Katalin KamarÃ;s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2581486/publications.pdf

Version: 2024-02-01

204 papers 8,299 citations

32 h-index 48315 88 g-index

209 all docs

209 docs citations

times ranked

209

10063 citing authors

#	Article	IF	CITATIONS
1	Ultrahigh nitrogen-vacancy center concentration in diamond. Carbon, 2022, 188, 393-400.	10.3	9
2	Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons. Nano Letters, 2022, 22, 3495-3502.	9.1	2
3	Optimization of Chromium-Doped Zinc Gallate Nanocrystals for Strong Near-Infrared Emission by Annealing. ACS Applied Nano Materials, 2022, 5, 8950-8961.	5.0	5
4	Solid-Phase Quasi-Intramolecular Redox Reaction of [Ag(NH ₃) ₂]MnO ₄ : An Easy Way to Prepare Pure AgMnO ₂ . Inorganic Chemistry, 2021, 60, 3749-3760.	4.0	15
5	Enhancement of X-ray-Excited Red Luminescence of Chromium-Doped Zinc Gallate via Ultrasmall Silicon Carbide Nanocrystals. Chemistry of Materials, 2021, 33, 2457-2465.	6.7	9
6	Polaritonic Enhancement of Near-Field Scattering of Small Molecules Encapsulated in Boron Nitride Nanotubes: Chemical Reactions in Confined Spaces. ACS Applied Nano Materials, 2021, 4, 4335-4339.	5.0	5
7	Dynamic disorder in the high-temperature polymorph of bis[diamminesilver(I)] sulfateâ€"reasons and consequences of simultaneous ammonia release from two different polymorphs. Journal of Coordination Chemistry, 2021, 74, 2144-2162.	2.2	9
8	Encapsulation of Sexithiophene Molecules in Singleâ€Walled Carbon Nanotubes Using Supercritical CO 2 at Low Temperature. Physica Status Solidi (B): Basic Research, 2020, 257, 2000314.	1.5	4
9	The Role of Potassium in the Segregation of MAPb(Br 0.6 I 0.4) 3 Mixedâ€Halide Perovskite in Different Environments. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000335.	2.4	4
10	Selected Electrochemical Properties of 4,4â∈™-((1E,1â∈™E)-((1,2,4-Thiadiazole-3,5-diyl)bis(azaneylylidene))bis(methaneylylidene))bis(N,N-di-p-tolylanilin towards Perovskite Solar Cells with 14.4% Efficiency. Materials, 2020, 13, 2440.	ne) .9	15
11	Signature of Large-Gap Quantum Spin Hall State in the Layered Mineral Jacutingaite. Nano Letters, 2020, 20, 5207-5213.	9.1	33
12	Novel Method for Electroless Etching of 6H–SiC. Nanomaterials, 2020, 10, 538.	4.1	6
13	Room-Temperature Defect Qubits in Ultrasmall Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 1675-1681.	4.6	25
14	Effect of lead thiocyanate ions on performance of tin-based perovskite solar cells. Journal of Power Sources, 2020, 458, 228067.	7.8	15
15	Organic molecules encapsulated in single-walled carbon nanotubes. Oxford Open Materials Science, 2020, 1, .	1.8	6
16	Dextran-based Hydrogel Layers for Biosensors. , 2020, , 139-164.		3
17	The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nature Communications, 2019, 10, 4916.	12.8	90
18	Near-field infrared microscopy of nanometer-sized nickel clusters inside single-walled carbon nanotubes. RSC Advances, 2019, 9, 34120-34124.	3.6	3

