Sadhan Adhikari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2580597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep inelastic collision of two-dimensional anisotropic dipolar condensate solitons. Communications in Nonlinear Science and Numerical Simulation, 2022, 106, 106094.	3.3	4
2	Supersolid-like solitons in a spin-orbit-coupled spin-2 condensate. Physical Review A, 2022, 105, .	2.5	11
3	Supersolid-like square- and honeycomb-lattice crystallization of droplets in a dipolar condensate. Physical Review A, 2022, 105, .	2.5	16
4	Low-energy three-body collisions between an antiproton pl and muonic hydrogen atom H _{<i>μ</i>} . EPJ Web of Conferences, 2022, 262, 01023.	0.3	0
5	Spin-1 spin–orbit- and Rabi-coupled Bose–Einstein condensate solver. Computer Physics Communications, 2021, 259, 107657.	7.5	20
6	Solitons in a Spin-Orbit-Coupled Spin-1 Bose-Einstein Condensate. Brazilian Journal of Physics, 2021, 51, 298-307.	1.4	3
7	Spontaneous spatial order in two-dimensional ferromagnetic spin-orbit coupled uniform spin-1 condensate solitons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 388, 127042.	2.1	7
8	Multiring, stripe, and superlattice solitons in a spin-orbit-coupled spin-1 condensate. Physical Review A, 2021, 103, .	2.5	23
9	Supersolid-like states in a two-dimensional trapped spin–orbit-coupled spin-1 condensate. Journal of Physics Condensed Matter, 2021, 33, 265402.	1.8	5
10	OpenMP solver for rotating spin-1 spin–orbit- and Rabi-coupled Bose–Einstein condensates. Computer Physics Communications, 2021, 264, 107926.	7.5	8
11	Symbiotic solitons in quasi-one- and quasi-two-dimensional spin-1 condensates. Physical Review E, 2021, 104, 024207.	2.1	5
12	Spatial order in a two-dimensional spin–orbit-coupled spin-1/2 condensate: superlattice, multi-ring and stripe formation. Journal of Physics Condensed Matter, 2021, 33, 425402.	1.8	2
13	Vortex-lattice formation in a spin–orbit coupled rotating spin-1 condensate. Journal of Physics Condensed Matter, 2021, 33, 065404.	1.8	4
14	Phase-separated symmetry-breaking vortex-lattice in a binary Bose-Einstein condensate. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113713.	2.7	2
15	Stable multi-peak vector solitons in spin–orbit coupled spin-1 polar condensates. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113892.	2.7	6
16	Symmetry-breaking vortex-lattice of a binary superfluid in a rotating bucket. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126105.	2.1	0
17	Vortex-lattice in a uniform Bose–Einstein condensate in a box trap. Journal of Physics Condensed Matter, 2019, 31, 275401.	1.8	7
18	Weak coupling to unitarity crossover in Bose-Fermi mixtures: Mixing-demixing transition and spontaneous symmetry breaking in trapped systems. Physical Review A, 2019, 100, .	2.5	7

#	Article	IF	CITATIONS
19	Limitation of the Lee–Huang–Yang interaction in forming a self-bound state in Bose–Einstein condensates. Annals of Physics, 2019, 409, 167917.	2.8	5
20	Phase-separated vortex-lattice in a rotating binary Bose–Einstein condensate. Communications in Nonlinear Science and Numerical Simulation, 2019, 71, 212-219.	3.3	5
21	Self-trapped quantum balls in binary Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 055302.	1.5	16
22	C and Fortran OpenMP programs for rotating Bose–Einstein condensates. Computer Physics Communications, 2019, 240, 74-82.	7.5	22
23	Stable controllable giant vortex in a trapped Bose–Einstein condensate. Laser Physics Letters, 2019, 16, 085501.	1.4	6
24	Phase separation of vector solitons in spin-orbit-coupled spin-1 condensates. Physical Review A, 2019, 100, .	2.5	19
25	Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate. Physical Review A, 2018, 97, .	2.5	44
26	Improved effective-range expansions for small and large values of scattering length. European Journal of Physics, 2018, 39, 055403.	0.6	5

