Adel Sayari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2582453/publications.pdf

Version: 2024-02-01

414414 394421 1,083 43 19 32 citations g-index h-index papers 44 44 44 1335 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT - Food Science and Technology, 2013, 50, 634-641.	5.2	149
2	Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology. Carbohydrate Polymers, 2010, 79, 466-474.	10.2	82
3	Staphylococcal lipases: Biotechnological applications. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 125-132.	1.8	75
4	Biochemical and molecular characterization of Staphylococcus simulans lipase. Biochimie, 2001, 83, 863-871.	2.6	69
5	Biochemical and molecular characterization of Staphylococcus xylosus lipase. Biochimica Et Biophysica Acta - General Subjects, 2005, 1723, 282-291.	2.4	56
6	Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 237-245.	1.8	53
7	Biological properties and biodegradation studies of chitosan biofilms plasticized with PEG and glycerol. International Journal of Biological Macromolecules, 2013, 62, 433-438.	7.5	53
8	N-terminal peptide ofRhizopus oryzaelipase is important for its catalytic properties. FEBS Letters, 2005, 579, 976-982.	2.8	48
9	The N-terminal His-tag and the recombination process affect the biochemical properties of Staphylococcus aureus lipase produced in Escherichia coli. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 194-201.	1.8	39
10	Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: Optimization using response surface methodology and determination of antioxidant activity. Bioresource Technology, 2010, 101, 2809-2817.	9.6	39
11	Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique. Biochimie, 2001, 83, 463-469.	2.6	30
12	Process for extracting gelatin from marine snail (Hexaplex trunculus): Chemical composition and functional properties. Process Biochemistry, 2012, 47, 1779-1784.	3.7	29
13	Expression, purification, and characterization of His-tagged Staphylococcus xylosus lipase wild-type and its mutant Asp 290 Ala. Protein Expression and Purification, 2006, 47, 516-523.	1.3	28
14	Expression, purification of a novel alkaline Staphylococcus xylosus lipase acting at high temperature. Biochemical Engineering Journal, 2011, 54, 93-102.	3.6	25
15	Enzyme Storage and Recycling: Nanoassemblies of α-Amylase and Xylanase Immobilized on Biomimetic Magnetic Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 4054-4063.	6.7	24
16	The N-terminal His-tag affects the enantioselectivity of staphylococcal lipases: A monolayer study. Journal of Colloid and Interface Science, 2007, 313, 261-267.	9.4	23
17	Heterologous expression and N-terminal His-tagging processes affect the catalytic properties of staphylococcal lipases: A monolayer study. Journal of Colloid and Interface Science, 2010, 350, 586-594.	9.4	22
18	Immobilized Staphylococcus xylosus lipase-catalysed synthesis of ricinoleic acid esters. Journal of Molecular Catalysis B: Enzymatic, 2012, 75, 35-42.	1.8	22