#	Article	IF	Citations
19	Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers. Physical Chemistry Chemical Physics, 2018, 20, 13419-13429.	2.8	16
20	Direction-dependent secondary bonds and their stepwise melting in a uracil-based molecular crystal studied by infrared spectroscopy and theoretical modeling. Chemical Physics Letters, 2018, 691, 163-168.	2.6	0
21	Direct Observation of Transition from Solid-State to Molecular-Like Optical Properties in Ultrasmall Silicon Carbide Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 26713-26721.	3.1	7
22	Electronic Properties of Airâ€Sensitive Nanomaterials Probed with Microwave Impedance Measurements. Physica Status Solidi (B): Basic Research, 2018, 255, 1800250.	1.5	2
23	Giant microwave absorption in fine powders of superconductors. Scientific Reports, 2018, 8, 11480.	3.3	5
24	Optical detection of charge dynamics in CH ₃ NH ₃ Pbl ₃ /carbon nanotube composites. Nanoscale, 2017, 9, 17781-17787.	5.6	7
25	High-Resolution Nanospectroscopy of Boron Nitride Nanotubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1700277.	1.5	0
26	Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures. Scientific Reports, 2017, 7, 10599.	3.3	13
27	Growth of Carbon Nanotubes inside Boron Nitride Nanotubes by Coalescence of Fullerenes: Toward the World's Smallest Coaxial Cable. Small Methods, 2017, 1, 1700184.	8.6	16
28	Off-axis parabolic mirror optics for polarized Raman spectroscopy at low temperature. Applied Physics Letters, 2017, 110, .	3.3	2
29	Surface-Mediated Energy Transfer and Subsequent Photocatalytic Behavior in Silicon Carbide Colloid Solutions. Langmuir, 2017, 33, 14263-14268.	3.5	5
30	Nanoscale Characterization of Individual Horizontally Aligned Single-Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2017, 254, 1700433.	1.5	3
31	Scattering nearâ€field optical microscopy on metallic and semiconducting carbon nanotube bundles in the infrared. Physica Status Solidi (B): Basic Research, 2016, 253, 2413-2416.	1.5	6
32	Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS. Colloids and Surfaces B: Biointerfaces, 2016, 146, 861-870.	5.0	7
33	Electronic and ionic conductivities in superionic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:mn mathvariant="normal">C<mml:mn>60</mml:mn></mml:mn></mml:msub></mml:mrow></mml:math> . Physical Review B. 2016. 93	1>4 <td>:mp></td>	:mp>
34	Cloaking by π-electrons in the infrared. Physica Status Solidi (B): Basic Research, 2016, 253, 2457-2460.	1.5	3
35	Identification of Luminescence Centers in Molecular-Sized Silicon Carbide Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 685-691.	3.1	31
36	Ultrasensitive 1D field-effect phototransistors: CH ₃ NH ₃ Pbl ₃ nanowire sensitized individual carbon nanotubes. Nanoscale, 2016, 8, 4888-4893.	5.6	54

#	Article	IF	CITATIONS
37	Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals. Nanoscale, 2015, 7, 10982-10988.	5 . 6	46
38	Breakdown of diameter selectivity in a reductive hydrogenation reaction of single-walled carbon nanotubes. Chemical Physics Letters, 2015, 618, 214-218.	2.6	2
39	Effect of heat treatments on the properties of hydrogenated amorphous silicon for PV and PVT applications. Solar Energy, 2015, 119, 225-232.	6.1	9
40	Optimized unconventional superconductivity in a molecular Jahn-Teller metal. Science Advances, 2015, 1, e1500059.	10.3	98
41	Fullerene-driven encapsulation of a luminescent Eu(iii) complex in carbon nanotubes. Nanoscale, 2014, 6, 2887.	5 . 6	9
42	Nanowires of Methylammonium Lead Iodide (CH ₃ NH ₃ PbI ₃) Prepared by Low Temperature Solution-Mediated Crystallization. Nano Letters, 2014, 14, 6761-6766.	9.1	257
43	Metallicity in fullerides. Dalton Transactions, 2014, 43, 7366.	3.3	14
44	Dominantly epitaxial growth of graphene on Ni $(1\ 1\ 1)$ substrate. Applied Surface Science, 2014, 314, 490-499.	6.1	27
45	Interactions and Chemical Transformations of Coronene Inside and Outside Carbon Nanotubes. Small, 2014, 10, 1369-1378.	10.0	33
46	Bundle versus network conductivity of carbon nanotubes separated by type. European Physical Journal B, 2014, 87, 1.	1.5	5
47	Chemical Transformation of Carboxyl Groups on the Surface of Silicon Carbide Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 19995-20001.	3.1	16
48	On the formation of blisters in annealed hydrogenated a-Si layers. Nanoscale Research Letters, 2013, 8, 84.	5.7	6
49	Evolution of the structure and hydrogen bonding configuration in annealed hydrogenated a-Si/a-Ge multilayers and layers. Applied Surface Science, 2013, 269, 12-16.	6.1	3
50	Silicon carbide quantum dots for bioimaging. Journal of Materials Research, 2013, 28, 205-209.	2.6	40
51	Preparation of small silicon carbide quantum dots by wet chemical etching. Journal of Materials Research, 2013, 28, 44-49.	2.6	41
52	FROM NANOVOIDS TO BLISTERS IN HYDROGENATED AMORPHOUS SILICON., 2013,,.		0
53	Mott localization in the correlated superconductor Cs ₃ C ₆₀ resulting from the molecular lahn-Teller effect. Journal of Physics: Conference Series 2013,428, 012002 Pressure-induced transition from the dynamic to static Jahn-Teller effect in (Ph <mml:math) 0="" etqq0="" ov<="" rgbt="" td="" tj=""><td>0.4 verlock 10</td><td>11 Tf 50 87 Td (</td></mml:math)>	0.4 verlock 10	11 Tf 50 87 Td (
54	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub> IC <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:< td=""><td>3.2</td><td>4</td></mml:<></mml:msub></mml:math>	3.2	4

