Jian-Ping Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2583238/publications.pdf

Version: 2024-02-01

118	6,541 citations	38	79
papers		h-index	g-index
110	110	110	2272
all docs	118	118	2372
	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Xigaze ophiolite (South Tibet) records complex melt-fluid-peridotite interaction in the crust-mantle transition zone beneath oceanic slow-ultraslow spreading centers. Lithos, 2022, 414-415, 106623.	1.4	4
2	Archean to Paleoproterozoic crustal evolution of the southern Yangtze Block (South China): U–Pb age and Hf-isotope of zircon xenocrysts from the Paleozoic diamondiferous kimberlites. Precambrian Research, 2022, 374, 106651.	2.7	3
3	Migration of Middle-Late Jurassic volcanism across the northern North China Craton in response to subduction of Paleo-Pacific Plate. Tectonophysics, 2022, 833, 229338.	2.2	6
4	Origin of gem-quality megacrysts in the Cenozoic alkali basalts from the Muling area, northeastern China. Lithos, 2022, 422-423, 106720.	1.4	1
5	2.0ÂGa orogenic graphite deposits and associated 13C-enriched meta-carbonate rocks from South China Craton: Implications for global Lomagundi event. Geoscience Frontiers, 2022, 13, 101409.	8.4	6
6	Pyroxenite Xenoliths Record Complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton. Journal of Petrology, 2021, 62, .	2.8	9
7	Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data. Science China Earth Sciences, 2021, 64, 205-219.	5.2	18
8	Deep lithosphere of the North China Craton archives the fate of the Paleo-Asian Ocean. Earth-Science Reviews, 2021, 215, 103554.	9.1	10
9	Paleoproterozoic (1.96–1.86ÂGa) granites in Xinyang record zoned deep crustal structure and multi-stage reworking beneath the southern North China Craton. Precambrian Research, 2021, 355, 106079.	2.7	О
10	Combining zircon texture, REE patterns and U-Pb-Hf isotopes to decipher the formation process of orbicular rocks: A case study from Huangling orbicular granodiorite, Yangtze craton, China. Lithos, 2021, 386-387, 106026.	1.4	1
11	Melting Dynamics of Late Cretaceous Lamprophyres in Central Asia Suggest a Mechanism to Explain Many Continental Intraplate Basaltic Suite Magmatic Provinces. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021663.	3.4	7
12	Metamorphic history and Neoarchean–Paleoproterozoic crustal growth of the central Trans-North China Orogen: Evidence from granulite- to amphibolite-facies rocks of the Hengshan complex. Gondwana Research, 2021, 93, 162-183.	6.0	7
13	Multi-stage mantle accretions and metasomatisms related to peripheral subduction or collision in the northern North China Craton: Evidence from the Nangaoya peridotite xenoliths. Lithos, 2021, 390-391, 106116.	1.4	1
14	Prolonged Slab-derived Silicate and Carbonate Metasomatism of a Cratonic Mantle Wedge (Maowu) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
15	Nature and evolution of the lithospheric mantle beneath the South China. Lithos, 2021, 398-399, 106361.	1.4	4
16	Highly refractory harzburgites from the Moa-Baracoa Ophiolitic Massif, Eastern Cuba: Insights into forearc mantle melt-rock interactions. Lithos, 2021, 404-405, 106427.	1.4	3
17	Melt Migration and Interaction in a Dunite Channel System within Oceanic Forearc Mantle: the Yushigou Harzburgite–Dunite Associations, North Qilian Ophiolite (NW China). Journal of Petrology, 2021, 62, .	2.8	10
18	Phenocryst zonation records magma mixing in generation of the Neoproterozoic adakitic dacite porphyries from the Kongling area, Yangtze Craton. Precambrian Research, 2021, 366, 106421.	2.7	1

#	Article	IF	CITATIONS
19	Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: Evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths. Geochimica Et Cosmochimica Acta, 2020, 278, 94-109.	3.9	49
20	Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 2020, 531, 115969.	4.4	19