27

#	Article	IF	CITATIONS
37	OpenMP Fortran and C programs for solving the time-dependent Gross–Pitaevskii equation in an	7.5	52
38	OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross–Pitaevskii equation. Computer Physics Communications, 2016, 209, 190-196.	7.5	39
39	Elastic collision and molecule formation of spatiotemporal light bullets in a cubic-quintic nonlinear medium. Physical Review E, 2016, 94, 032217.	2.1	13
40	Fractional-charge vortex in a spinor Bose-Einstein condensate. Physical Review A, 2016, 93, .	2.5	8
41	Low temperature HD+ <i>ortho</i> -/ <i>para</i> -H ₂ inelastic scattering of astrophysical interest. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 015203.	1.5	12
42	Stable and mobile two-dimensional dipolar ring-dark-in-bright Bose–Einstein condensate soliton. Laser Physics Letters, 2016, 13, 035502.	1.4	5
43	CUDA programs for solving the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap. Computer Physics Communications, 2016, 200, 406-410.	7.5	51
44	Hybrid OpenMP/MPI programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2016, 200, 411-417.	7.5	61
45	Analytic models for the density of a ground-state spinor condensate. Physical Review A, 2015, 92, .	2.5	23
46	Vector solitons in a spin-orbit-coupled spin-2 Bose-Einstein condensate. Physical Review A, 2015, 91, .	2.5	35
47	Stable spatial and spatiotemporal optical soliton in the core of an optical vortex. Physical Review E, 2015, 92, 042926.	2.1	9
48	Three-Body Protonium Formation in a Collision Between a Slow Antiproton (\$\${ar{m p}}\$\$ p Â⁻) and Muonic Hydrogen: \$\${{m H}_{mu}}\$\$ H μ —Low Energy \$\${ar{m p} + ({m p} mu^-)_{1s} ightarrow (ar{m p} {m p})_{1s} + mu^-}\$\$ p Â⁻ + (p μ -) 1 s → (p Â⁻ p) 1 s + μ - Reaction. Few-Body Systems, 2015, 56, 793-800.	1.5	2
49	Spontaneous symmetry breaking in a spin-orbit-coupled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mo>=condensate. Physical Review A, 2015, 91, .</mml:mo></mml:mrow></mml:math)> < 216 ml:m	n>22/mml:r
50	Fortran and C programs for the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap. Computer Physics Communications, 2015, 195, 117-128.	7.5	94
51	Mobile vector soliton in a spin–orbit coupled spin-1 condensate. Laser Physics Letters, 2015, 12, 045501.	1.4	39
52	Stable matter-wave solitons in the vortex core of a uniform condensate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 165303.	1.5	1
53	Dimensional Reduction and Localization of a Bose-Einstein Condensate in a Quasi-1D Bichromatic Optical Lattice. Acta Physica Polonica A, 2015, 128, 979-982.	0.5	5
54	Stable, mobile, dark-in-bright, dipolar Bose-Einstein-condensate solitons. Physical Review A, 2014, 89, .	2.5	21

#	Article	IF	CITATIONS
55	Demixing and symmetry breaking in binary dipolar Bose-Einstein-condensate solitons. Physical Review A, 2014, 89, .	2.5	13
56	Phase separation in a spin-orbit-coupled Bose-Einstein condensate. Physical Review A, 2014, 90, .	2.5	45
57	Self-trapping of a dipolar Bose-Einstein condensate in a double well. Physical Review A, 2014, 89, .	2.5	12
58	Bright dipolar Bose-Einstein-condensate soliton mobile in a direction perpendicular to polarization. Physical Review A, 2014, 90, .	2.5	7
59	Stable and mobile excited two-dimensional dipolar Bose–Einstein condensate solitons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 225304.	1.5	5
60	Statics and dynamics of a binary dipolar Bose–Einstein condensate soliton. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 015302.	1.5	14
61	Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice. Physical Review A, 2014, 89, .	2.5	54
62	Dipolar droplet bound in a trapped Bose-Einstein condensate. Physical Review A, 2013, 87, .	2.5	12
63	Stability of trapped degenerate dipolar Bose and Fermi gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 115301.	1.5	5
64	Stability and collapse of fermions in a binary dipolar boson-fermion <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mn>164</mml:mn></mml:mrow </mml:msup>Dy-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mn>161</mml:mn></mml:mrow </mml:msup>Dy mixture_Physical Review A_2013_88</mml:math </mml:math 	2.5	7
65	Two-dimensional dipolar Bose–Einstein condensate bright and vortex solitons on a one-dimensional optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 045301.	1.5	20
66	Study of a degenerate dipolar Fermi gas of161Dy atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 235303.	1.5	3
67	Mixing, demixing, and structure formation in a binary dipolar Bose-Einstein condensate. Physical Review A, 2012, 86, .	2.5	24
68	Dipolar Bose-Einstein condensates with large scattering length. Physical Review A, 2012, 85, .	2.5	4
69	A comparative study of the low energy HD+ <i>o</i> / <i>p</i> -H2 rotational excitation/de-excitation collisions and elastic scattering. AIP Advances, 2012, 2, .	1.3	8
70	Dipolar Bose–Einstein condensate soliton on a two-dimensional optical lattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2200-2205.	2.1	21
71	C programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2012, 183, 2021-2025	7.5	168
72	Ultracold collisions between two light indistinguishable diatomic molecules: Elastic and rotational energy transfer in HD+HD. Physical Review A, 2012, 85, .	2.5	1

#	Article	IF	CITATIONS
73	Dipolar Bose-Einstein condensate in a ring or in a shell. Physical Review A, 2012, 85, .	2.5	28
74	Anisotropic sound and shock waves in dipolar Bose–Einstein condensate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 480-483.	2.1	17
75	Numerical and variational solutions of the dipolar Gross-Pitaevskii equation in reduced dimensions. Laser Physics, 2012, 22, 813-820.	1.2	35
76	Localization of a Bose-Fermi mixture in a bichromatic optical lattice. Physical Review A, 2011, 84, .	2.5	21
77	Self-trapping of a binary Bose–Einstein condensate induced by interspecies interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 075301.	1.5	11
78	Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose–Einstein condensate with repulsive atomic interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 101001.	1.5	37
79	Matter-wave localization in a weakly perturbed optical lattice. Physical Review A, 2011, 84, .	2.5	17
80	Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice. Physical Review A, 2011, 83, .	2.5	19
81	Gap solitons in a dipolar Bose–Einstein condensate on a three-dimensional optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 121001.	1.5	24
82	Matter-wave localization in a random potential. Physical Review A, 2010, 82, .	2.5	29
83	Dimensional reduction of a binary Bose-Einstein condensate in mixed dimensions. Physical Review A, 2010, 82, .	2.5	22
84	Spatially-antisymmetric localization of matter wave in a bichromatic optical lattice. Laser Physics Letters, 2010, 7, 824-830.	1.4	17
85	Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials. Physical Review A, 2010, 81, .	2.5	54
86	Localization of a Bose-Einstein-condensate vortex in a bichromatic optical lattice. Physical Review A, 2010, 81, .	2.5	33
87	Symmetry breaking in a localized interacting binary Bose-Einstein condensate in a bichromatic optical lattice. Physical Review A, 2010, 81, .	2.5	17
88	Quenching of para-H2with an ultracold antihydrogen atomH \hat{A} -1s. Physical Review A, 2010, 81, .	2.5	3
89	Localization of a dipolar Bose–Einstein condensate in a bichromatic optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 205305.	1.5	25
90	BCS–BEC crossover in a trapped Fermi super-fluid using a density-functional equation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 085304.	1.5	17