#	Article	IF	Citations
55	Preparation of Small Silicon Carbide Quantum Dots by Wet Chemical Etching. Materials Research Society Symposia Proceedings, 2012, 1468, 25.	0.1	0
56	Phase transitions in C ₆₀ ·C ₈ H ₈ under hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2012, 249, 2596-2599.	1.5	2
57	Lowâ€temperature encapsulation of coronene in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2432-2435.	1.5	19
58	Melting of Hydrogen Bonds in Uracil Derivatives Probed by Infrared Spectroscopy and ab Initio Molecular Dynamics. Journal of Physical Chemistry B, 2012, 116, 4626-4633.	2.6	8
59	Dynamic Jahn–Teller effect in the parent insulating state of the molecular superconductor Cs3C60. Nature Communications, 2012, 3, 912.	12.8	53
60	Large scale nanopatterning of graphene. Nuclear Instruments & Methods in Physics Research B, 2012, 282, 130-133.	1.4	12
61	Rotational Dynamics in C70: Temperature- and Pressure-Dependent Infrared Studies. Journal of Physical Chemistry C, 2011, 115, 3646-3653.	3.1	13
62	Wide-range optical studies on various single-walled carbon nanotubes: Origin of the low-energy gap. Physical Review B, 2011, 84, .	3.2	47
63	Vibrational Signatures in the Infrared Spectra of Single- and Double-Walled Carbon Nanotubes and Their Diameter Dependence. Journal of Physical Chemistry Letters, 2011, 2, 2079-2082.	4.6	15
64	Mapping of Functionalized Regions on Carbon Nanotubes by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2011, 115, 3229-3235.	3.1	10
65	Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching. Applied Physics Letters, 2011, 99, .	3.3	33
66	Pressure studies on fullerene peapods. Physica Status Solidi (B): Basic Research, 2011, 248, 2732-2735.	1.5	4
67	Ferrocene encapsulation in carbon nanotubes: Various methods of filling and investigation. Physica Status Solidi (B): Basic Research, 2011, 248, 2512-2515.	1.5	23
68	Carbon Nanotubeâ∈Based Metalâ€lon Catchers as Supramolecular Depolluting Materials. ChemSusChem, 2011, 4, 1464-1469.	6.8	4
69	Effect of ionic and covalent defects on the properties of transparent carbon nanotube films. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012002.	0.6	0
70	Crystallographically selective nanopatterning of graphene on SiO2. Nano Research, 2010, 3, 110-116.	10.4	87
71	Electronic Properties of Propylamineâ€Functionalized Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2010, 11, 2444-2448.	2.1	8
72	Spectroscopic and electrochemical study of hybrids containing conductive polymers and carbon nanotubes. Carbon, 2010, 48, 2773-2781.	10.3	18