21	Unexposed Archean components and complex evolution beneath the Cathaysia Block: Evidence from zircon xenocrysts in the Cenozoic basalts in Leizhou Peninsula, South China. Journal of Asian Earth Sciences, 2020, 192, 104268.	2.3	7
22	Petromagnetic Characteristics of Serpentinization and Magnetite Formation at the Zedang Ophiolite in Southern Tibet. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019696.	3.4	2
23	Magnetic Signature of Serpentinization at Zedang in the South Tibetan Ophiolite Belt. Acta Geologica Sinica, 2020, 94, 28-28.	1.4	0
24	Causes and Consequences of Wehrlitization Beneath a Transâ€Lithospheric Fault: Evidence From Mesozoic Basaltâ€Borne Wehrlite Xenoliths From the Tanâ€Lu Fault Belt, North China Craton. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019084.	3.4	5
25	Lithospheric memory of subduction in mantle pyroxenite xenoliths from rift-related basalts. Earth and Planetary Science Letters, 2020, 544, 116365.	4.4	12
26	Geochemical and Sr–Nd–Pb isotopic constraints on the origin and petrogenesis of Paleozoic lamproites in the southern Yangtze Block, South China. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	9
27	Mesozoic lithospheric modification and replacement beneath the Cathaysia Block: Mineral chemistry and water contents of the Daoxian peridotite xenoliths. Lithos, 2020, 358-359, 105385.	1.4	1
28	Reply to comment by Qi and Wang on "Similar crust beneath disrupted and intact cratons: Arguments against lower-crust delamination as a decratonization trigger― Tectonophysics, 2019, 767, 128156.	2.2	0
29	A refined model for lithosphere evolution beneath the decratonized northeastern North China Craton. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	19
30	Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. Journal of Earth Science (Wuhan, China), 2019, 30, 666-678.	3.2	6
31	Langshan basalts record recycled Paleo-Asian oceanic materials beneath the northwest North China Craton. Chemical Geology, 2019, 524, 88-103.	3.3	21
32	Fertile lithospheric mantle underlying ancient continental crust beneath the northwestern North China craton: Significant effect from the southward subduction of the Paleo–Asian Ocean. Bulletin of the Geological Society of America, 2019, 131, 3-20.	3.3	24
33	Subduction-zone peridotites and their records of crust-mantle interaction. Science China Earth Sciences, 2019, 62, 1033-1052.	5.2	20
34	Mantle xenoliths and host basalts record the Paleo-Asian oceanic materials in the mantle wedge beneath northwest North China Craton. Solid Earth Sciences, 2019, 4, 150-158.	1.7	12
35	Similar crust beneath disrupted and intact cratons: Arguments against lower-crust delamination as a decratonization trigger. Tectonophysics, 2019, 750, 1-8.	2.2	14
36	Downward rejuvenation of the continental lower crust beneath the southeastern North China Craton. Tectonophysics, 2019, 750, 213-228.	2.2	9

#	Article	IF	CITATIONS
37	Phanerozoic lower crustal growth from heterogeneous mantle beneath the North China Craton: Insights from the diverse Hannuoba pyroxenite xenoliths. Lithos, 2019, 324-325, 55-67.	1.4	13
38	Neoproterozoic sedimentary rocks track the location of the Lhasa Block during the Rodinia breakup. Precambrian Research, 2019, 320, 63-77.	2.7	33
39	Complex growth and reworking processes in the Yangtze cratonic nucleus. Precambrian Research, 2018, 311, 262-277.	2.7	28
40	Triassic rejuvenation of unexposed Archean-Paleoproterozoic deep crust beneath the western Cathaysia block, South China. Tectonophysics, 2018, 724-725, 65-79.	2,2	29
41	Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Science China Earth Sciences, 2018, 61, 406-424.	5. 2	67
42	Hadean continental crust in the southern North China Craton: Evidence from the Xinyang felsic granulite xenoliths. Precambrian Research, 2018, 307, 155-174.	2.7	10
43	Spongy texture in mantle clinopyroxene recordsdecompression-induced melting. Lithos, 2018, 320-321, 144-154.	1.4	18
