
Derek N Woolfson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generalized Born Implicit Solvent Models Do Not Reproduce Secondary Structures of <i>De Novo</i> Designed Glu/Lys Peptides. Journal of Chemical Theory and Computation, 2022, 18, 4070-4076.	5.3	9
2	De novo design of discrete, stable 310-helix peptide assemblies. Nature, 2022, 607, 387-392.	27.8	21
3	De novo designed peptides for cellular delivery and subcellular localisation. Nature Chemical Biology, 2022, 18, 999-1004.	8.0	16
4	Query-guided protein–protein interaction inhibitor discovery. Chemical Science, 2021, 12, 4753-4762.	7.4	5
5	Scalable synthesis and coupling of quaternary α-arylated amino acids: α-aryl substituents are tolerated in α-helical peptides. Chemical Science, 2021, 12, 9386-9390.	7.4	5
6	Towards optimizing peptide-based inhibitors of protein–protein interactions: predictive saturation variation scanning (PreSaVS). RSC Chemical Biology, 2021, 2, 1474-1478.	4.1	5
7	De Novo Designed Peptide and Protein Hairpins Selfâ€Assemble into Sheets and Nanoparticles. Small, 2021, 17, e2100472.	10.0	18
8	De novo design of a reversible phosphorylation-dependent switch for membrane targeting. Nature Communications, 2021, 12, 1472.	12.8	25
9	α-Helical peptides on plasma-treated polymers promote ciliation of airway epithelial cells. Materials Science and Engineering C, 2021, 122, 111935.	7.3	2
10	Structural resolution of switchable states of a de novo peptide assembly. Nature Communications, 2021, 12, 1530.	12.8	16
11	How Coiled-Coil Assemblies Accommodate Multiple Aromatic Residues. Biomacromolecules, 2021, 22, 2010-2019.	5.4	5
12	Constructing ion channels from water-soluble \hat{I} ±-helical barrels. Nature Chemistry, 2021, 13, 643-650.	13.6	59
13	Molecular mechanism for kinesin-1 direct membrane recognition. Science Advances, 2021, 7, .	10.3	5
14	Kinesin-1 captures RNA cargo in its adaptable coils. Genes and Development, 2021, 35, 937-939.	5.9	8
15	A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. Journal of Molecular Biology, 2021, 433, 167160.	4.2	77
16	<i>Socket2</i> : a program for locating, visualizing and analyzing coiled-coil interfaces in protein structures. Bioinformatics, 2021, 37, 4575-4577.	4.1	39
17	Fragment-linking peptide design yields a high-affinity ligand for microtubule-based transport. Cell Chemical Biology, 2021, 28, 1347-1355.e5.	5.2	7
18	Coiled coils 9-to-5: rational <i>de novo</i> design of α-helical barrels with tunable oligomeric states. Chemical Science, 2021, 12, 6923-6928.	7.4	31

#	Article	IF	CITATIONS
19	Automated solid-phase concatenation of Aib residues to form long, water-soluble, helical peptides. Chemical Communications, 2020, 56, 12049-12052.	4.1	11
20	Robust <i>De Novo</i> -Designed Homotetrameric Coiled Coils. Biochemistry, 2020, 59, 1087-1092.	2.5	9
21	Effect of metabolosome encapsulation peptides on enzyme activity, coaggregation, incorporation, and bacterial microcompartment formation. MicrobiologyOpen, 2020, 9, e1010.	3.0	14
22	BAlaS: fast, interactive and accessible computational alanine-scanning using BudeAlaScan. Bioinformatics, 2020, 36, 2917-2919.	4.1	39
23	<i>De Novo</i> Designed Protein-Interaction Modules for In-Cell Applications. ACS Synthetic Biology, 2020, 9, 427-436.	3.8	19
24	Host macrophage response to injectable hydrogels derived from ECM and α-helical peptides. Acta Biomaterialia, 2020, 111, 141-152.	8.3	24
25	Peptide Assembly Directed and Quantified Using Megadalton DNA Nanostructures. ACS Nano, 2019, 13, 9927-9935.	14.6	45
26	Stabilizing and Understanding a Miniprotein by Rational Redesign. Biochemistry, 2019, 58, 3060-3064.	2.5	3
27	Towards functional de novo designed proteins. Current Opinion in Chemical Biology, 2019, 52, 102-111.	6.1	54
28	A Modular Vaccine Platform Combining Selfâ€Assembled Peptide Cages and Immunogenic Peptides. Advanced Functional Materials, 2019, 29, 1807357.	14.9	36
29	Predicting and Experimentally Validating Hot-Spot Residues at Protein–Protein Interfaces. ACS Chemical Biology, 2019, 14, 2252-2263.	3.4	54
30	The dynamical interplay between a megadalton peptide nanocage and solutes probed by microsecond atomistic MD; implications for design. Physical Chemistry Chemical Physics, 2019, 21, 137-147.	2.8	5
31	Navigating the Structural Landscape of De Novo α-Helical Bundles. Journal of the American Chemical Society, 2019, 141, 8787-8797.	13.7	42
32	Guiding Biomolecular Interactions in Cells Using <i>de Novo</i> Protein–Protein Interfaces. ACS Synthetic Biology, 2019, 8, 1284-1293.	3.8	35
33	The de novo design of α-helical peptides for supramolecular self-assembly. Current Opinion in Biotechnology, 2019, 58, 175-182.	6.6	61
34	Bioinspired Silicification Reveals Structural Detail in Self-Assembled Peptide Cages. ACS Nano, 2018, 12, 1420-1432.	14.6	16
35	Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes. ACS Catalysis, 2018, 8, 1476-1484.	11.2	33
36	Applying graph theory to protein structures: an Atlas of coiled coils. Bioinformatics, 2018, 34, 3316-3323.	4.1	17