#	Article	IF	Citations
73	Investigation of the Jahn–Teller effect in the \${m C}_{60}^{{-}} } \$ monoanion under high pressure. Physica Status Solidi (B): Basic Research, 2010, 247, 3047-3050.	1.5	1
74	A systematic study of optical and Raman spectra of peapodâ€based DWNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2843-2846.	1.5	7
75	Investigation of hydrogenated HiPCo nanotubes by infrared spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2855-2858.	1.5	2
76	Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2743-2745.	1.5	21
77	Infrared and Raman investigation of carbon nanotubeâ€polyallylamine hybrid systems. Physica Status Solidi (B): Basic Research, 2010, 247, 2884-2886.	1.5	3
78	The effect of nitric acid doping on the optical properties of carbon nanotube films. Physica Status Solidi (B): Basic Research, 2010, 247, 2754-2757.	1.5	16
79	Crystallographic orientation dependent etching of graphene layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	5
80	Infrared spectroscopic studies on unoriented single-walled carbon nanotube films under hydrostatic pressure. Physical Review B, 2010, 81, .	3.2	27
81	A general figure of merit for thick and thin transparent conductive carbon nanotube coatings. Journal of Applied Physics, 2010, 108, 054318.	2.5	16
82	Method to determine the absorptance of thin films for photovoltaic technology. , 2010, , .		1
83	Pressure-induced phenomena in single-walled carbon nanotubes probed by infrared spectroscopy. High Pressure Research, 2009, 29, 559-563.	1.2	9
84	A Figure of Merit for Transparent Conducting Nanotube Films. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
85	Selective Formation of Biâ€Component Arrays Through Hâ€Bonding of Multivalent Molecular Modules. Advanced Functional Materials, 2009, 19, 1207-1214.	14.9	26
86	Surfaceâ€induced changes in the vibrational spectra of conducting polymer – carbon nanotube hybrid materials. Physica Status Solidi (B): Basic Research, 2009, 246, 2737-2739.	1.5	1
87	Following Jahn–Teller Distortions in Fulleride Salts by Optical Spectroscopy. Springer Series in Chemical Physics, 2009, , 489-515.	0.2	3
88	Infrared microreflectance study of the pressure effect on the structural properties of magnetically aligned singleâ∈wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2288-2291.	1.5	2
89	Infrared spectroscopy on the fullerene C ₇₀ under pressure. Physica Status Solidi (B): Basic Research, 2008, 245, 2006-2009.	1.5	3
90	Diameter selectivity of nanotube sidewall functionalization probed by optical spectroscopy. Physica Status Solidi (B): Basic Research, 2008, 245, 1954-1956.	1.5	6

#	Article	IF	Citations
91	Wideâ€range optical spectra of carbon nanotubes: a comparative study. Physica Status Solidi (B): Basic Research, 2008, 245, 2229-2232.	1.5	12
92	Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon, 2008, 46, 1435-1442.	10.3	533
93	Orientational Ordering and Intermolecular Interactions in the Rotor-Stator Compounds C ₆₀ ·C ₈ H ₈ and C ₇₀ ·C ₈ H ₈ Studied under Pressure. Journal of Physical Chemistry C, 2008, 112, 17525-17532.	3.1	11
94	Low Band Gap and Ionic Bonding with Charge Transfer Threshold in the Polymeric Lithium Fulleride Li4C60. Journal of Physical Chemistry C, 2008, 112, 2988-2996.	3.1	13
95	Si surface preparation and passivation by vapor phase of heavy water. , 2008, , .		0
96	Structure and properties of the stable two-dimensional conducting polymer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Mg</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>60</mml:mn></mml:msub></mml:mrow></mml:math> . Physical Review B, 2008, 77, .	3.2	15
97	Sacrificial Deuterium Passivation for Improved Interface Engineering in Gate Stack Processing. , 2007, ,		1
98	Vibrational Spectra of C \langle sub \rangle 60 \langle sub \rangle Â \cdot C \langle sub \rangle 8 \langle sub \rangle H \langle sub \rangle 8 \langle sub \rangle and C \langle sub \rangle A \cdot C \langle sub \rangle 8 \langle sub \rangle H \langle sub \rangle 8 \langle sub \rangle in the Rotor-stator and Polymer Phases. Journal of Physical Chemistry B, 2007, 111, 12375-12382.	2.6	12
99	Fulleride ions in various crystal fields studied by infrared spectroscopy. Journal of Molecular Structure, 2007, 838, 74-77.	3.6	1
100	The fulleride polymer Mg5C60. Physica Status Solidi (B): Basic Research, 2007, 244, 3853-3856.	1.5	8
101	Infrared spectroscopy on the rotor–stator compounds C60–C8H8 and C70–C8H8 under pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 3857-3860.	1.5	4
102	Pressureâ€induced phenomena in singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 3982-3985.	1.5	5
103	Charge dynamics in transparent single-walled carbon nanotube films from optical transmission measurements. Physical Review B, 2006, 74, .	3.2	108
104	Infrared Signatures of the Dynamic Jahn-Teller Effect in Fullerene-Based Materials. AIP Conference Proceedings, 2006, , .	0.4	0
105	Magnetic properties and 1H NMR spectroscopy of TM22+[WIV(CN)8]·nH2O. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 130-133.	0.8	0
106	Pressure-dependent infrared spectroscopy on the fullerene rotor–stator compound C60–C8H8. Physica Status Solidi (B): Basic Research, 2006, 243, 2981-2984.	1.5	10
107	Rotor–stator phases of fullerenes with cubane derivatives: A novel family of heteromolecular crystals. Physica Status Solidi (B): Basic Research, 2006, 243, 3032-3036.	1.5	13
108	Calculation of optical constants from carbon nanotube transmission spectra. Physica Status Solidi (B): Basic Research, 2006, 243, 3485-3488.	1.5	18

