Antonis Chatzinotas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2580391/publications.pdf Version: 2024-02-01

ΔΝΤΟΝΙς CHATZINOTAS

#	Article	IF	CITATIONS
1	Transport of marine tracer phage particles in soil. Science of the Total Environment, 2022, 814, 152704.	8.0	2
2	Mycelia-Assisted Isolation of Non-Host Bacteria Able to Co-Transport Phages. Viruses, 2022, 14, 195.	3.3	3
3	Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. ISME Journal, 2022, 16, 1275-1283.	9.8	24
4	Nutritional interâ€dependencies and a carbazoleâ€dioxygenase are key elements of a bacterial consortium relying on a <i>Sphingomonas</i> for the degradation of the fungicide thiabendazole. Environmental Microbiology, 2022, 24, 5105-5122.	3.8	9
5	Tracking, targeting, and conserving soil biodiversity. Science, 2021, 371, 239-241.	12.6	151
6	Beyond nitrogen: phosphorus – estimating the minimum niche dimensionality for resource competition between phytoplankton. Ecology Letters, 2021, 24, 761-771.	6.4	16
7	Mining Synergistic Microbial Interactions: A Roadmap on How to Integrate Multi-Omics Data. Microorganisms, 2021, 9, 840.	3.6	8
8	Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Science of the Total Environment, 2021, 769, 144324.	8.0	24
9	OrtSuite: from genomes to prediction of microbial interactions within targeted ecosystem processes. Life Science Alliance, 2021, 4, e202101167.	2.8	4
10	Community and single cell analyses reveal complex predatory interactions between bacteria in high diversity systems. Nature Communications, 2021, 12, 5481.	12.8	14
11	Phage strategies facilitate bacterial coexistence under environmental variability. PeerJ, 2021, 9, e12194.	2.0	14
12	Near streambed flow shapes microbial guilds within and across trophic levels in fluvial biofilms. Limnology and Oceanography, 2020, 65, 2261-2277.	3.1	16
13	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	12.8	192
14	Environmental Factors and Host Microbiomes Shape Host–Pathogen Dynamics. Trends in Parasitology, 2020, 36, 616-633.	3.3	74
15	Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos, 2020, 129, 445-456.	2.7	33
16	Prospects for Integrating Disturbances, Biodiversity and Ecosystem Functioning Using Microbial Systems. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	2
17	Diversity and coexistence are influenced by timeâ€dependent species interactions in a predator–prey system. Ecology Letters, 2020, 23, 983-993.	6.4	39
18	Intraguild Predation: Predatory Networks at the Microbial Scale. , 2020, , 65-87.		3

