Richard L Moyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2580874/publications.pdf

Version: 2024-02-01

30 papers

1,383

16 h-index 29 g-index

30 all docs 30 docs citations

30 times ranked

2033 citing authors

#	Article	IF	Citations
1	The Molecular Basis of Temperature Compensation in the Arabidopsis Circadian Clock. Plant Cell, 2006, 18, 1177-1187.	6.6	315
2	Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant Journal, 2004, 40, 173-187.	5.7	229
3	A transcriptional timetable of autumn senescence. Genome Biology, 2004, 5, R24.	9.6	226
4	Environmental and auxin regulation of wood formation involves members of the Aux/IAAgene family in hybrid aspen. Plant Journal, 2002, 31, 675-685.	5.7	119
5	Developing pineapple fruit has a small transcriptome dominated by metallothionein. Journal of Experimental Botany, 2005, 56, 101-112.	4.8	117
6	Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Reports, 2011, 30, 439-448.	5.6	44
7	Matureâ€stem expression of a silencingâ€resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnology Journal, 2013, 11, 502-509.	8.3	33
8	PineappleDB: an online pineapple bioinformatics resource. BMC Plant Biology, 2005, 5, 21.	3.6	31
9	Sugarcane Loading Stem Gene promoters drive transgene expression preferentially in the stem. Plant Molecular Biology, 2013, 82, 51-58.	3.9	31
10	An Optimized Transient Dual Luciferase Assay for Quantifying MicroRNA Directed Repression of Targeted Sequences. Frontiers in Plant Science, 2017, 8, 1631.	3.6	29
11	Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana. Plant Molecular Biology, 2013, 81, 327-336.	3.9	27
12	Microarray analysis of gene expression profiles in ripening pineapple fruits. BMC Plant Biology, 2012, 12, 240.	3.6	22
13	Distinct cis-elements in the Asparagus officinalis asparagine synthetase promoter respond to carbohydrate and senescence signals. Functional Plant Biology, 2004, 31, 573.	2.1	22
14	Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter. Plant Cell Reports, 2002, 20, 1052-1060.	5.6	20
15	Analysis of the asparagus (Asparagus officinalis) asparagine synthetase gene promoter identifies evolutionarily conserved cis-regulatory elements that mediate Suc-repression. Functional Plant Biology, 2004, 31, 63.	2.1	20
16	Expression analysis of four Pinus radiata male cone promoters in the heterologous host Arabidopsis. Planta, 2003, 217, 858-867.	3.2	16
17	Diversity of sequences and expression patterns among alleles of a sugarcane loading stem gene. Theoretical and Applied Genetics, 2013, 126, 1775-1782.	3.6	13
18	Deep Sequencing Reveals Divergent Expression Patterns Within the Small RNA Transcriptomes of Cultured and Vegetative Tissues of Sugarcane. Plant Molecular Biology Reporter, 2015, 33, 931-951.	1.8	12

#	Article	IF	CITATIONS
19	Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. BMC Plant Biology, 2014, 14, 92.	3.6	10
20	Complete Nucleotide Sequence of an Australian Isolate of <i>Turnip mosaic virus</i> before and after Seven Years of Serial Passaging. Genome Announcements, 2016, 4, .	0.8	7
21	Analysis of the Complete Genome Sequence of Cucumber mosaic virus Strain K. Genome Announcements, 2018, 6, .	0.8	7
22	The pineapple AcMADS1 promoter confers high level expression in tomato and Arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant. Plant Molecular Biology, 2014, 86, 395-407.	3.9	6
23	Analysis of the first complete genome sequence of an Australian tomato spotted wilt virus isolate. Australasian Plant Pathology, 2016, 45, 509-512.	1.0	6
24	Identification and Characterization of an mRNA Encoding a Proline-Rich Protein that Rapidly Declines in Abundance in the Tips of Harvested Asparagus Spears. Plant and Cell Physiology, 1996, 37, 706-710.	3.1	5
25	First fully sequenced genome of an Australian isolate of Cauliflower mosaic virus. Australasian Plant Pathology, 2017, 46, 597-599.	1.0	5
26	Incorporating Target Sequences of Developmentally Regulated Small RNAs Into Transgenes to Enhance Tissue Specificity of Expression in Plants. Plant Molecular Biology Reporter, 2015, 33, 505-511.	1.8	3
27	Complete Nucleotide Sequence of Australian Tomato spotted wilt virus Isolate TSWV-QLD2. Genome Announcements, 2017, 5, .	0.8	3
28	Natural and Engineered Defenses Against Plant Viruses. Current Biotechnology, 2017, 6, .	0.4	3
29	EST Sequencing of Meloidogyne javanica Infected Pineapple Root Tissues Reveals Changes in Gene Expression during Root-Knot Nematode Induced Gall Formation. Tropical Plant Biology, 2014, 7, 43-52.	1.9	2
30	Emerging Culture-Independent Tools to Enhance Our Understanding of Soil Microbial Ecology., 2017,, 207-225.		0