#	Article	IF	CITATIONS
109	Topochemical copolymerization of fullerenes with cubane in their rotor-stator phases. Physica Status Solidi (B): Basic Research, 2006, 243, 2985-2989.	1.5	16
110	Polarization-dependent optical reflectivity in magnetically oriented carbon nanotube networks. Physica Status Solidi (B): Basic Research, 2006, 243, 3126-3129.	1.5	3
111	Far- and mid-infrared anisotropy of magnetically aligned single-wall carbon nanotubes studied with synchrotron radiation. Infrared Physics and Technology, 2006, 49, 35-38.	2.9	5
112	Phase segregation on the nanoscale inNa2C60. Physical Review B, 2006, 74, .	3.2	16
113	Static and dynamic Jahn-Teller effect in the alkali metal fulleride saltsA4C60(A=K,Rb,Cs). Physical Review B, 2006, 73, .	3.2	33
114	CARBON NANOTUBE FILMS FOR OPTICAL ABSORPTION. , 2006, , 169-170.		0
115	Rotor–stator molecular crystals of fullerenes with cubane. Nature Materials, 2005, 4, 764-767.	27.5	113
116	Nanosegregation in Na2C60. AIP Conference Proceedings, 2005, , .	0.4	0
117	Charge transfer and Fermi level shift inp-doped single-walled carbon nanotubes. Physical Review B, 2005, 71, .	3.2	205
118	Effect of physical and chemical doping on optical spectra of SWNT's. AIP Conference Proceedings, 2004, , .	0.4	0
119	Distortion and orientation of fulleride ions in A4C60. AIP Conference Proceedings, 2004, , .	0.4	0
120	Wide Range Optical Studies on Transparent SWNT Films. AIP Conference Proceedings, 2004, , .	0.4	1
121	Transparent, Conductive Carbon Nanotube Films. Science, 2004, 305, 1273-1276.	12.6	2,797
122	Covalent Bond Formation to a Carbon Nanotube Metal. Science, 2003, 301, 1501-1501.	12.6	251
123	Diffusionless solid state reactions in C60 and its supramolecular derivatives: photopolymerization and host–guest cycloaddition. Synthetic Metals, 2003, 133-134, 685-687.	3.9	4
124	Sidewall Functionalization of Single-Walled Carbon Nanotubes by Addition of Dichlorocarbene. Journal of the American Chemical Society, 2003, 125, 14893-14900.	13.7	375
125	Far-infrared vibrational properties of linearC60polymers:â€,â€,A comparison between neutral and charged materials. Physical Review B, 2003, 67, .	3.2	8
126	Distortions of C[sub 60][sup 4â^'] studied by infrared spectroscopy. AIP Conference Proceedings, 2003, ,	0.4	2