#	Article	IF	CITATIONS
91	Effective nonlinear Schrödinger equations for cigar-shaped and disc-shaped Fermi superfluids at unitarity. New Journal of Physics, 2009, 11, 023011.	2.9	45
92	Mean-field equations for cigar- and disc-shaped Bose and Fermi superfluids. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 215306.	1.5	21
93	Universal scaling in a trapped Fermi super-fluid in the BCS-unitarity crossover. Laser Physics Letters, 2009, 6, 901-905.	1.4	26
94	Gap solitons in fermion superfluids. Mathematics and Computers in Simulation, 2009, 80, 648-659.	4.4	3
95	Fortran programs for the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2009, 180, 1888-1912.	7.5	332
96	Positronium interaction and its Bose-Einstein condensation. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2272-2276.	0.8	5
97	Gap solitons in a model of a superfluid fermion gas in optical lattices. Physica D: Nonlinear Phenomena, 2009, 238, 1402-1412.	2.8	36
98	Universal behavior of a trapped Fermi superfluid in the BCS-unitarity crossover. Physical Review A, 2009, 79, .	2.5	15
99	Self-trapping of a Fermi superfluid in a double-well potential in the Bose-Einstein-condensate–unitarity crossover. Physical Review A, 2009, 80, .	2.5	55
100	Two-component gap solitons with linear interconversion. Physical Review A, 2009, 79, .	2.5	30
101	Localization of a Bose-Einstein condensate in a bichromatic optical lattice. Physical Review A, 2009, 80,	2.5	56
102	Josephson oscillation of a superfluid Fermi gas. European Physical Journal D, 2008, 47, 413-419.	1.3	17
103	Superfluid Bose-Fermi mixture from weak coupling to unitarity. Physical Review A, 2008, 78, .	2.5	94
104	Symbiotic gap and semigap solitons in Bose-Einstein condensates. Physical Review A, 2008, 77, .	2.5	31
105	Semiclassical scattering in two dimensions. American Journal of Physics, 2008, 76, 1108-1113.	0.7	8
106	Nonlinear Schrödinger equation for a superfluid Bose gas from weak coupling to unitarity: Study of vortices. Physical Review A, 2008, 77, .	2.5	46
107	Nonlinear Schrödinger equation for a superfluid Fermi gas in the BCS-BEC crossover. Physical Review A, 2008, 77, .	2.5	67
108	Formation of bright solitons and soliton trains in a fermion–fermion mixture by modulational instability. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 2673-2687.	2.1	15

#	Article	IF	CITATIONS
109	Tightly bound gap solitons in a Fermi gas. Europhysics Letters, 2007, 79, 50003.	2.0	44
110	Mixing-demixing transition and collapse of a vortex state in a quasi-two-dimensional boson-fermion mixture. Physical Review A, 2007, 75, .	2.5	19
111	One-dimensional superfluid Bose-Fermi mixture: Mixing, demixing, and bright solitons. Physical Review A, 2007, 76, .	2.5	37
112	Superfluid Fermi-Fermi mixture: Phase diagram, stability, and soliton formation. Physical Review A, 2007, 76, .	2.5	21
113	Self-bound droplet of Bose and Fermi atoms in one dimension: Collective properties in mean-field and Tonks-Girardeau regimes. Physical Review A, 2007, 75, .	2.5	32
114	Gap solitons in superfluid boson-fermion mixtures. Physical Review A, 2007, 76, .	2.5	27
115	The BCS–Bose crossover theory. Physica C: Superconductivity and Its Applications, 2007, 453, 37-45.	1.2	31
116	Finite-well potential in the 3D nonlinear Schrödinger equation: application to Bose-Einstein condensation. European Physical Journal D, 2007, 42, 279-286.	1.3	2
117	Bright solitons and soliton trains in a fermion-fermion mixture. European Physical Journal D, 2006, 40, 157-160.	1.3	10
118	Simulation of a Stationary Dark Soliton in a Trapped Zero-Temperature Bose-Einstein Condensate. Journal of Low Temperature Physics, 2006, 143, 267-281.	1.4	7
119	Dissipation-managed soliton in a quasi-one-dimensional Bose-Einstein condensate. Laser Physics Letters, 2006, 3, 553-557.	1.4	10
120	Black soliton in a quasi-one-dimensional trapped fermion-fermion mixture. Laser Physics Letters, 2006, 3, 605-611.	1.4	10
121	Dynamical collapse in a degenerate binary fermion mixture using a hydrodynamic model. New Journal of Physics, 2006, 8, 258-258.	2.9	11
122	Miscibility in a degenerate fermionic mixture induced by linear coupling. Physical Review A, 2006, 74, .	2.5	21
123	Mixing-demixing in a trapped degenerate fermion-fermion mixture. Physical Review A, 2006, 73, .	2.5	24
124	Bright solitons in coupled defocusing NLS equation supported by coupling: Application to Bose–Einstein condensation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 346, 179-185.	2.1	102
125	Free expansion of fermionic dark solitons in a boson–fermion mixture. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 3607-3617.	1.5	20
126	Bound states of attractive Bose–Einstein condensates in shallow traps in two and three dimensions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 579-591.	1.5	11