ANTONIS CHATZINOTAS

#	Article	IF	CITATIONS
19	Ecological Functions of Agricultural Soil Bacteria and Microeukaryotes in Chitin Degradation: A Case Study. Frontiers in Microbiology, 2019, 10, 1293.	3.5	52
20	Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Scientific Reports, 2019, 9, 9650.	3.3	42
21	Temperature and stoichiometric dependence of phytoplankton traits. Ecology, 2019, 100, e02875.	3.2	12
22	Mycelial Effects on Phage Retention during Transport in a Microfluidic Platform. Environmental Science & Technology, 2019, 53, 11755-11763.	10.0	19
23	Bacteria and microeukaryotes are differentially segregated in sympatric wastewater microhabitats. Environmental Microbiology, 2019, 21, 1757-1770.	3.8	13
24	Capacity of Ecosystems to Degrade Anthropogenic Chemicals. , 2019, , 179-182.		0
25	Evaluation of Sequencing Library Preparation Protocols for Viral Metagenomic Analysis from Pristine Aquifer Groundwaters. Viruses, 2019, 11, 484.	3.3	27
26	Complete genome sequence of Pseudoalteromonas virus vB_PspP-H6/1 that infects Pseudoalteromonas sp. strain H6. Marine Genomics, 2019, 47, 100667.	1.1	2
27	Have an Ion on It: The Life ycle of <i>Bdellovibrio bacteriovorus</i> Viewed by Heliumâ€Ion Microscopy. Advanced Biology, 2019, 3, e1800250.	3.0	17
28	Changes of the Specific Infectivity of Tracer Phages during Transport in Porous Media. Environmental Science & Technology, 2018, 52, 3486-3492.	10.0	5
29	Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance. Microbial Ecology, 2018, 76, 1041-1052.	2.8	18
30	Interactions between predation and disturbances shape prey communities. Scientific Reports, 2018, 8, 2968.	3.3	21
31	People, pollution and pathogens – Global change impacts in mountain freshwater ecosystems. Science of the Total Environment, 2018, 622-623, 756-763.	8.0	99
32	Rhizosphere Protists Change Metabolite Profiles in Zea mays. Frontiers in Microbiology, 2018, 9, 857.	3.5	20
33	Molecular quantification and differentiation of Candida species in biological specimens of patients with liver cirrhosis. PLoS ONE, 2018, 13, e0197319.	2.5	33
34	Where less may be more: how the rare biosphere pulls ecosystems strings. ISME Journal, 2017, 11, 853-862.	9.8	857
35	Isolation of a bacterial consortium able to degrade the fungicide thiabendazole: the key role of a Sphingomonas phylotype. Applied Microbiology and Biotechnology, 2017, 101, 3881-3893.	3.6	23
36	Soil protistology rebooted: 30 fundamental questions to start with. Soil Biology and Biochemistry, 2017, 111, 94-103.	8.8	130

ANTONIS CHATZINOTAS

#	Article	IF	CITATIONS
37	Killing the killer: predation between protists and predatory bacteria. FEMS Microbiology Letters, 2017, 364, .	1.8	29
38	Transient recovery dynamics of a predator–prey system under press and pulse disturbances. BMC Ecology, 2017, 17, 13.	3.0	13
39	Complete genome sequence of Pseudoalteromonas phage vB_PspS-H40/1 (formerly H40/1) that infects Pseudoalteromonas sp. strain H40 and is used as biological tracer in hydrological transport studies. Standards in Genomic Sciences, 2017, 12, 20.	1.5	8
40	Complete Genome Sequence of Alteromonas Virus vB_AspP-H4/4. Genome Announcements, 2017, 5, .	0.8	10
41	A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	28
42	Soil Viral Communities Vary Temporally and along a Land Use Transect as Revealed by Virus-Like Particle Counting and a Modified Community Fingerprinting Approach (fRAPD). Frontiers in Microbiology, 2017, 8, 1975.	3.5	47
43	Genetic diversity in chrysophytes: Comparison of different gene markers. Fottea, 2017, 17, 209-221.	0.9	15
44	Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecology and Evolution, 2016, 6, 7387-7396.	1.9	183
45	Marine Phages As Tracers: Effects of Size, Morphology, and Physico–Chemical Surface Properties on Transport in a Porous Medium. Environmental Science & Technology, 2016, 50, 12816-12824.	10.0	22
46	Tradeâ€off between taxon diversity and functional diversity in European lake ecosystems. Molecular Ecology, 2016, 25, 5876-5888.	3.9	24
47	Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152724.	2.6	47
48	Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 2016, 220, 63-72.	4.7	272
49	Studying Protistan Communities in Hydrocarbon-Contaminated Environments. Springer Protocols, 2015, , 225-252.	0.3	1
50	The extent of functional redundancy changes as species' roles shift in different environments. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14888-14893.	7.1	126
51	The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient. Science of the Total Environment, 2015, 537, 33-42.	8.0	20
52	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
53	Multiple micro-predators controlling bacterial communities in the environment. Current Opinion in Biotechnology, 2014, 27, 185-190.	6.6	81
54	Phylogenetic and Functional Diversity Within Toluene-Degrading, Sulphate-Reducing Consortia Enriched from a Contaminated Aquifer. Microbial Ecology, 2014, 68, 222-234.	2.8	30