#	Article	IF	CITATIONS
127	Studies of boron–interstitial clusters in Si. Journal of Physics Condensed Matter, 2003, 15, 4967-4977.	1.8	17
128	Ordered low-temperature structure in K4C60 detected by infrared spectroscopy. Physical Review B, 2002, 65, .	3.2	11
129	Far-infrared vibrational properties of tetragonalC60polymer. Physical Review B, 2002, 65, .	3.2	12
130	Jahn-Teller distortion in Cs4C60 studied by vibrational spectroscopy. AIP Conference Proceedings, 2002, , .	0.4	0
131	Electronic and structural properties of alkali doped SWNT. AIP Conference Proceedings, 2002, , .	0.4	1
132	Soluble photopolymer: Isolation of cycloadduct oligomers from the phototransformed C60. Synthetic Metals, 2001, 121, 1109-1110.	3.9	3
133	Infrared spectra of C70 and its alkali salts. Ferroelectrics, 2001, 249, 117-124.	0.6	2
134	Far-Infrared investigation of C60 high-pressure-high-temperature polymers and dimer. Ferroelectrics, 2001, 249, 135-144.	0.6	0
135	Superfluid and normal-fluid density in the cuprate superconductors. Ferroelectrics, 2001, 249, 175-184.	0.6	0
136	Low temperature phase transition in n-pentane C60 clathrate: a Raman scattering study. Chemical Physics Letters, 2000, 326, 58-64.	2.6	4
137	Superfluid and normal-fluid densities in the high-Tc superconductors. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2193-2196.	1.2	7
138	Far-infrared vibrational properties of high-pressure high-temperatureC60polymers and theC60dimer. Physical Review B, 2000, 61, 13191-13201.	3.2	21
139	Bulk structure of phototransformed C. Solid State Communications, 1999, 111, 595-599.	1.9	37
140	Self-assembled monolayers as interfaces for organic opto-electronic devices. European Physical Journal B, 1999, 11, 505-512.	1.5	138
141	Far-infrared study of C60-tetraphenylphosphoniumiodide. Synthetic Metals, 1999, 103, 2435-2436.	3.9	2
142	Protonated metal-oxide electrodes for organic light emitting diodes. Chemical Physics Letters, 1998, 283, 194-200.	2.6	51
143	Infrared and optical spectra of polymerized AC60 fullerides. Chemical Physics Letters, 1998, 295, 279-284.	2.6	12
144	Far-infrared study of the Jahn-Teller-distortedC60monoanion inC60-tetraphenylphosphoniumiodide. Physical Review B, 1998, 58, 14338-14348.	3.2	22

#	Article	IF	Citations
145	Infrared spectra of one- and two-dimensional fullerene polymer structures:RbC60and rhombohedralC60. Physical Review B, 1997, 55, 10999-11002.	3.2	34
146	Infrared Studies on C60 Polymers. Materials Research Society Symposia Proceedings, 1997, 488, 937.	0.1	0
147	Optical spectroscopy on monomeric and polymeric 1:1 fulleride salts. Journal of Superconductivity and Novel Magnetism, 1995, 8, 621-622.	0.5	12
148	Anisotropic optical properties of single-crystal GdBa2Cu3O7â^'Î'. European Physical Journal B, 1995, 96, 313-318.	1.5	4
149	The lowâ€temperature infrared optical functions of SrTiO3determined by reflectance spectroscopy and spectroscopic ellipsometry. Journal of Applied Physics, 1995, 78, 1235-1240.	2.5	116
150	Infrared and differential-scanning-calorimetry study of the room-temperature cubic phase of RbC60. Physical Review B, 1995, 52, 11488-11491.	3.2	13
151	What can we learn from the optical properties of superlattices about superconductivity?. Physica B: Condensed Matter, 1994, 194-196, 2409-2410.	2.7	1
152	Far-infrared response of free carriers in YBA2Cu3O7 from ellipsometric measurements. Physica C: Superconductivity and Its Applications, 1994, 222, 166-172.	1.2	9
153	The use of far-infrared ellipsometry in the study of high-temperature superconductors: possibilities and limitations. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1085-1086.	1.2	0
154	Infrared and raman spectra of C60·n-pentane clathrate crystals. Chemical Physics Letters, 1993, 202, 325-329.	2.6	20
155	The orientational phase transition in C60 films followed by infrared spectroscopy. Chemical Physics Letters, 1993, 214, 338-344.	2.6	30
156	Mid- and near-IR ellipsometry of Y1â^'Pr Ba2Cu3O7 epitaxial films. Thin Solid Films, 1993, 234, 518-521.	1.8	4
157	On a possible charge transfer in superconducting superlattices. Physica C: Superconductivity and Its Applications, 1993, 209, 51-54.	1.2	6
158	Shift of the optical absorption edge in C60 clathrate single crystals. Applied Physics A: Materials Science and Processing, 1993, 56, 231-233.	2.3	16
159	Far-IR spectroscopic ellipsometer. Thin Solid Films, 1993, 234, 314-317.	1.8	26
160	Infrared and Raman Spectra of C60 clathrates. Synthetic Metals, 1993, 56, 3021-3026.	3.9	2
161	Growth and optical study of superconducting superlattices. Journal of Alloys and Compounds, 1993, 195, 187-190.	5.5	1
162	Optical Properties of C60-Diethyl Ether Clathrate Single Crystals. Springer Series in Solid-state Sciences, 1993, , 312-315.	0.3	0