#	Article	IF	CITATIONS
127	Josephson oscillation and induced collapse in an attractive Bose-Einstein condensate. Physical Review A, 2005, 72, .	2.5	14
128	Evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries. Physical Review A, 2005, 71, .	2.5	11
129	Fermionic bright soliton in a boson-fermion mixture. Physical Review A, 2005, 72, .	2.5	72
130	Stabilization of a(3+1)-dimensional soliton in a Kerr medium by a rapidly oscillating dispersion coefficient. Physical Review E, 2005, 71, 016611.	2.1	29
131	Mean-field model of jet formation in a collapsing Bose–Einstein condensate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 1185-1194.	1.5	18
132	Mean-field description of a dynamical collapse of a fermionic condensate in a trapped boson-fermion mixture. Physical Review A, 2004, 70, .	2.5	57
133	Stabilization of a light bullet in a layered Kerr medium with sign-changing nonlinearity. Physical Review E, 2004, 70, 036608.	2.1	22
134	Bright Vortex Solitons in Bose Condensates. Few-Body Systems, 2004, 34, 197.	1.5	4
135	Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice. Nuclear Physics A, 2004, 737, 289-293.	1.5	3
136	Stabilization of bright solitons and vortex solitons in a trapless three-dimensional Bose-Einstein condensate by temporal modulation of the scattering length. Physical Review A, 2004, 69, .	2.5	105
137	Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice. Nuclear Physics A, 2004, 737, 289-293.	1.5	2
138	Mean-field model for Josephson oscillation in a Bose-Einstein condensate on an one-dimensional optical trap. European Physical Journal D, 2003, 25, 161-166.	1.3	27
139	Loss of superfluidity in a Bose–Einstein condensate on an optical lattice via a novel classical phase transition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 308, 302-307.	2.1	17
140	Mean-field model for the interference of matter–waves from a three-dimensional optical trap. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 310, 229-235.	2.1	20
141	Loss of superfluidity in a Bose–Einstein condensate via forced resonant oscillations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 313, 211-217.	2.1	11
142	Mean-field model of interaction between bright vortex solitons in Bose–Einstein condensates. New Journal of Physics, 2003, 5, 137-137.	2.9	45
143	Bose–Einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2501-2513	1.5	111
144	The critical number of atoms in an attractive Bose–Einstein condensate on optical plus harmonic traps. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2943-2949.	1.5	6

#	Article	IF	CITATIONS
145	Resonance in BoseÂEinstein condensate oscillation from a periodic variation in scattering length. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 1109-1120.	1.5	28
146	Expansion of a Bose–Einstein condensate formed on a joint harmonic and one-dimensional optical-lattice potential. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 3951-3959.	1.5	9
147	Dynamical classical superfluid–insulator transition in a Bose–Einstein condensate on an optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2725-2731.	1.5	6
148	Chaotic oscillation in an attractive Bose-Einstein condensate under an impulsive force. Physical Review A, 2002, 65, .	2.5	21
149	Free expansion of attractive and repulsive Bose-Einstein condensed vortex states. Physical Review A, 2002, 65, .	2.5	18
150	Dynamics of a collapsing and exploding Bose-Einstein condensed vortex state. Physical Review A, 2002, 66, .	2.5	24
151	Mean-field description of collapsing and exploding Bose-Einstein condensates. Physical Review A, 2002, 66, .	2.5	53
152	Low-energy direct muon transfer from H to Ne10+, S16+and Ar18+using the two-state close-coupling approximation to the Faddeev-Hahn-type equation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 935-945.	1.5	10
153	Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2831-2843.	1.5	118
154	Positronium scattering by atoms and molecules at low energies. Nuclear Instruments & Methods in Physics Research B, 2002, 192, 74-82.	1.4	6
155	Mixing of dx2â^'y2 and dxy superconducting states for different filling and temperature. Physica C: Superconductivity and Its Applications, 2002, 370, 146-156.	1.2	4
156	Positronium–positronium interaction: resonance, scattering length, and Bose–Einstein condensation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 294, 308-313.	2.1	24
157	Low-energy muon-transfer reaction from hydrogen isotopes to helium isotopes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 300, 417-420.	2.1	2
158	Dynamics of collapsing and exploding Bose–Einstein condensate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 296, 145-150.	2.1	18
159	Effect of an impulsive force on vortices in a rotating Bose–Einstein condensate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 333-339.	2.1	12
160	Collapse of attractive Bose-Einstein condensed vortex states in a cylindrical trap. Physical Review E, 2001, 65, 016703.	2.1	60
161	Differential cross sections for elastic and inelastic positronium–hydrogen-atom scattering. Physical Review A, 2001, 63, .	2.5	14
162	Variational calculation of positronium-helium-atom scattering length. Physical Review A, 2001, 64, .	2.5	11