#	Article	IF	CITATIONS
19	Enzymatic propyl gallate synthesis in solvent-free system: Optimization by response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 242-250.	1.8	21
20	Purification, biochemical and molecular study of lipase producing from a newly thermoalkaliphilic Aeribacillus pallidus for oily wastewater treatment. Journal of Biochemistry, 2020, 167, 89-99.	1.7	21
21	Kinetic properties of turkey pancreatic lipase: A comparative study with emulsified tributyrin and monomolecular dicaprin. Chirality, 2005, 17, 57-62.	2.6	20
22	Biochemical characterization, cloning, and molecular modelling of chicken pancreatic lipase. Archives of Biochemistry and Biophysics, 2006, 451, 149-159.	3.0	19
23	Biochemical characterization of a new thermostable lipase from Bacillus pumilus strain. Turkish Journal of Biochemistry, 2015, 40, 8-14.	0.5	14
24	Staphylococcal lipases stereoselectively hydrolyse the sn-2 position of monomolecular films of diglyceride analogs. Application to sn-2 hydrolysis of triolein. Journal of Colloid and Interface Science, 2010, 347, 301-308.	9.4	13
25	Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+independentBacillus subtilisî±â€amylase. Biotechnology Progress, 2020, 36, e2964.	2.6	13
26	Spirulina platensis, Punica granatum peel, and moringa leaves extracts in cosmetic formulations: an integrated approach of in vitro biological activities and acceptability studies. Environmental Science and Pollution Research, 2021, 28, 8802-8811.	5.3	11
27	Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: A study with emulsified substrate. Protein Expression and Purification, 2007, 55, 31-39.	1.3	10
28	Influence of microfibers length on PDLA/cellulose microfibers biocomposites crystallinity and properties. Polymer Bulletin, 2019, 76, 1061-1079.	3.3	10
29	The insertion of (LK) residues at the N-terminus of Staphylococcus xylosus lipase affects its catalytic properties and its enantioselectivity. Process Biochemistry, 2010, 45, 777-785.	3.7	9
30	Biodegradation study of PDLA/cellulose microfibres biocomposites by <i>Pseudomonas aeruginosa </i> Environmental Technology (United Kingdom), 2021, 42, 731-742.	2.2	9
31	Importance of the residue Asp 290 on chain length selectivity and catalytic efficiency of recombinant Staphylococcus simulans lipase expressed in E. coli. Molecular Biotechnology, 2007, 36, 14-22.	2.4	8
32	Purification, Biochemical and Kinetic Properties of Recombinant Staphylococcus aureus Lipase. Methods in Molecular Biology, 2012, 861, 267-282.	0.9	8
33	Optimization of an organic solvent-tolerant lipase production by <i>Staphylococcus capitis</i> Immobilization for biodiesel production and biodegradation of waste greases. Preparative Biochemistry and Biotechnology, 2022, 52, 108-122.	1.9	7
34	Gly311 residue triggers the enantioselectivity of Staphylococcus xylosus lipase: A monolayer study. Journal of Colloid and Interface Science, 2007, 310, 196-204.	9.4	6
35	Improvement of Staphylococcus xylosus lipase production through optimization of the culture conditions. European Journal of Lipid Science and Technology, 2009, 111, 967-971.	1.5	5
36	Heterologous expression, kinetic characterization and molecular modeling of a new sn-1,3-regioselective triacylglycerol lipase from Serratia sp. W3. Process Biochemistry, 2021, 103, 87-97.	3.7	4

#	Article	IF	CITATIONS
37	Production of a halotolerant lipase from <i>Halomonas</i> sp. strain <scp>C2SS100</scp> : Optimization by responseâ€surface methodology and application in detergent formulations. Journal of Surfactants and Detergents, 2022, 25, 361-376.	2.1	4
38	SynthÃ"se d'arÃ'mes et désacidification d'une huile acide en milieu sans solvant. Oleagineux Corps Gras Lipides, 2002, 9, 260-263.	0.2	2
39	Scorpion digestive lipase: Kinetic study using monomolecular film technique. Colloids and Surfaces B: Biointerfaces, 2006, 49, 8-14.	5.0	1
40	The insertion of four residues Isoleucines at the N-terminus of Staphylococcus simulans lipase affects its catalytic and biochemical properties. Journal of Molecular Catalysis B: Enzymatic, 2012, 82, 1-7.	1.8	1
41	Newly Isolated Lipolytic and Oleaginous Fungal Strain, Production, Optimization and Biochemical Characterization of the Extracellular (phospho)lipase. Waste and Biomass Valorization, 2020, 11, 6677-6687.	3.4	1
42	Biodegradion Studies and Thermomechanical Caracterisations of PDLA/TPS. Advances in Science, Technology and Innovation, 2018, , 251-253.	0.4	0
43	Studies of crab digestive phospholipase acting on phospholipid monolayers: Activation by temperature. International Journal of Biological Macromolecules, 2020, 142, 705-711.	7.5	0