#	Article	IF	CITATIONS
37	C <scp>CB</scp> uilder 2.0: Powerful and accessible coiledâ€coil modeling. Protein Science, 2018, 27, 103-111.	7.6	107
38	Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm. Nature Chemical Biology, 2018, 14, 142-147.	8.0	128
39	Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nature Communications, 2018, 9, 4132.	12.8	45
40	De novo targeting to the cytoplasmic and luminal side of bacterial microcompartments. Nature Communications, 2018, 9, 3413.	12.8	39
41	<i>De Novo</i> -Designed α-Helical Barrels as Receptors for Small Molecules. ACS Synthetic Biology, 2018, 7, 1808-1816.	3.8	60
42	Modifying Self-Assembled Peptide Cages To Control Internalization into Mammalian Cells. Nano Letters, 2018, 18, 5933-5937.	9.1	26
43	<i>De novo</i> coiled-coil peptides as scaffolds for disrupting protein–protein interactions. Chemical Science, 2018, 9, 7656-7665.	7.4	36
44	Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Scientific Reports, 2018, 8, 11753.	3.3	30
45	Construction of a Chassis for a Tripartite Protein-Based Molecular Motor. ACS Synthetic Biology, 2017, 6, 1096-1102.	3.8	11
46	Membrane-spanning α-helical barrels as tractable protein-design targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160213.	4.0	26
47	Engineering protein stability with atomic precision in a monomeric miniprotein. Nature Chemical Biology, 2017, 13, 764-770.	8.0	44
48	N@ <i>a</i> and N@ <i>d</i> : Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces. ACS Chemical Biology, 2017, 12, 528-538.	3.4	34
49	Miniprotein Design: Past, Present, and Prospects. Accounts of Chemical Research, 2017, 50, 2085-2092.	15.6	61
50	How do miniproteins fold?. Science, 2017, 357, 133-134.	12.6	8
51	Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Scientific Reports, 2017, 7, 44341.	3.3	40
52	Beyond icosahedral symmetry in packings of proteins in spherical shells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9014-9019.	7.1	36
53	Conformational Dynamics of Asparagine at Coiled-Coil Interfaces. Biochemistry, 2017, 56, 6544-6554.	2.5	29
54	Toward a Soluble Model System for the Amyloid State. Journal of the American Chemical Society, 2017, 139, 16434-16437.	13.7	4