#	Article	IF	CITATIONS
163	Integral equations of scattering in one dimension. American Journal of Physics, 2001, 69, 1010-1013.	0.7	32
164	Low-energy three-body atomic collision within a coordinate-space integro-differential equation approach: Muon-transfer reaction. Nuclear Physics A, 2001, 684, 690-692.	1.5	2
165	Low-energy correlations in the positronium–hydrogen-atom system. Nuclear Physics A, 2001, 684, 666-668.	1.5	2
166	Stability and collapse of a coupled Bose–Einstein condensate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 281, 265-271.	2.1	16
167	Resonances in positronium–rubidium and positronium–cesium scattering. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 283, 224-228.	2.1	5
168	Linear to quadratic crossover of Cooper-pair dispersion relation. Physica C: Superconductivity and Its Applications, 2001, 351, 341-348.	1.2	22
169	Mixing of superconducting dx2â^'y2 state with s-wave states for different filling and temperature. Physica C: Superconductivity and Its Applications, 2001, 355, 77-86.	1.2	7
170	Stability and collapse of a hybrid Bose-Einstein condensate of atoms and molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 4231-4241.	1.5	12
171	Convergent variational calculation of positronium-hydrogen-atom scattering lengths. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, L187-L194.	1.5	22
172	S-, P- and D-wave resonances in positronium-sodium and positronium-potassium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 1361-1367.	1.5	9
173	Comment on "Time-reversal symmetry-breaking superconductivity― Physical Review B, 2001, 63, .	3.2	4
174	Coupled Bose-Einstein condensate: Collapse for attractive interaction. Physical Review A, 2001, 63, .	2.5	47
175	Numerical study of the coupled time-dependent Gross-Pitaevskii equation: Application to Bose-Einstein condensation. Physical Review E, 2001, 63, 056704.	2.1	24
176	Scattering of positronium by H, He, Ne, and Ar. Chemical Physics Letters, 2000, 317, 129-134.	2.6	42
177	Cooper pair dispersion relation in two dimensions. Physica C: Superconductivity and Its Applications, 2000, 341-348, 151-152.	1.2	1
178	Numerical solution of the two-dimensional Gross–Pitaevskii equation for trapped interacting atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 265, 91-96.	2.1	69
179	Bose–Einstein condensation thermodynamics of a trapped gas with attractive interaction. Physica A: Statistical Mechanics and Its Applications, 2000, 284, 97-106.	2.6	7
180	Limits of validity for a semiclassical mean-field two-fluid model for Bose–Einstein condensation thermodynamics. Physica A: Statistical Mechanics and Its Applications, 2000, 286, 299-306.	2.6	8

#	Article	IF	CITATIONS
181	Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space dimensions. Physical Review E, 2000, 62, 2937-2944.	2.1	70
182	Positronium atom scattering by H2in a coupled-channel framework. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 1575-1584.	1.5	35
183	Positronium-hydrogen atom elastic scattering at medium energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L761-L765.	1.5	12
184	Reply to comment on `Quantization rules for bound states in quantum wells'. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 1469-1470.	1.5	0
185	Differential and partial cross sections of elastic and inelastic positronium–helium-atom scattering. Physical Review A, 2000, 62, .	2.5	11
186	Dynamical calculation of direct muon-transfer rates from thermalized muonic hydrogen toC6+andO8+. Physical Review A, 2000, 62, .	2.5	12
187	Quantum tunneling fragmentation model. Physical Review E, 2000, 61, 6111-6119.	2.1	1
188	Coordinate-space Faddeev-Hahn-type approach to three-body charge-transfer reactions involving exotic particles. Physical Review A, 2000, 61, .	2.5	19
189	Superconductivity as a Bose-Einstein condensation?. Physica C: Superconductivity and Its Applications, 2000, 341-348, 233-236.	1.2	3
190	Cooper pair dispersion relation for weak to strong coupling. Physical Review B, 2000, 62, 8671-8674.	3.2	34
191	Quantum scattering in one dimension. European Journal of Physics, 2000, 21, 435-440.	0.6	27
192	Momentum-space non-hydrogenic wavefunction of quantum defect theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 95-99.	1.5	4
193	Low-energy three-body charge transfer reactions with Coulomb interaction in the final state. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5751-5758.	1.5	6
194	Low-energy quenching of positronium by helium. Physical Review A, 1999, 59, 4829-4832.	2.5	21
195	Positronium–hydrogen-atom scattering in a five-state model. Physical Review A, 1999, 59, 2058-2064.	2.5	33
196	Electron exchange model potential: Application to positronium-helium scattering. Physical Review A, 1999, 59, 363-370.	2.5	69
197	Phase transition from adx2â^'y2to adx2â^'y2+dxysuperconductor. Physical Review B, 1999, 60, 10401-10404.	3.2	8
198	Close-coupling calculations of elastic and inelastic positron-helium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 129-136.	1.5	3

