Jiwon Bang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2578870/publications.pdf

Version: 2024-02-01

		430874	345221
36	1,660 citations	18	36
papers	citations	h-index	g-index
36	36	36	3149
30	30	30	3149
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface engineering of inorganic nanoparticles for imaging and therapy. Advanced Drug Delivery Reviews, 2013, 65, 622-648.	13.7	305
2	Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO ₂ Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes. Chemistry of Materials, 2010, 22, 5636-5643.	6.7	227
3	ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties. Chemistry of Materials, 2010, 22, 233-240.	6.7	173
4	Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr ₃ and CsPb(Br/I) ₃ Quantum Dots at Low Temperature. Journal of Physical Chemistry C, 2017, 121, 26054-26062.	3.1	120
5	Inverted planar perovskite solar cells with dopant free hole transporting material: Lewis base-assisted passivation and reduced charge recombination. Journal of Materials Chemistry A, 2017, 5, 13220-13227.	10.3	96
6	Bifacial Passivation of Organic Hole Transport Interlayer for NiO <i>_x</i> àêBased pâ€iâ€n Perovskite Solar Cells. Advanced Science, 2019, 6, 1802163.	11.2	92
7	Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-Il Quantum Dots. Journal of Physical Chemistry C, 2011, 115, 436-442.	3.1	58
8	Evidence for an Additional Metastatic Route: In Vivo Imaging of Cancer Cells in the Primo-Vascular System Around Tumors and Organs. Molecular Imaging and Biology, 2011, 13, 471-480.	2.6	56
9	Electrospun polymer/quantum dot composite fibers as down conversion phosphor layers for white light-emitting diodes. RSC Advances, 2014, 4, 11585.	3.6	50
10	Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction. Nano Letters, 2020, 20, 6263-6271.	9.1	50
11	Multiplexed near-infrared in vivo imaging complementarily using quantum dots and upconverting NaYF4:Yb3+,Tm3+ nanoparticles. Chemical Communications, 2011, 47, 8022.	4.1	43
12	Strategy for Synthesizing Quantum Dot-Layered Double Hydroxide Nanocomposites and Their Enhanced Photoluminescence and Photostability. Langmuir, 2013, 29, 441-447.	3.5	40
13	Spectral Switching of Type-II Quantum Dots by Charging. Journal of Physical Chemistry C, 2009, 113, 6320-6323.	3.1	39
14	Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Nanoscale, 2019, 11, 10463-10471.	5.6	38
15	Layer-by-Layer Quantum Dot Assemblies for the Enhanced Energy Transfers and Their Applications toward Efficient Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 3442-3447.	4.6	36
16	Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Offâ ϵ "Onâ ϵ "Off Cycles for Multicolor Patterning and Super-Resolution. Journal of the American Chemical Society, 2017, 139, 7603-7615.	13.7	24
17	Photoswitchable quantum dots by controlling the photoinduced electron transfers. Chemical Communications, 2012, 48, 9174.	4.1	20
18	CulnS ₂ /CdS-Heterostructured Nanotetrapods by Seeded Growth and Their Photovoltaic Properties. ACS Applied Nano Materials, 2018, 1, 2449-2454.	5.0	20

#	Article	IF	CITATIONS
19	Tunable Optical Transition in 2H-MoS ₂ via Direct Electrochemical Engineering of Vacancy Defects and Surface S–C Bonds. ACS Applied Materials & Interfaces, 2020, 12, 40870-40878.	8.0	19
20	Formation and Stepwise Self-Assembly of Cadmium Chalcogenide Nanocrystals to Colloidal Supra-Quantum Dots and the Superlattices. Chemistry of Materials, 2016, 28, 5329-5335.	6.7	17
21	In vivoimaging of cancer cells with electroporation of quantum dots and multispectral imaging. Journal of Applied Physics, 2010, 107, 124702.	2.5	16
22	Preparation of Waterâ€Soluble CsPbBr ₃ Perovskite Quantum Dot Nanocomposites via Encapsulation into Amphiphilic Copolymers. ChemistrySelect, 2018, 3, 11320-11325.	1.5	16
23	Growth of Monolayer and Multilayer MoS2 Films by Selection of Growth Mode: Two Pathways via Chemisorption and Physisorption of an Inorganic Molecular Precursor. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 6805-6812.	8.0	16
24	Pattern formation of metal–oxide hybrid nanostructures via the self-assembly of di-block copolymer blends. Nanoscale, 2019, 11, 18559-18567.	5.6	15
25	Highly luminescent and stable green-emitting In(Zn,Ga)P/ZnSeS/ZnS small-core/thick-multishell quantum dots. Journal of Luminescence, 2019, 205, 555-559.	3.1	14
26	Rapid and Cyclable Morphology Transition of High-χ Block Copolymers via Solvent Vapor-Immersion Annealing for Nanoscale Lithography. ACS Applied Nano Materials, 2019, 2, 1294-1301.	5.0	11
27	Fabrication of Visible-Light Sensitized ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots. Journal of the Korean Ceramic Society, 2018, 55, 510-514.	2.3	10
28	Synthesis of near-infrared-emitting type-II In(Zn)P/ZnTe (core/shell) quantum dots. Journal of Alloys and Compounds, 2021, 886, 161233.	5.5	9
29	Effects of Zn impurity on the photoluminescence properties of InP quantum dots. Journal of Luminescence, 2022, 245, 118647.	3.1	6
30	Heterojunction Area-Controlled Inorganic Nanocrystal Solar Cells Fabricated Using Supra-Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43768-43773.	8.0	5
31	Assembly Mechanism and the Morphological Analysis of the Robust Superhydrophobic Surface. Coatings, 2019, 9, 472.	2.6	5
32	Facile in situ Synthesis of Agâ€Doped CdSe Supraâ€Quantum Dots and their Characterization. ChemPhysChem, 2019, 20, 1885-1889.	2.1	5
33	Preparation of InP quantum dots-TiO ₂ nanoparticle composites with enhanced visible light induced photocatalytic activity. CrystEngComm, 2022, 24, 3724-3730.	2.6	4
34	Size-Dependent Photovoltaic Performance of CdSe Supraquantum Dot/Polymer Hybrid Solar Cells: "Goldilocks Problem―Resolved by Tuning the Band Alignment Using Surface Ligands. Journal of Physical Chemistry C, 2020, 124, 25775-25783.	3.1	2
35	Coalescence of colloidal cadmium chalcogenide nanocrystals by controlled stripping of the surface ligands. Applied Surface Science, 2021, 540, 148263.	6.1	2
36	Preparing Effective Panchromatic Hybrid Sensitizers Composed of Inorganic Quantum Dots and Organic Dyes. Chemistry Letters, 2018, 47, 1354-1356.	1.3	1