ANTONIS CHATZINOTAS

#	Article	IF	CITATIONS
55	Primer pairs for the specific environmental detection and T-RFLP analysis of the ubiquitous flagellate taxa Chrysophyceae and Kinetoplastea. Journal of Microbiological Methods, 2014, 100, 8-16.	1.6	10
56	Evaluating T-RFLP protocols to sensitively analyze the genetic diversity and community changes of soil alkane degrading bacteria. European Journal of Soil Biology, 2014, 65, 107-113.	3.2	9
57	Application of Qualitative and Quantitative Real-Time PCR, Direct Sequencing, and Terminal Restriction Fragment Length Polymorphism Analysis for Detection and Identification of Polymicrobial 16S rRNA Genes in Ascites. Journal of Clinical Microbiology, 2014, 52, 1754-1757.	3.9	14
58	Effects of longâ€ŧerm differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Molecular Ecology, 2014, 23, 3341-3355.	3.9	163
59	Evaluating the Assignment of <i>alkB</i> Terminal Restriction Fragments and Sequence Types to Distinct Bacterial Taxa. Applied and Environmental Microbiology, 2013, 79, 3129-3132.	3.1	10
60	Alkane-degrading bacteria at the soil-litter interface: comparing isolates with T-RFLP-based community profiles. FEMS Microbiology Ecology, 2013, 86, 45-58.	2.7	28
61	Diversity of protists and bacteria determines predation performance and stability. ISME Journal, 2013, 7, 1912-1921.	9.8	93
62	Assimilation of Cellulose-Derived Carbon by Microeukaryotes in Oxic and Anoxic Slurries of an Aerated Soil. Applied and Environmental Microbiology, 2013, 79, 5777-5781.	3.1	16
63	Predator richness increases the effect of prey diversity on prey yield. Nature Communications, 2012, 3, 1305.	12.8	116
64	Field Testing of Arsenic in Groundwater Samples of Bangladesh Using a Test Kit Based on Lyophilized Bioreporter Bacteria. Environmental Science & Technology, 2012, 46, 3281-3287.	10.0	70
65	Plant litter and soil type drive abundance, activity and community structure of <i>alkB</i> harbouring microbes in different soil compartments. ISME Journal, 2012, 6, 1763-1774.	9.8	45
66	Use of mycelia as paths for the isolation of contaminantâ€degrading bacteria from soil. Microbial Biotechnology, 2012, 5, 142-148.	4.2	35
67	Evaluation of FT-IR spectroscopy as a tool to quantify bacteria in binary mixed cultures. Journal of Microbiological Methods, 2011, 86, 182-187.	1.6	12
68	Visualisation of gradients in arsenic concentrations around individual roots of Zea mays L. using agar-immobilized bioreporter bacteria. Plant and Soil, 2010, 329, 295-306.	3.7	13
69	Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil. Science of the Total Environment, 2010, 408, 1221-1225.	8.0	42
70	TAXONOMIC AND ECOLOGICAL CHARACTERIZATION OF STOMATOCYSTS OF SPUMELLA-LIKE FLAGELLATES (CHRYSOPHYCEAE)1. Journal of Phycology, 2010, 46, 868-881.	2.3	46
71	Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining <i>in situ</i> microcosms and stable isotope probing techniques. FEMS Microbiology Ecology, 2010, 71, 237-246.	2.7	63
72	Functional characterization of an anaerobic benzeneâ€degrading enrichment culture by DNA stable isotope probing. Environmental Microbiology, 2010, 12, 401-411.	3.8	103