#	Article	IF	CITATIONS
199	Two phase transitions in (dx2â^'y2+is)-wave superconductors. Physica C: Superconductivity and Its Applications, 1999, 322, 37-44.	1.2	12
200	Effect of electron correlation on positronium formation in positron-helium scattering. European Physical Journal D, 1999, 5, 217-220.	1.3	3
201	Absence of Cooper-type bound states in three- and few-electron systems. European Physical Journal B, 1998, 5, 219-222.	1.5	1
202	Phase transition from a dx2â^'y2 to dx2â^'y2+idxy superconductor. Physica C: Superconductivity and Its Applications, 1998, 309, 251-256.	1.2	14
203	Diversity of fragments in the collapse of brittle solids. Physica A: Statistical Mechanics and Its Applications, 1998, 259, 227-234.	2.6	5
204	Positron-helium scattering: Resonance and differential cross sections. Nuclear Physics A, 1998, 631, 715-719.	1.5	3
205	Universal scaling in BCS superconductivity in three dimensions in non-s waves. European Physical Journal B, 1998, 2, 31-36.	1.5	12
206	Close-coupling calculations of positronium formation in positron-helium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 3057-3063.	1.5	15
207	Positronium impact excitation of hydrogen molecule to B and b states. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L315-L320.	1.5	28
208	Effect of electron exchange in positronium-hydrogen scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 3147-3154.	1.5	24
209	Universal scaling in Bardeen-Cooper-Schrieffer superconductivity in two dimensions in non-s waves. Journal of Physics Condensed Matter, 1998, 10, 135-144.	1.8	10
210	Positronium scattering by a hydrogen molecule including exchange. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L737-L743.	1.5	27
211	Two phase transitions in (s + id)-wave Bardeen - Cooper - Schrieffer superconductivity. Journal of Physics Condensed Matter, 1998, 10, L319-L325.	1.8	5
212	Differential cross sections for target excitation and positronium formation in positron-helium scattering. Physical Review A, 1998, 57, 984-989.	2.5	9
213	Dimensional versus cut-off renormalization and the nucleon-nucleon interaction. Physical Review C, 1998, 58, 1913-1920.	2.9	4
214	Resonance in positron - helium scattering at medium energy. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L81-L85.	1.5	14
215	Quantization rules for bound states in quantum wells. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 5987-5997.	1.5	7
216	Application of renormalization to potential scattering. Journal of Physics A, 1997, 30, 4687-4700.	1.6	11

#	Article	IF	CITATIONS
217	Renormalization in non-relativistic quantum mechanics. Journal of Physics A, 1997, 30, 6553-6564.	1.6	32
218	Scaling in the BCS to Bose crossover problem in different partial waves. Physical Review B, 1997, 55, 1110-1113.	3.2	18
219	Variational iterative method for scattering problems. Chemical Physics Letters, 1996, 258, 595-600.	2.6	1
220	Positron-helium scattering at medium energies. Chemical Physics Letters, 1996, 262, 460-464.	2.6	15
221	Positronium–alkali-ion scattering in the close-coupling approximation. Physical Review A, 1996, 53, 3340-3343.	2.5	6
222	Lattice discretization in quantum scattering. Journal of Physics A, 1996, 29, 7157-7163.	1.6	13
223	Positron-helium scattering in the close coupling approach. Chemical Physics Letters, 1995, 239, 344-348.	2.6	16
224	Iterative numerical solution of scattering problems. Chemical Physics Letters, 1995, 241, 477-483.	2.6	2
225	Complex Kohn variational principle for two-nucleon bound-state and scattering. AIP Conference Proceedings, 1995, , .	0.4	Ο
226	Relativistic effect on low-energy nucleon-deuteron scattering. Physical Review C, 1995, 51, 70-77.	2.9	1
227	Formation and maintenance of complex systems. Journal of Physics A, 1995, 28, L613-L618.	1.6	7
228	Perturbative Renormalization in Quantum Few-Body Problems. Physical Review Letters, 1995, 74, 487-491.	7.8	85
229	Renormalization Group in Potential Scattering. Physical Review Letters, 1995, 74, 4572-4575.	7.8	66
230	Theoretical prevision for the low-energy3S1â^'3D1mixing parameters. Physical Review C, 1994, 50, R2684-R2686.	2.9	2
231	Model for asymptoticD-state parameters of light nuclei: Application toHe4. Physical Review C, 1994, 50, 822-830.	2.9	3
232	The effect of positronium formation in e+î—,Li and e+î—,Na scattering. Chemical Physics Letters, 1994, 222, 302-308.	2.6	15
233	The effect of positronium formation in positron—alkali-atom scattering. Chemical Physics Letters, 1994, 227, 429-435.	2.6	8
234	Relativistic Three-Particle Dynamical Equations I. Theoretical Development. Annals of Physics, 1994, 235, 77-102.	2.8	3

#	Article	IF	CITATIONS
235	Relativistic Three-Particle Dynamical Equations II. Application to the Trinucleon System. Annals of Physics, 1994, 235, 103-114.	2.8	1
236	Shape-independent expansion for the 3S1 â^ 3D1 mixing parameter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 318, 14-18.	4.1	5
237	Model independence of scattering of three identical bosons in two dimensions. Physical Review A, 1993, 47, 1093-1100.	2.5	31
238	Dynamical scaling in fragmentation. Journal of Applied Physics, 1993, 74, 7577-7587.	2.5	8
239	Relativistic three-particle scattering equations. Physical Review C, 1993, 48, 2105-2107.	2.9	2
240	Robust Scaling in Fragmentation from d = 1 to 5. Europhysics Letters, 1992, 18, 119-124.	2.0	15
241	Low-energy behavior of few-particle scattering amplitudes in two dimensions. Physical Review A, 1992, 46, 3967-3977.	2.5	10
242	Unusually strong attraction in the presence of continuum bound state. Physical Review C, 1992, 46, 1612-1616.	2.9	5
243	Three-body collapse for Tabakin potentials and the Thomas effect. Physical Review C, 1992, 46, 471-476.	2.9	14
244	Complex Kohn variational principle for the solution of Lippmann-Schwinger equations. Journal of Computational Physics, 1992, 103, 415-421.	3.8	2
245	Born-Oppenheimer and hyperspherical adiabatic approximations in the nuclear- and molecular-mass limits. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1992, 107, 77-89.	0.2	7
246	Anomalies of complex variational phase shifts. Chemical Physics Letters, 1992, 189, 340-345.	2.6	3
247	Anomalies of variational phase shifts. Chemical Physics Letters, 1991, 181, 435-440.	2.6	5
248	Anomalies of the Schwinger variational phase shifts. Physical Review A, 1990, 42, 6-9.	2.5	10
249	Analytical model for the triton asymptoticD-state parameters. Physical Review C, 1990, 42, 128-137.	2.9	3
250	Wentzel-Kramers-Brillouin-type approximations for bound states in short-range nonsingular potentials. Physical Review C, 1989, 40, 2276-2281.	2.9	3
251	Universality of off-shell two-body scattering amplitudes at negative and positive energies:Γ-matrix formalism. Physical Review A, 1989, 40, 2270-2275.	2.5	2
252	Efimov and Thomas effects and the model dependence of three-particle observables in two and three dimensions. Physical Review A, 1988, 37, 3666-3673.	2.5	75