#	Article	IF	CITATIONS
163	Infrared studies of the phase transition in the organic charge-transfer saltN-propylquinolinium ditetracyanoquinodimethane. Physical Review B, 1992, 45, 10197-10205.	3.2	17
164	Advice to Foreign and Following Speakers. Physics Today, 1992, 45, 123-124.	0.3	0
165	Optical properties of N-propylquinolinium(TCNQ)2 through the phase transition. Synthetic Metals, 1991, 42, 1839-1842.	3.9	2
166	Vibrational structure in the infrared reflectance spectra of the high-temperature superconductor Bi2Sr2CaCu2O8. Vibrational Spectroscopy, 1991, 1, 273-276.	2.2	1
167	Temperature dependence of the phonon structure in the high-temperature superconductorBi2Sr2CaCu2O8studied by infrared reflectance spectroscopy. Physical Review B, 1991, 43, 11381-11383.	3.2	14
168	Infrared properties ofT'-phaseR2CuO4insulating compounds. Physical Review B, 1991, 43, 7847-7851.	3.2	19
169	Infrared Studies of High-T c Superconductors: Where's the Gap?. , 1991, , 159-175.		O
170	<title>Infrared spectra and the energy gap in thin film YBa2Cu3O7-delta</title> ., 1990,,.		0
171	In a clean high-Tcsuperconductor you do not see the gap. Physical Review Letters, 1990, 64, 84-87.	7.8	353
172	In a Clean High-TcSuperconductor You Do Not See the Gap. Physical Review Letters, 1990, 64, 1692-1692.	7.8	17
172 173	In a Clean High-TcSuperconductor You Do Not See the Gap. Physical Review Letters, 1990, 64, 1692-1692. Optical Reflectivity of Bi2Sr2CaCu2O8 Crystals. Springer Series in Solid-state Sciences, 1990, , 260-264.	7.8	17 3
173	Optical Reflectivity of Bi2Sr2CaCu2O8 Crystals. Springer Series in Solid-state Sciences, 1990, , 260-264. Infrared studies of textured ceramic high-Tc superconductors. Physica A: Statistical Mechanics and Its	0.3	3
173 174	Optical Reflectivity of Bi2Sr2CaCu2O8 Crystals. Springer Series in Solid-state Sciences, 1990, , 260-264. Infrared studies of textured ceramic high-Tc superconductors. Physica A: Statistical Mechanics and Its Applications, 1989, 157, 214-219. Infrared studies of high Tc superconductors. Physica C: Superconductivity and Its Applications, 1989,	0.3	1
173 174 175	Optical Reflectivity of Bi2Sr2CaCu2O8 Crystals. Springer Series in Solid-state Sciences, 1990, , 260-264. Infrared studies of textured ceramic high-Tc superconductors. Physica A: Statistical Mechanics and Its Applications, 1989, 157, 214-219. Infrared studies of high Tc superconductors. Physica C: Superconductivity and Its Applications, 1989, 162-164, 841-844. Far-infrared ab plane reflectance and transmission of Bi 2 Sr 2 CaCu 2 O 8. Physica C:	0.3 2.6 1.2	3 1 21
173 174 175 176	Optical Reflectivity of Bi2Sr2CaCu2O8 Crystals. Springer Series in Solid-state Sciences, 1990, , 260-264. Infrared studies of textured ceramic high-Tc superconductors. Physica A: Statistical Mechanics and Its Applications, 1989, 157, 214-219. Infrared studies of high Tc superconductors. Physica C: Superconductivity and Its Applications, 1989, 162-164, 841-844. Far-infrared ab plane reflectance and transmission of Bi 2 Sr 2 CaCu 2 O 8. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1083-1084.	0.3 2.6 1.2	3 1 21 1
173 174 175 176	Optical Reflectivity of Bi2Sr2CaCu2O8 Crystals. Springer Series in Solid-state Sciences, 1990, , 260-264. Infrared studies of textured ceramic high-Tc superconductors. Physica A: Statistical Mechanics and Its Applications, 1989, 157, 214-219. Infrared studies of high Tc superconductors. Physica C: Superconductivity and Its Applications, 1989, 162-164, 841-844. Far-infrared ab plane reflectance and transmission of Bi 2 Sr 2 CaCu 2 O 8. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1083-1084. Infrared studies of AB-plane oriented YBa2Cu3O7â~Î. Synthetic Metals, 1989, 29, 715-721.	0.3 2.6 1.2 1.2	3 1 21 1 3