#	Article	IF	CITATIONS
55	Decorating Self-Assembled Peptide Cages with Proteins. ACS Nano, 2017, 11, 7901-7914.	14.6	55
56	A monodisperse transmembrane α-helical peptide barrel. Nature Chemistry, 2017, 9, 411-419.	13.6	97
57	Coiled-Coil Design: Updated and Upgraded. Sub-Cellular Biochemistry, 2017, 82, 35-61.	2.4	130
58	ISAMBARD: an open-source computational environment for biomolecular analysis, modelling and design. Bioinformatics, 2017, 33, 3043-3050.	4.1	48
59	Installing hydrolytic activity into a completely de novo protein framework. Nature Chemistry, 2016, 8, 837-844.	13.6	172
60	Controlling the Assembly of Coiled–Coil Peptide Nanotubes. Angewandte Chemie - International Edition, 2016, 55, 987-991.	13.8	53
61	Controlling the Assembly of Coiled–Coil Peptide Nanotubes. Angewandte Chemie, 2016, 128, 999-1003.	2.0	13
62	On the satisfaction of backboneâ€carbonyl lone pairs of electrons in protein structures. Protein Science, 2016, 25, 887-897.	7.6	22
63	BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre. Biochemical Society Transactions, 2016, 44, 689-691.	3.4	5
64	Functionalized α-Helical Peptide Hydrogels for Neural Tissue Engineering. ACS Biomaterials Science and Engineering, 2015, 1, 431-439.	5.2	59
65	Local and macroscopic electrostatic interactions in single α-helices. Nature Chemical Biology, 2015, 11, 221-228.	8.0	72
66	Modular Design of Self-Assembling Peptide-Based Nanotubes. Journal of the American Chemical Society, 2015, 137, 10554-10562.	13.7	137
67	De novo protein design: how do we expand into the universe of possible protein structures?. Current Opinion in Structural Biology, 2015, 33, 16-26.	5.7	150
68	Carbohydrate–Aromatic Interactions in Proteins. Journal of the American Chemical Society, 2015, 137, 15152-15160.	13.7	282
69	Assessing Cellular Response to Functionalized αâ€Helical Peptide Hydrogels. Advanced Healthcare Materials, 2014, 3, 1387-1391.	7.6	34
70	Signatures of <i>n→π*</i> interactions in proteins. Protein Science, 2014, 23, 284-288.	7.6	82
71	Computational design of water-soluble α-helical barrels. Science, 2014, 346, 485-488.	12.6	306
72	Construction and Characterization of Kilobasepair Densely Labeled Peptide-DNA. Biomacromolecules, 2014, 15, 4065-4072.	5.4	16

#	Article	IF	CITATIONS
73	CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics, 2014, 30, 3029-3035.	4.1	103
74	A catalytic role for methionine revealed by a combination of computation and experiments on phosphite dehydrogenase. Chemical Science, 2014, 5, 2191-2199.	7.4	28
75	Accessibility, Reactivity, and Selectivity of Side Chains within a Channel of <i>de Novo</i> Peptide Assembly. Journal of the American Chemical Society, 2013, 135, 12524-12527.	13.7	30
76	α-Helical Coiled Coils. , 2013, , 12-17.		0
77	Controlled microfluidic switching in arbitrary time-sequences with low drag. Lab on A Chip, 2013, 13, 2389.	6.0	10
78	Synthetic biomolecules. Current Opinion in Chemical Biology, 2013, 17, 925-928.	6.1	0
79	Interplay of Hydrogen Bonds and <i>n</i> →Ĩ€* Interactions in Proteins. Journal of the American Chemical Society, 2013, 135, 18682-18688.	13.7	121
80	Self-Assembling Cages from Coiled-Coil Peptide Modules. Science, 2013, 340, 595-599.	12.6	451
81	Prediction and analysis of higher-order coiled-coils: Insights from proteins of the extracellular matrix, tenascins and thrombospondins. International Journal of Biochemistry and Cell Biology, 2013, 45, 2392-2401.	2.8	14
82	A Set of <i>de Novo</i> Designed Parallel Heterodimeric Coiled Coils with Quantified Dissociation Constants in the Micromolar to Sub-nanomolar Regime. Journal of the American Chemical Society, 2013, 135, 5161-5166.	13.7	148
83	LOGICOIL—multi-state prediction of coiled-coil oligomeric state. Bioinformatics, 2013, 29, 69-76.	4.1	90
84	Synthetic biology goes live. Biochemist, 2013, 35, 54-57.	0.5	1
85	Design and Construction of a One-Dimensional DNA Track for an Artificial Molecular Motor. Journal of Nanomaterials, 2012, 2012, 1-10.	2.7	7
86	Squaring the Circle in Peptide Assembly: From Fibers to Discrete Nanostructures by <i>de Novo</i> Design. Journal of the American Chemical Society, 2012, 134, 15457-15467.	13.7	87
87	A Basis Set of <i>de Novo</i> Coiled-Coil Peptide Oligomers for Rational Protein Design and Synthetic Biology. ACS Synthetic Biology, 2012, 1, 240-250.	3.8	226
88	New currency for old rope: from coiled-coil assemblies to α-helical barrels. Current Opinion in Structural Biology, 2012, 22, 432-441.	5.7	130
89	Thed′dd′ Vertical Triad Is Less Discriminating Than thea′aa′ Vertical Triad in the Antiparallel Coiled-Coil Dimer Motif. Journal of the American Chemical Society, 2012, 134, 2626-2633.	13.7	20
90	Strong Contributions from Vertical Triads to Helix-Partner Preferences in Parallel Coiled Coils. Journal of the American Chemical Society, 2012, 134, 15652-15655.	13.7	13