#	Article	IF	CITATIONS
253	Unified treatment of bound-state and scattering problems. Physical Review C, 1988, 37, 41-44.	2.9	9
254	Possibility of new information about the N-N force in N-d polarization observables. Physical Review C, 1988, 37, 949-953.	2.9	7
255	Sum rule approach to the study of statistical decay properties of nuclear giant resonances. Physical Review C, 1988, 37, 2332-2333.	2.9	0
256	Effect of polarization potential in proton-deuteron scattering. Physical Review C, 1988, 37, 1376-1378.	2.9	6
257	Estimate of the triton asymptoticDtoSratio. Physical Review C, 1988, 37, 364-369.	2.9	10
258	Lippmann-Schwinger equation in a soluble three-body model: Surface integrals at infinity. Physical Review C, 1987, 35, 415-429.	2.9	8
259	Trinucleon system in a two-body model: Coulomb effect on bound and scattering states. Physical Review C, 1987, 35, 441-447.	2.9	39
260	Class of Jost-like functions. Physical Review C, 1987, 35, 1991-1998.	2.9	4
261	Unified formulation of variational approaches and separable expansions for the solution of scattering equations. Physical Review C, 1987, 36, 1275-1285.	2.9	13
262	Quantum scattering in two dimensions. American Journal of Physics, 1986, 54, 362-367.	0.7	210
263	Surface integrals in the derivation of the Lippmann-Schwinger equation for many-particle systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 115, 1-5.	2.1	7
264	Exit doorways and intermediate structure resonances. Physical Review C, 1986, 33, 471-480.	2.9	0
265	Effectiveâ€range theory in two dimensions. Journal of Chemical Physics, 1986, 85, 5580-5583.	3.0	21
266	Iteration-subtraction method for scattering equations compared with continued fractions method. Physical Review C, 1986, 33, 467-470.	2.9	5
267	Alternative interpretations of the many-particle Lippmann-Schwinger equation. Physical Review C, 1986, 34, 1-13.	2.9	9
268	Decay Properties of Giant Multipole Resonances: Collective Doorways and Statistical Doorways. Physical Review Letters, 1986, 57, 1998-2001.	7.8	28
269	Coulomb effect on effective range expansion for systems with small scattering length. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 113, 1-4.	2.1	2
270	Connections among different multistep compound reaction theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 160, 9-12.	4.1	0

#	Article	IF	CITATIONS
271	Discretizing the three-body continuum: Interpretation of non-breakup results. Annals of Physics, 1985, 163, 149-166.	2.8	6
272	Statistical theory of multistep compound reactions. Physical Review C, 1985, 31, 1220-1232.	2.9	2
273	Nonuniqueness of solutions to the Lippmann-Schwinger equation in a soluble three-body model. Physical Review A, 1985, 31, 2005-2019.	2.5	12
274	Nonorthogonality, resonating group method, and multiparticle collision theory. Physical Review C, 1984, 30, 780-788.	2.9	4
275	New class of antisymmetrized optical potentials. Physical Review C, 1984, 29, 1628-1644.	2.9	7
276	Correlation among low-energy three-nucleon observables. Physical Review C, 1984, 30, 31-34.	2.9	13
277	Nonuniqueness of solutions of three-body Lippmann-Schwinger equations in a soluble model. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 105, 203-208.	2.1	5
278	Parametrization of strongly overlapping nuclear resonances. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1984, 148, 1-4.	4.1	1
279	A new class of antisymmetrized optical potentials. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1984, 136, 5-9.	4.1	7
280	The Phillips and the Girard-Fuda plot for the trinucleon system. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 132, 257-259.	4.1	18
281	Effective range expansion for systems with small scattering length: Pion-pion and neutron-deuteron systems. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 126, 489-492.	4.1	6
282	Effective range expansion for the pion-pion system. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 123, 452-454.	4.1	2
283	On resolvent operators in scattering theory. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 95, 21-22.	2.1	8
284	Unified theory of nuclear reactions. Physical Review C, 1983, 27, 2543-2547.	2.9	3
285	Statistical Theory of Multistep Compound Reactions Revisited. Physical Review Letters, 1983, 51, 1834-1837.	7.8	3
286	Doorways and multistep compound reactions. Physical Review C, 1983, 28, 2013-2021.	2.9	1
287	Separable expansions for virtual states and resonances. Physical Review C, 1983, 27, 1826-1829.	2.9	8
288	Exit doorway states in nuclear reactions. Physical Review C, 1983, 27, 218-231.	2.9	5