#	Article	IF	Citations
181	Far-infrared properties ofab-plane orientedYBa2Cu3O7â^Î. Physical Review B, 1988, 37, 1574-1579.	3.2	88
182	Infrared studies ofab-plane oriented oxide superconductors. Physical Review B, 1988, 38, 6683-6688.	3.2	113
183	far-infrared optical properties ofBi2Sr2CaCu2O8. Physical Review B, 1988, 38, 11981-11984.	3.2	107
184	Linear Current-Field Relation of Charge Density Waves near the Depinning Threshold in Alkali-Metal Blue Bronzes A _{0.3} MoO ₃ . Europhysics Letters, 1987, 3, 1027-1033.	2.0	11
185	Optical properties ofLa1.85Sr0.15CuO4: Evidence for strong electron-phonon and electron-electron interactions. Physical Review B, 1987, 36, 733-735.	3.2	90
186	Far-infrared measurement of the gap of the high-TcsuperconductorLa1.85Sr0.15CuO4â^'x. Physical Review B, 1987, 35, 8843-8845.	3.2	78
187	Excitonic absorption and superconductivity in YBa2Cu3O7â^'y. Physical Review Letters, 1987, 59, 919-922.	7.8	157
188	Far-Infrared Conductivity of the High-TcSuperconductor YBa2Cu3O7. Physical Review Letters, 1987, 58, 2249-2250.	7.8	175
189	Optical Reflectance Studies on YBa2Cu3O7â^'x and Related Compounds. Materials Research Society Symposia Proceedings, 1987, 99, 777.	0.1	2
190	Optical Properties of Dopant Induced States in La2â^'xSrxCuO4-δ Compounds. Materials Research Society Symposia Proceedings, 1987, 99, 135.	0.1	4
191	Far-Infrared Properties of ab plane oriented YBa2Cu3O7-δ. Materials Research Society Symposia Proceedings, 1987, 99, 227.	0.1	0
192	Far-infrared conductivity of yba ₂ Cu ₃ O _{7–y} ., 1987,,.		0
193	Conduction electron spin resonance measurements on TTF-TNNQ and (TMTTF)2BF4 under hydrostatic pressure. Journal De Physique, 1987, 48, 413-418.	1.8	13
194	Nonlinear Hall effect in KO.3 MoO3 due to the sliding of charge-density waves. Physical Review B, 1986, 34, 9047-9050.	3.2	44
195	ESR Study of (TMTTF)2BF4 and TTF-TCNQ under Hydrostatic Pressure. Molecular Crystals and Liquid Crystals, 1985, 120, 89-92.	0.8	6
196	Polarized IR Reflectance Spectra of Pure and Neutron Irradiated Qn(TCNQ) ₂ Mosaics. Physica Status Solidi (B): Basic Research, 1983, 118, K43.	1.5	2
197	Infared Spectra of the Neutron Irradiated Quasiâ€Oneâ€Dimensional Charge Transfer Salts TEA (TCNQ) ₂ and QN (TCNQ) ₂ . Physica Status Solidi (B): Basic Research, 1980, 102, 467-474.	1.5	10
198	Optical properties of the charge transfer salts of tetrathiotetracene. Solid State Communications, 1979, 30, 277-281.	1.9	12

#	Article	IF	CITATIONS
199	Coulomb effects in the organic charge transfer salt TTT2I3. Solid State Communications, 1978, 28, 607-611.	1.9	12
200	Optical absorption in complex TCNQ salts. Solid State Communications, 1978, 27, 1171-1175.	1.9	30
201	Investigation of chromate salts by diffuse reflectance spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy, 1978, 34, 607-612.	0.1	32
202	Highly conducting organic alloys (NBDT)2lxBr3–x{NBDT = naphthaceno[5,6-cd: 11,12-c′d′]bis[1,2]dithiole}. Journal of the Chemical Society Chemical Communications, 1978, , 974-975.	2.0	3
203	Impurity effects in the organic charge transfer salt Qn(TCNQ)2. Journal of Physics C: Solid State Physics, 1977, 10, L423-L427.	1.5	9
204	Electronic spectra of the organic charge transfer salts TTT-In. Solid State Communications, 1977, 24, 93-96.	1.9	12