44	Tracking Deep Lithospheric Events with Garnet-Websterite Xenoliths from Southeastern Australia. Journal of Petrology, 2018, 59, 901-930.	2.8	16
45	Paleoproterozoic porphyries and coarse-grained granites manifesting a vertical hierarchical structure of Archean continental crust beneath the Yangtze Craton. Precambrian Research, 2018, 314, 288-305.	2.7	17
46	Unexposed Archean components and complex post-Archean accretion/reworking processes beneath the southern Yangtze Block revealed by zircon xenocrysts from the Paleozoic lamproites, South China. Precambrian Research, 2018, 316, 174-196.	2.7	18
47	Destruction of the North China Craton triggered by the Triassic Yangtze continental subduction/collision: A review. Journal of Asian Earth Sciences, 2018, 164, 72-82.	2.3	21
48	Composition and evolution of the lithospheric mantle beneath the interior of the South China Block: insights from trace elements and water contents of peridotite xenoliths. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	14
49	Early Mesozoic deep-crust reworking beneath the central Lhasa terrane (South Tibet): Evidence from intermediate gneiss xenoliths in granites. Lithos, 2017, 274-275, 225-239.	1.4	7
50	Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 2017, 292, 57-74.	2.7	66
51	High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	44
52	Compositions and processes of lithospheric mantle beneath the west Cathaysia block, southeast China. Lithos, 2017, 286-287, 241-251.	1.4	14
53	Phanerozoic magma underplating and crustal growth beneath the North China Craton. Terra Nova, 2017, 29, 211-217.	2.1	11
54	Twoâ€layered oceanic lithospheric mantle in a <scp>T</scp> ibetan ophiolite produced by episodic subduction of <scp>T</scp> ethyan slabs. Geochemistry, Geophysics, Geosystems, 2017, 18, 1189-1213.	2.5	35

#	Article	IF	CITATIONS
55	Generation of continental adakitic rocks: Crystallization modeling with variable bulk partition coefficients. Lithos, 2017, 272-273, 222-231.	1.4	24
56	Late Devonian to early Carboniferous arc-related magmatism in the Baolidao arc, Inner Mongolia, China: Significance for southward accretion of the eastern Central Asian orogenic belt. Bulletin of the Geological Society of America, 2017, 129, 677-697.	3.3	45
57	Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust. Lithos, 2017, 292-293, 1-14.	1.4	10
58	Magnetic properties of serpentinized peridotites from the Dongbo ophiolite, SW Tibet: Implications for sutureâ€zone magnetic anomalies. Journal of Geophysical Research: Solid Earth, 2017, 122, 4814-4830.	3.4	8
59	Petrogenesis and tectonic implications of Paleoproterozoic metapelitic rocks in the Archean Kongling Complex from the northern Yangtze Craton, South China. Precambrian Research, 2016, 276, 158-177.	2.7	69
60	Lower Crustal Accretion and Reworking Beneath the North China Craton: Evidences from Granulite Xenoliths. Springer Geology, 2016, , 527-540.	0.3	2
61	Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: the Role of Water in Intraplate Magmatism and Cratonic Destruction. Journal of Petrology, 2016, 57, 1279-1308.	2.8	56
62	High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber. Lithos, 2016, 260, 211-224.	1.4	17
63	Late Triassic orogenic collapse and Palaeoâ€Pacific slab rollâ€back beneath central South China: constraints from mafic granulite xenoliths and structural features. Geological Journal, 2016, 51, 123-136.	1.3	8
64	Southward trench migration at â ¹ ⁄4130–120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 2016, 438, 57-65.	4.4	108
65	Refertilization of lithospheric mantle beneath the Yangtze craton in south-east China: Evidence from noble gases geochemistry. Gondwana Research, 2016, 38, 289-303.	6.0	21
66	Crustal large-scale serpentinized mantle peridotite body in the Sulu ultrahigh-pressure metamorphic belt, eastern China: Evidence from gravity and magnetic anomalies. Journal of Structural Geology, 2015, 70, 190-199.	2.3	9
