Gongfang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2580355/publications.pdf Version: 2024-02-01

CONCEANC HU

#	Article	IF	CITATIONS
1	Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex. Journal of the American Chemical Society, 2022, 144, 8449-8453.	13.7	31
2	Spectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts. Journal of the American Chemical Society, 2022, 144, 8454-8459.	13.7	25
3	Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts. ACS Catalysis, 2021, 11, 10084-10094.	11.2	4
4	Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity. Polyhedron, 2021, 203, 115182.	2.2	7
5	Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorganic Chemistry, 2021, 60, 14349-14356.	4.0	12
6	Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution. Inorganica Chimica Acta, 2021, 526, 120507.	2.4	2
7	Heterogeneous Nature of Electrocatalytic CO/CO ₂ Reduction by Cobalt Phthalocyanines. ChemSusChem, 2020, 13, 6296-6299.	6.8	37
8	Diazo coupling for surface attachment of small molecules to TiO ₂ nanoparticles. Chemical Communications, 2020, 56, 9340-9343.	4.1	5
9	Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP). New Journal of Chemistry, 2020, 44, 21293-21308.	2.8	7
10	Surprisingly big linker-dependence of activity and selectivity in CO ₂ reduction by an iridium(<scp>i</scp>) pincer complex. Chemical Communications, 2020, 56, 9126-9129.	4.1	10
11	Strongly Coupled Phenazine–Porphyrin Dyads: Light-Harvesting Molecular Assemblies with Broad Absorption Coverage. ACS Applied Materials & Interfaces, 2019, 11, 8000-8008.	8.0	36
12	Metal–Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy. Journal of the American Chemical Society, 2019, 141, 9793-9797.	13.7	44
13	Synthesis of arrays containing porphyrin, chlorin, and perylene-imide constituents for panchromatic light-harvesting and charge separation. RSC Advances, 2018, 8, 23854-23874.	3.6	22
14	Red and near-infrared fluorophores inspired by chlorophylls: consideration of practical brightness in multicolor flow cytometry and biomedical sciences. , 2018, , .		1
15	Synthesis of tailored hydrodipyrrins and their examination in directed routes to bacteriochlorins and tetradehydrocorrins. New Journal of Chemistry, 2017, 41, 11170-11189.	2.8	10
16	Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) Arrays—Interplay of Orbital Mixing and Configuration Interaction. Journal of the American Chemical Society, 2017, 139, 17547-17564.	13.7	34
17	Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from Bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks. New Journal of Chemistry, 2016, 40, 8032-8052.	2.8	38
18	Tuning the Electronic Structure and Properties of Perylene–Porphyrin–Perylene Panchromatic Absorbers. Journal of Physical Chemistry A, 2016, 120, 7434-7450.	2.5	12

Gongfang Hu

#	Article	IF	CITATIONS
19	9,11,12,14â€Tetraaryldibenzo[<i>f</i> , <i>h</i>]imidazo[1,2â€ <i>b</i>]isoquinolines and Their Emission Responses to Solvent Polarity, Acidity, and Nitroarenes. European Journal of Organic Chemistry, 2013, 2013, 7320-7327.	2.4	3
20	Comparison of the growth and degradation of poly(glycolic acid) and poly(ε-caprolactone) brushes. Journal of Polymer Science Part A, 2013, 51, 4643-4649.	2.3	12
21	Oligo(3,6-phenanthrene ethynylenes): Synthesis, Characterization, and Photoluminescence. Journal of Organic Chemistry, 2013, 78, 3001-3008.	3.2	32
22	An efficient synthesis of heptaaryldipyrromethenes from tetraarylcyclopentadienones and ammonium acetate and their extension to the corresponding BODIPYs. Organic and Biomolecular Chemistry, 2012, 10, 8848.	2.8	15