES marker?. Journal of Experimental Botany, 2011, 62, 5013-5023.	4.8	30
60	Arabidopsis p24Î′5 and p24Î′9 facilitate Coat Protein lâ€dependent transport of the K/ <scp>HDEL</scp> receptor <scp>ERD</scp> 2 from the Golgi to the endoplasmic reticulum. Plant Journal, 2014, 80, 1014-1030.	5.7	27
61	Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. Protoplasma, 2014, 251, 247-264.	2.1	25
62	Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma, 2009, 236, 73-84.	2.1	24
63	An epichromatin epitope: Persistence in the cell cycle and conservation in evolution. Nucleus, 2011, 2, 47-60.	2.2	23
64	Storage globulins pass through the Golgi apparatus and multivesicular bodies in the absence of dense vesicle formation during early stages of cotyledon development in mung bean. Journal of Experimental Botany, 2012, 63, 1367-1380.	4.8	23
65	1-Butanol targets the Golgi apparatus in tobacco BY-2 cells, but in a different way to Brefeldin A. Journal of Experimental Botany, 2007, 58, 3439-3447.	4.8	21
66	Plant Golgi ultrastructure. Journal of Microscopy, 2020, 280, 111-121.	1.8	21
67	An epichromatin epitope: persistence in the cell cycle and conservation in evolution. Nucleus, 2011, 2, 47-60.	2.2	20
68	Putative p24 complexes in Arabidopsis contain members of the delta and beta subfamilies and cycle in the early secretory pathway. Journal of Experimental Botany, 2013, 64, 3147-3167.	4.8	18
69	Storage Protein Polypeptides in Clathrin Coated Vesicle Fractions from Developing Pea Cotyledons are not Due to Endomembrane Contamination. Journal of Plant Physiology, 1991, 138, 309-316.	3.5	17
70	Trafficking of Vacuolar Sorting Receptors: New Data and New Problems. Plant Physiology, 2014, 165, 1417-1423.	4.8	15
71	Reply to Trewavas et al. and Calvo and Trewavas. Trends in Plant Science, 2020, 25, 218-220.	8.8	15
72	Anesthetics and plants: no pain, no brain, and therefore no consciousness. Protoplasma, 2021, 258, 239-248.	2.1	15

#	Article	IF	CITATIONS
73	A Model for ERD2 Function in Higher Plants. Frontiers in Plant Science, 2020, 11, 343.	3.6	14
74	An Exo2 Derivative Affects ER and Golgi Morphology and Vacuolar Sorting in a Tissueâ€Specific Manner in <i>Arabidopsis</i> . Traffic, 2011, 12, 1552-1562.	2.7	12
75	Successful transport to the vacuole of heterologously expressed mung bean 8S globulin occurs in seed but not in vegetative tissues. Journal of Experimental Botany, 2013, 64, 1587-1601.	4.8	9
76	Retromer and VSR Recycling: A Red Herring?. Plant Physiology, 2018, 176, 483-484.	4.8	9
77	ER-to-Golgi Transport: The COPII-Pathway. Plant Cell Monographs, 2006, , 99-124.	0.4	8
78	EMAC, Retromer, and VSRs: do they connect?. Protoplasma, 2020, 257, 1725-1729.	2.1	8
79	Plants have neither synapses nor a nervous system. Journal of Plant Physiology, 2021, 263, 153467.	3.5	8
80	Auxin and Vesicle Traffic. Plant Physiology, 2018, 176, 1884-1888.	4.8	8
81	Subcellular localization of nuclease in barley aleurone. Physiologia Plantarum, 1991, 83, 255-264.	5.2	7
82	Integrated information theory does not make plant consciousness more convincing. Biochemical and Biophysical Research Communications, 2021, 564, 166-169.	2.1	7
83	A rich and bountiful harvest: Key discoveries in plant cell biology. Plant Cell, 2022, 34, 53-71.	6.6	7
84	Comparison of Membrane Targeting Strategies for the Accumulation of the Human Immunodeficiency Virus p24 Protein in Transgenic Tobacco. International Journal of Molecular Sciences, 2013, 14, 13241-13265.	4.1	6
85	Turnover of Tonoplast Proteins. Plant Physiology, 2018, 177, 10-11.	4.8	5
86	Endocytosis: Is There Really a Recycling from Late Endosomes?. Molecular Plant, 2015, 8, 1554-1556.	8.3	4
87	Understanding plant behavior: a student perspective: response to Van Volkenburgh et al Trends in Plant Science, 2021, 26, 1089-1090.	8.8	2
88	Special review issue. Protoplasma, 2010, 247, 129-130.	2.1	0