#	Article	IF	CITATIONS
73	Development of a Fatty Acid and RNA Stable Isotope Probing-Based Method for Tracking Protist Grazing on Bacteria in Wastewater. Applied and Environmental Microbiology, 2010, 76, 8222-8230.	3.1	17
74	Short-term disturbance of a grazer has long-term effects on bacterial communities—Relevance of trophic interactions for recovery from pesticide effects. Aquatic Toxicology, 2010, 99, 205-211.	4.0	14
75	Evaluation of Single-Nucleotide Primer Extension for Detection and Typing of Phylogenetic Markers Used for Investigation of Microbial Communities. Applied and Environmental Microbiology, 2009, 75, 2850-2860.	3.1	13
76	Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment. Science of the Total Environment, 2009, 407, 2996-3003.	8.0	60
77	Genetic Diversity of Eukaryotic Plankton Assemblages in Eastern Tibetan Lakes Differing by their Salinity and Altitude. Microbial Ecology, 2009, 58, 569-581.	2.8	51
78	Optimization of preservation conditions of As (III) bioreporter bacteria. Applied Microbiology and Biotechnology, 2009, 82, 785-792.	3.6	18
79	The single-nucleotide primer extension (SNuPE) method for the multiplex detection of various DNA sequences: from detection of point mutations to microbial ecology. Biochemical Society Transactions, 2009, 37, 454-459.	3.4	19
80	SSU rRNA gene variation resolves population heterogeneity and ecophysiological differentiation within a morphospecies (Stramenopiles , Chrysophyceae). Limnology and Oceanography, 2009, 54, 171-181.	3.1	30
81	Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbiology Ecology, 2008, 63, 107-117.	2.7	57
82	Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microbial Biotechnology, 2008, 1, 149-157.	4.2	45
83	Improved coverage of fungal diversity in polluted groundwaters by semi-nested PCR. Science of the Total Environment, 2008, 406, 324-330.	8.0	11
84	Single-Nucleotide Primer Extension Assay for Detection and Sequence Typing of " <i>Dehalococcoides</i> ―spp. Applied and Environmental Microbiology, 2008, 74, 300-304.	3.1	13
85	Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil. FEMS Microbiology Ecology, 2007, 62, 365-373.	2.7	84
86	Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site. Soil Biology and Biochemistry, 2007, 39, 139-148.	8.8	49
87	Andalucia (n. gen.)-the Deepest Branch Within Jakobids (Jakobida; Excavata), Based on Morphological and Molecular Study of a New Flagellate from Soil. Journal of Eukaryotic Microbiology, 2006, 53, 112-120.	1.7	53
88	Molecular Phylogeny of Litostome Ciliates (Ciliophora, Litostomatea) with Emphasis on Free-Living Haptorian Genera. Protist, 2006, 157, 261-278.	1.5	71
89	Evidence for Geographic Isolation and Signs of Endemism within a Protistan Morphospecies. Applied and Environmental Microbiology, 2006, 72, 5159-5164.	3.1	67
90	High diversity of the 'Spumella-like' flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environmental Microbiology, 2005, 7, 685-697.	3.8	151

#	Article	IF	CITATIONS
91	Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiology Ecology, 2004, 48, 273-283.	2.7	135
92	Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environmental Microbiology, 2003, 5, 896-907.	3.8	234
93	Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Archives of Microbiology, 2001, 175, 270-281.	2.2	55
94	Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridization. FEMS Microbiology Ecology, 2001, 38, 123-131.	2.7	43
95	Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridization. FEMS Microbiology Ecology, 2001, 38, 123-131.	2.7	5
96	Analysis of Broad-scale Differences in Microbial Community Composition of Two Pristine Forest Soils. Systematic and Applied Microbiology, 1998, 21, 579-587.	2.8	75
97	Analysis of bacterial community structure in bulk soil by in situ hybridization. Archives of Microbiology, 1997, 168, 185-192.	2.2	219
98	Microbial diversity-ecosystem function relationships across environmental gradients. Research Ideas and Outcomes, 0, 6, .	1.0	8