#	Article	IF	CITATIONS
91	Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13266-13271.	7.1	70
92	Metallopolymer–Peptide Hybrid Materials: Synthesis and Selfâ€Assembly of Functional, Polyferrocenylsilane–Tetrapeptide Conjugates. Chemistry - A European Journal, 2012, 18, 2524-2535.	3.3	25
93	Polyelectrolyte–surfactant nanocomposite membranes formed at a liquid–liquid interface. Soft Matter, 2011, 7, 3475.	2.7	9
94	A de novo peptide hexamer with a mutable channel. Nature Chemical Biology, 2011, 7, 935-941.	8.0	172
95	De novo designed peptides for biological applications. Chemical Society Reviews, 2011, 40, 4295.	38.1	170
96	Bioorthogonal dual functionalization of self-assembling peptide fibers. Biomaterials, 2011, 32, 3712-3720.	11.4	60
97	SCORER 2.0: an algorithm for distinguishing parallel dimeric and trimeric coiled-coil sequences. Bioinformatics, 2011, 27, 1908-1914.	4.1	42
98	Tuning the performance of an artificial protein motor. Physical Review E, 2011, 84, 031922.	2.1	9
99	Designed Coiled Coils Promote Folding of a Recombinant Bacterial Collagen. Journal of Biological Chemistry, 2011, 286, 17512-17520.	3.4	31
100	Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium. Nucleic Acids Research, 2011, 39, 3917-3927.	14.5	74
101	Synthetic Biology: A bit of rebranding, or something new and inspiring?. Biochemist, 2011, 33, 19-25.	0.5	6
102	The non-covalent decoration of self-assembling protein fibers. Biomaterials, 2010, 31, 7468-7474.	11.4	38
103	Building fibrous biomaterials from αâ€helical and collagenâ€like coiledâ€coil peptides. Biopolymers, 2010, 94, 118-127.	2.4	118
104	n→ï€* interactions in proteins. Nature Chemical Biology, 2010, 6, 615-620.	8.0	323
105	Assembly Pathway of a Designed α-Helical Protein Fiber. Biophysical Journal, 2010, 98, 1668-1676.	0.5	57
106	Side-Chain Pairing Preferences in the Parallel Coiled-Coil Dimer Motif: Insight on Ion Pairing between Core and Flanking Sites. Journal of the American Chemical Society, 2010, 132, 7586-7588.	13.7	37
107	The Evolution and Structure Prediction of Coiled Coils across All Genomes. Journal of Molecular Biology, 2010, 403, 480-493.	4.2	85
108	Peptide and protein based materials in 2010: from design and structure to function and application. Chemical Society Reviews, 2010, 39, 3349.	38.1	111

#	Article	IF	CITATIONS
109	More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. Chemical Society Reviews, 2010, 39, 3464.	38.1	224
110	A coiled-coil motif that sequesters ions to the hydrophobic core. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16950-16955.	7.1	77
111	CC+: a relational database of coiled-coil structures. Nucleic Acids Research, 2009, 37, D315-D322.	14.5	149
112	Rational design and application of responsive α-helical peptide hydrogels. Nature Materials, 2009, 8, 596-600.	27.5	441
113	Modular Design of Peptide Fibrillar Nano- to Microstructures. Journal of the American Chemical Society, 2009, 131, 13240-13241.	13.7	48
114	Designed α-Helical Tectons for Constructing Multicomponent Synthetic Biological Systems. Journal of the American Chemical Society, 2009, 131, 928-930.	13.7	80
115	A Periodic Table of Coiled-Coil Protein Structures. Journal of Molecular Biology, 2009, 385, 726-732.	4.2	195
116	Flow Linear Dichroism of Some Prototypical Proteins. Journal of the American Chemical Society, 2009, 131, 13305-13314.	13.7	36
117	The Tumbleweed: Towards a synthetic protein motor. HFSP Journal, 2009, 3, 204-212.	2.5	35
118	Rational design of peptide-based building blocks for nanoscience and synthetic biology. Faraday Discussions, 2009, 143, 305.	3.2	30
119	Synthetic biology through biomolecular design and engineering. Current Opinion in Structural Biology, 2008, 18, 491-498.	5.7	84
120	Peptide and Protein Building Blocks for Synthetic Biology: From Programming Biomolecules to Self-Organized Biomolecular Systems. ACS Chemical Biology, 2008, 3, 38-50.	3.4	213
121	Templating Silica Nanostructures on Rationally Designed Self-Assembled Peptide Fibers. Langmuir, 2008, 24, 11778-11783.	3.5	79
122	MagicWand: A Single, Designed Peptide That Assembles to Stable, Ordered α-Helical Fibers. Biochemistry, 2008, 47, 10365-10371.	2.5	68
123	Preferred side-chain constellations at antiparallel coiled-coil interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 530-535.	7.1	73
124	Electrostatic Control of Thickness and Stiffness in a Designed Protein Fiber. Journal of the American Chemical Society, 2008, 130, 5124-5130.	13.7	54
125	The Leucine Zipper as a Building Block for Self-Assembled Protein Fibers. Methods in Molecular Biology, 2008, 474, 35-51.	0.9	12
126	Atypical bZIP Domain of Viral Transcription Factor Contributes to Stability of Dimer Formation and Transcriptional Function. Journal of Virology, 2007, 81, 7149-7155.	3.4	14