67	Magnetically stratified continental lower crust preserved in the North China Craton. Tectonophysics, 2015, 643, 73-79.	2.2	8
68	Lithological and age structure of the lower crust beneath the northern edge of the North China Craton: Xenolith evidence. Lithos, 2015, 216-217, 211-223.	1.4	27
69	Episodic refertilization and metasomatism of Archean mantle: evidence from an orogenic peridotite in North Qaidam (NE Tibet, China). Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	33
70	Microscale effects of melt infiltration into the lithospheric mantle: Peridotite xenoliths from Xilong, South China. Lithos, 2015, 232, 111-123.	1.4	19
71	Are continental "adakites―derived from thickened or foundered lower crust?. Earth and Planetary Science Letters, 2015, 419, 125-133.	4.4	176
72	Nature and evolution of the lithospheric mantle beneath the eastern Central Asian Orogenic Belt: Constraints from peridotite xenoliths in the central part of the Great Xing'an Range, NE China. Lithos, 2015, 238, 52-63.	1.4	14

#	Article	IF	CITATIONS
73	Deep-seated crustal xenoliths record multiple Paleoproterozoic tectonothermal events in the northern North China Craton. Precambrian Research, 2015, 270, 318-333.	2.7	8
74	Paleoproterozoic multistage evolution of the lower crust beneath the southern North China Craton. Precambrian Research, 2015, 269, 162-182.	2.7	15
75	Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents. Earth and Planetary Science Letters, 2015, 409, 225-231.	4.4	58
76	Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. Journal of Petrology, 2014, 55, 2347-2376.	2.8	48
77	The Cenozoic lithospheric mantle beneath the interior of South China Block: Constraints from mantle xenoliths in Guangxi Province. Lithos, 2014, 210-211, 14-26.	1.4	24
78	From enriched to depleted mantle: Evidence from Cretaceous lamprophyres and Paleogene basaltic rocks in eastern and central Guangxi Province, western Cathaysia block of South China. Lithos, 2014, 184-187, 300-313.	1.4	34
79	Zircon U–Pb ages and Hf isotope of gneissic rocks from the Huai'an Complex: Implications for crustal accretion and tectonic evolution in the northern margin of the North China Craton. Precambrian Research, 2014, 255, 335-354.	2.7	37
80	Complex evolution of the lower crust beneath the southeastern North China Craton: the Junan xenoliths and xenocrysts. Lithos, 2014, 206-207, 113-126.	1.4	16
81	Precambrian tectonic attribution and evolution of the Songliao terrane revealed by zircon xenocrysts from Cenozoic alkali basalts, Xilinhot region, NE China. Precambrian Research, 2014, 251, 33-48.	2.7	11
82	Magnetic mineralogy of pyroxenite xenoliths from Hannuoba basalts, northern North China Craton: Implications for magnetism in the continental lower crust. Journal of Geophysical Research: Solid Earth, 2014, 119, 806-821.	3.4	10
83	Petromagnetic properties of granulite-facies rocks from the northern North China Craton: Implications for magnetic and evolution of the continental lower crust. Journal of Earth Science (Wuhan, China), 2013, 24, 12-28.	3.2	7
84	Early Paleozoic crustal anatexis in the intraplate Wuyi–Yunkai orogen, South China. Lithos, 2013, 175-176, 124-145.	1.4	65
85	Petrology and geochemistry of peridotite xenoliths from the Lianshan region: Nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Research, 2013, 23, 161-175.	6.0	35
86	Coexistence of the moderately refractory and fertile mantle beneath the eastern Central Asian Orogenic Belt. Gondwana Research, 2013, 23, 176-189.	6.0	31
87	Accretion and reworking beneath the North China Craton. Lithos, 2012, 149, 61-78.	1.4	97
88	Geochemistry and zircon U–Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications. Precambrian Research, 2012, 200-203, 26-37.	2.7	179
89	Complex Precambrian crustal evolution beneath the northeastern Yangtze Craton reflected by zircons from Mesozoic volcanic rocks of the Fanchang basin, Anhui Province. Precambrian Research, 2012, 220-221, 91-106.	2.7	19