17

#	Article	IF	CITATIONS
289	Method for resonances and virtual states: Efimov virtual states. Physical Review C, 1982, 26, 77-82.	2.9	43
290	Discrete and continuum spurious spectrum of distorted and reduced scattering equations. Physical Review C, 1982, 25, 128-135.	2.9	2
291	Efimov effect in the three-nucleon system. Physical Review C, 1982, 26, 83-86.	2.9	32
292	Low-energy direct nuclear reactions. Physical Review C, 1982, 25, 118-127.	2.9	3
293	Effective range expansion revisited. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1982, 119, 245-248.	4.1	7
294	Alternative to Padé technique for iterative solution of integral equations. Journal of Computational Physics, 1981, 43, 382-393.	3.8	1
295	Iterative solution of homogeneous integral equations. Journal of Computational Physics, 1981, 43, 189-193.	3.8	3
296	Four-body Efimov effect in a Born-Oppenheimer model. Physical Review D, 1981, 24, 416-425.	4.7	19
297	Usefulness of bound-state approximations in reaction theory. Physical Review C, 1981, 24, 379-386.	2.9	5
298	Correlation among low-energy four-nucleon observables. Physical Review C, 1981, 24, 16-28.	2.9	3
299	Iterative solution of bound-state equations. Physical Review C, 1981, 24, 1186-1190.	2.9	12
300	Alternative to Padé technique for solving scattering integral equations. Physical Review C, 1981, 24, 43-55.	2.9	12
301	Exit Doorway State inC12(O16,Be8)Ne20. Physical Review Letters, 1981, 46, 1379-1383.	7.8	2
302	Method for scattering equations. II. Iterative solution. Physical Review C, 1980, 22, 28-35.	2.9	27
303	Iterative solution of multichannel three-body equations. Physical Review C, 1980, 22, 2359-2368.	2.9	15
304	Comment on an alternative to the resonating group method. Physical Review C, 1980, 22, 309-313.	2.9	7
305	Multiple scattering formalism for the effective interaction. Physical Review C, 1980, 22, 787-795.	2.9	0
306	Nonsingular representation of three-body equations. Physical Review D, 1980, 21, 2251-2259.	4.7	2

#	Article	IF	CITATIONS
307	Three-body Lippmann-Schwinger equations. Physical Review C, 1980, 21, 54-57.	2.9	8
308	Spurious solutions in few-body equations. Physical Review C, 1979, 19, 616-630.	2.9	24
309	Cluster model in reaction theory. Physical Review C, 1979, 19, 325-334.	2.9	0
310	Separable expansions to local potentials in a quasipotential approach. Physical Review C, 1979, 19, 1655-1659.	2.9	0
311	Four-particle scattering with three-particle interactions. Physical Review C, 1979, 19, 26-31.	2.9	1
312	Method for scattering equations. Physical Review C, 1979, 19, 1729-1732.	2.9	22
313	Spurious solutions in few-body equations. II. Numerical investigations. Physical Review C, 1979, 19, 2121-2126.	2.9	8
314	Four-hadron isobar model. Physical Review D, 1978, 18, 4250-4263.	4.7	3
315	Minimal four-body equations. Physical Review C, 1978, 17, 903-915.	2.9	4
316	Singularities in four-body final-state amplitudes. Physical Review D, 1978, 18, 4264-4270.	4.7	3
317	Nucleon-nucleon interaction in nuclear matter. Physical Review C, 1977, 16, 777-783.	2.9	1
318	Analysis of four-body final states: Nonrelativistic. Physical Review C, 1977, 15, 498-504.	2.9	4
319	Relativistic analysis of four-body final states. Nuclear Physics A, 1977, 287, 451-460.	1.5	4
320	Separable expansions for local potentials with Coulomb interactions. Physical Review C, 1976, 14, 782-788.	2.9	2
321	Separable expansion of the t-matrix in the 3S1-3D1 channel. Nuclear Physics A, 1975, 251, 297-304.	1.5	17
322	Separable operator expansions for the t-matrix. Nuclear Physics A, 1975, 241, 429-442.	1.5	56
323	Separable expansion of thetmatrix with analytic form factors. Physical Review C, 1975, 11, 1133-1140.	2.9	73
324	Method for three-body equations. Physical Review C, 1975, 12, 1152-1157.	2.9	6

#	Article	IF	CITATIONS
325	Singularities in three-body final-state amplitudes. Physical Review D, 1974, 9, 1467-1475.	4.7	15
326	Method for Lippmann-Schwinger equations. Nuclear Physics A, 1974, 235, 352-360.	1.5	26
327	New separable expansion for local potentials. Physical Review C, 1974, 10, 1623-1628.	2.9	33
328	Low-Energy Behavior of the Few-Body Scattering Amplitudes. Physical Review D, 1973, 8, 1195-1204.	4.7	5
329	Parametrization of the Three-BodyDFunction. II. Physical Review C, 1972, 6, 1484-1495.	2.9	11
330	Parameterization of the three-body d-function. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1972, 40, 11-14.	4.1	5
331	Low-Temperature Behavior of the Quantum Cluster Coefficients. Physical Review Letters, 1971, 27, 485-487.	7.8	23