#	Article	IF	CITATIONS
127	Engineering nanoscale order into a designed protein fiber. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10853-10858.	7.1	234
128	Kinking the Coiled Coil – Negatively Charged Residues at the Coiled-coil Interface. Journal of Molecular Biology, 2007, 366, 1232-1242.	4.2	39
129	Self-Assembled Templates for Polypeptide Synthesis. Journal of the American Chemical Society, 2007, 129, 14074-14081.	13.7	39
130	Protein–Small Molecule Interactions in Neocarzinostatin, the Prototypical Enediyne Chromoprotein Antibiotic. ChemBioChem, 2007, 8, 704-717.	2.6	34
131	Microwave enhanced palladium catalysed coupling reactions: A diversity-oriented synthesis approach to functionalised flavones. Chemical Communications, 2006, , 4814.	4.1	40
132	Synthetic Ligands for Apo-Neocarzinostatin. Journal of the American Chemical Society, 2006, 128, 4204-4205.	13.7	19
133	Peptide-based fibrous biomaterials: some things old, new and borrowed. Current Opinion in Chemical Biology, 2006, 10, 559-567.	6.1	234
134	Polar Assembly in a Designed Protein Fiber. Angewandte Chemie - International Edition, 2005, 44, 325-328.	13.8	68
135	ZiCo:Â A Peptide Designed to Switch Folded State upon Binding Zinc. Journal of the American Chemical Society, 2005, 127, 15008-15009.	13.7	99
136	MaP Peptides:Â Programming the Self-Assembly of Peptide-Based Mesoscopic Matrices. Journal of the American Chemical Society, 2005, 127, 12407-12415.	13.7	68
137	The Design of Coiled-Coil Structures and Assemblies. Advances in Protein Chemistry, 2005, 70, 79-112.	4.4	492
138	Biophysical and Mutational Analysis of the Putative bZIP Domain of Epstein-Barr Virus EBNA 3C. Journal of Virology, 2004, 78, 9431-9445.	3.4	23
139	Sequence and Structural Duality:Â Designing Peptides to Adopt Two Stable Conformations. Journal of the American Chemical Society, 2004, 126, 17016-17024.	13.7	82
140	Fiber Recruiting Peptides:Â Noncovalent Decoration of an Engineered Protein Scaffold. Journal of the American Chemical Society, 2004, 126, 7454-7455.	13.7	99
141	Design and Synthesis of a Nitrogen Mustard Derivative Stabilized by Apo-neocarzinostatin. Journal of Medicinal Chemistry, 2004, 47, 4710-4715.	6.4	33
142	Engineered and designed peptide-based fibrous biomaterials. Current Opinion in Solid State and Materials Science, 2004, 8, 141-149.	11.5	137
143	Introducing Branches into a Self-Assembling Peptide Fiber. Angewandte Chemie - International Edition, 2003, 42, 3021-3023.	13.8	125
144	Chemical synthesis and cytotoxicity of dihydroxylated cyclopentenone analogues of neocarzinostatin chromophore. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2025-2027.	2.2	5