90	Triassic "adakitic―rocks in an extensional setting (North China): Melts from the cratonic lower crust. Lithos, 2012, 149, 159-173.	1.4	194

#	Article	IF	CITATIONS
91	Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 2011, 39, 299-302.	4.4	618
92	Highly evolved Archean basement beneath the western Cathaysia Block, South China. Geochimica Et Cosmochimica Acta, 2011, 75, 242-255.	3.9	76
93	Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust–mantle coupling and early Paleozoic convergent plate-margin processes. Precambrian Research, 2011, 187, 33-57.	2.7	79
94	Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahighâ€pressure metamorphic belt, eastern China. Journal of Geophysical Research, 2010, 115, .	3.3	11
95	Petrogenesis of eclogites enclosed in mantle-derived peridotites from the Sulu UHP terrane: constraints from trace elements in minerals and Hf isotopes in zircon. Lithos, 2009, 109, 176-192.	1.4	23
96	Neoarchean (2.7–2.8ÂGa) accretion beneath the North China Craton: U–Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos, 2009, 112, 188-202.	1.4	61
97	Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic. Science Bulletin, 2009, 54, 436-446.	9.0	143
98	Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Science Bulletin, 2009, 54, 3397-3416.	9.0	73
99	Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chemical Geology, 2009, 264, 266-280.	3.3	63
100	Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions To Mineralogy and Petrology, 2008, 155, 271-293.	3.1	240
101	Re–Os isotopes of sulfides in mantle xenoliths from eastern China: Progressive modification of lithospheric mantle. Lithos, 2008, 102, 43-64.	1.4	117
102	Continental collision and accretion recorded in the deep lithosphere of central China. Earth and Planetary Science Letters, 2008, 269, 497-507.	4.4	68
103	Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chemical Geology, 2008, 247, 282-304.	3.3	72
104	Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica Et Cosmochimica Acta, 2007, 71, 5203-5225.	3.9	339
105	The lithospheric mantle beneath the southwestern Tianshan area, northwest China. Contributions To Mineralogy and Petrology, 2006, 151, 457-479.	3.1	31
106	Widespread Archean basement beneath the Yangtze craton. Geology, 2006, 34, 417.	4.4	491
107	A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 2006, 34, 705.	4.4	78
108	Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochimica Et Cosmochimica Acta, 2005, 69, 3401-3418.	3.9	88

#	Article	IF	CITATIONS
109	Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chemical Geology, 2005, 221, 243-259.	3.3	69
110	Nature and evolution of Mesozoic–Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 2004, 74, 41-65.	1.4	80
111	U–Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China craton. Contributions To Mineralogy and Petrology, 2004, 148, 79-103.	3.1	120
112	Anin situ zircon Hf isotopic, U-Pb age and trace element study of banded granulite xenolith from Hannuoba basalt: Tracking the early evolution of the lower crust in the North China craton. Science Bulletin, 2004, 49, 277-285.	1.7	21
113	3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology, 2004, 32, 229.	4.4	295
114	Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochimica Et Cosmochimica Acta, 2003, 67, 4373-4387.	3.9	311
115	Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics, 2003, 361, 37-60.	2.2	93
116	Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos, 2001, 57, 43-66.	1.4	328
117	Nature and Evolution of Cenozoic Lithospheric Mantle beneath Shandong Peninsula, Sino-Korean Craton, Eastern China. International Geology Review, 1998, 40, 471-499.	2.1	224
118	Source Composition Controls the Petrogenesis of Jurassic-Cretaceous Adakitic Volcanic Rocks in the Central North China Craton. Journal of Geology, 0, , 000-000.	1.4	0