#	Article	IF	CITATIONS
145	Engineering the morphology of a self-assembling protein fibre. Nature Materials, 2003, 2, 329-332.	27.5	256
146	Extended knobs-into-holes packing in classical and complex coiled-coil assembliesâ~†. Journal of Structural Biology, 2003, 144, 349-361.	2.8	85
147	"Belt and Bracesâ€ŧ A Peptide-Based Linker System of de Novo Design. Journal of the American Chemical Society, 2003, 125, 9388-9394.	13.7	118
148	Regulation of Hsp90 ATPase Activity by the Co-chaperone Cdc37p/p50. Journal of Biological Chemistry, 2002, 277, 20151-20159.	3.4	246
149	A Designed System for Assessing How Sequence Affects α to β Conformational Transitions in Proteins. Journal of Biological Chemistry, 2002, 277, 10150-10155.	3.4	94
150	Solution Structure of a Novel Chromoprotein Derived from Apo-Neocarzinostatin and a Synthetic Chromophoreâ€. Biochemistry, 2002, 41, 11731-11739.	2.5	37
151	Generalized Crick Equations for Modeling Noncanonical Coiled Coils. Journal of Structural Biology, 2002, 137, 41-53.	2.8	61
152	Investigating the Tolerance of Coiled-Coil Peptides to Nonheptad Sequence Inserts. Journal of Structural Biology, 2002, 137, 73-81.	2.8	31
153	Mini-proteins Trp the light fantastic. Nature Structural Biology, 2002, 9, 408-410.	9.7	56
154	Open-and-shut cases in coiled-coil assembly: α-sheets and α-cylinders. Protein Science, 2001, 10, 668-673.	7.6	47
155	SOCKET: a program for identifying and analysing coiled-coil motifs within protein structures11Edited by J. Thornton. Journal of Molecular Biology, 2001, 307, 1427-1450.	4.2	360
156	Guidelines for the assembly of novel coiled-coil structures: α-sheets and α-cylinders. Biochemical Society Symposia, 2001, 68, 111-123.	2.7	7
157	Core-directed protein design. Current Opinion in Structural Biology, 2001, 11, 464-471.	5.7	49
158	Biophysical Analysis of Natural Variants of the Multimerization Region of Epstein-Barr Virus Lytic-Switch Protein BZLF1. Journal of Virology, 2001, 75, 5381-5384.	3.4	22
159	Sticky-End Assembly of a Designed Peptide Fiber Provides Insight into Protein Fibrillogenesisâ€. Biochemistry, 2000, 39, 8728-8734.	2.5	328
160	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	1.1	0
161	Core-Directed Protein Design. I. An Experimental Method for Selecting Stable Proteins from Combinatorial Libraries. Biochemistry, 1999, 38, 11604-11612.	2.5	73
162	Determinants of strand register in antiparallel βâ€sheets of proteins. Protein Science, 1998, 7, 2287-2300.	7.6	182

#	Article	IF	CITATIONS
163	Coiled-coil assembly by peptides with non-heptad sequence motifs. Folding & Design, 1997, 2, 149-158.	4.5	58
164	Sequence determinants of oligomer selection in coiled coils. Techniques in Protein Chemistry, 1996, 7, 409-418.	0.3	0
165	Buried polar residues and structural specificity in the GCN4 leucine zipper. Nature Structural Biology, 1996, 3, 1011-1018.	9.7	193
166	Predicting oligomerization states of coiled coils. Protein Science, 1995, 4, 1596-1607.	7.6	221
167	A Designed Heterotrimeric Coiled Coil. Biochemistry, 1995, 34, 11645-11651.	2.5	139
168	Protein Folding in the Absence of the Solvent Ordering Contribution to the Hydrophobic Interaction. Journal of Molecular Biology, 1993, 229, 502-511.	4.2	59
169	Dissecting the Structure of a Partially Folded Protein. Journal of Molecular Biology, 1993, 234, 483-492.	4.2	133
170	Topological and stereochemical restrictions in β-sandwich protein structures. Protein Engineering, Design and Selection, 1993, 6, 461-470.	2.1	35
171	Conserved positioning of proline residues in membrane-spanning helices of ion-channel proteins. Biochemical and Biophysical Research Communications, 1991, 175, 733-737.	2.1	66
172	Hydrophobic clustering in nonnative states of a protein: Interpretation of chemical shifts in NMR spectra of denatured states of lysozyme. Proteins: Structure, Function and Bioinformatics, 1991, 9, 248-266.	2.6	134
173	The influence of proline residues on α-helical structure. FEBS Letters, 1990, 277, 185-188.	2.8	129

174 Self-Assembling Nanostructures from Coiled-Coil Peptides. , 0, , 17-38.

9