Denis Gerlier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/257885/publications.pdf

Version: 2024-02-01

		87888	74163
120	6,079	38	75
papers	citations	h-index	g-index
130	130	130	6676
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Activation of cGAS/STING pathway upon paramyxovirus infection. IScience, 2021, 24, 102519.	4.1	25
2	Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules, 2021, 11, 1324.	4.0	20
3	Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-κB-induced proinflammatory response. Communications Biology, 2021, 4, 1292.	4.4	9
4	The C Protein Is Recruited to Measles Virus Ribonucleocapsids by the Phosphoprotein. Journal of Virology, 2020, 94, .	3.4	13
5	Predicting substitutions to modulate disorder and stability in coiled-coils. BMC Bioinformatics, 2020, 21, 573.	2.6	O
6	Regulation of measles virus gene expression by P protein coiled-coil properties. Science Advances, 2019, 5, eaaw3702.	10.3	31
7	Type I Interferon Receptor Signaling Drives Selective Permissiveness of Astrocytes and Microglia to Measles Virus during Brain Infection. Journal of Virology, 2019, 93, .	3.4	22
8	An ultraweak interaction in the intrinsically disordered replication machinery is essential for measles virus function. Science Advances, 2018, 4, eaat7778.	10.3	49
9	How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cellular and Molecular Life Sciences, 2017, 74, 3091-3118.	5.4	30
10	Assessing mycoplasma contamination of cell cultures by qPCR using a set of universal primer pairs targeting a 1.5 kb fragment of 16S rRNA genes. PLoS ONE, 2017, 12, e0172358.	2.5	21
11	Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathogens, 2017, 13, e1006610.	4.7	56
12	Organotypic Brain Cultures: A Framework for Studying CNS Infection by Neurotropic Viruses and Screening Antiviral Drugs. Bio-protocol, 2017, 7, e2605.	0.4	10
13	Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength. PLoS Pathogens, 2016, 12, e1006058.	4.7	43
14	Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5. Molecular Cell, 2016, 62, 586-602.	9.7	113
15	HSP90 Chaperoning in Addition to Phosphoprotein Required for Folding but Not for Supporting Enzymatic Activities of Measles and Nipah Virus L Polymerases. Journal of Virology, 2016, 90, 6642-6656.	3.4	49
16	Fuzzy regions in an intrinsically disordered protein impair protein–protein interactions. FEBS Journal, 2016, 283, 576-594.	4.7	43
17	Brevity, precision, relevance consistency and concept, five pillars to write an original and punchy PhD thesis. Virologie, 2016, 20, 257-260.	0.1	O
18	Measles Virus: Identification in the M Protein Primary Sequence of a Potential Molecular Marker for Subacute Sclerosing Panencephalitis. Advances in Virology, 2015, 2015, 1-12.	1.1	13

#	Article	IF	Citations
19	Heparan Sulfate-Dependent Enhancement of Henipavirus Infection. MBio, 2015, 6, e02427.	4.1	26
20	Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biology, 2015, 13, 54.	3.8	47
21	Les Journées Francophones de Virologie, une dix-septiÃ"me édition marquée du sceau de la riche diversité de notre discipline. Virologie, 2015, 19, 47-49.	0.1	0
22	Erreur d'identité de l'hôte cellulaireÂ: un risque en virologieÂ?. Virologie, 2015, 19, 113-115.	0.1	0
23	RIG-I Self-Oligomerization Is Either Dispensable or Very Transient for Signal Transduction. PLoS ONE, 2014, 9, e108770.	2.5	10
24	Sequence of Events in Measles Virus Replication: Role of Phosphoprotein-Nucleocapsid Interactions. Journal of Virology, 2014, 88, 10851-10863.	3.4	44
25	Dissecting Partner Recognition by an Intrinsically Disordered Protein Using Descriptive Random Mutagenesis. Journal of Molecular Biology, 2013, 425, 3495-3509.	4.2	25
26	Mutation of the TYTLE Motif in the Cytoplasmic Tail of the Sendai Virus Fusion Protein Deeply Affects Viral Assembly and Particle Production. PLoS ONE, 2013, 8, e78074.	2.5	7
27	Plasticity in Structural and Functional Interactions between the Phosphoprotein and Nucleoprotein of Measles Virus. Journal of Biological Chemistry, 2012, 287, 11951-11967.	3.4	36
28	Transcription et réplication des MononegaviralesÂ: une machine moléculaire originale. Virologie, 2012, 16, 225-257.	0.1	17
29	Emerging zoonotic viruses: new lessons on receptor and entry mechanisms. Current Opinion in Virology, 2011, 1, 27-34.	5.4	10
30	Structural Basis for the Activation of Innate Immune Pattern-Recognition Receptor RIG-I by Viral RNA. Cell, 2011, 147, 423-435.	28.9	543
31	Paramyxovirus and Rig-Like Helicases: A Complex Molecular Interplay Driving Innate Immunity. , 2011, , 243-260.		0
32	Interplay between Innate Immunity and Negative-Strand RNA Viruses: towards a Rational Model. Microbiology and Molecular Biology Reviews, 2011, 75, 468-490.	6.6	85
33	Nipah Virus Uses Leukocytes for Efficient Dissemination within a Host. Journal of Virology, 2011, 85, 7863-7871.	3.4	86
34	Virus-driven conditional expression of an interferon antagonist as a tool to circumvent host restriction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17239-17240.	7.1	0
35	Rapid Titration of Measles and Other Viruses: Optimization with Determination of Replication Cycle Length. PLoS ONE, 2011, 6, e24135.	2.5	50
36	New insights into measles virus propagation: from entry to shedding. Future Virology, 2010, 5, 297-311.	1.8	1

#	Article	IF	Citations
37	Cellular receptors, differentiation and endocytosis requirements are key factors for type I IFN response by human epithelial, conventional and plasmacytoid dendritic infected cells by measles virus. Virus Research, 2010, 152, 115-125.	2.2	11
38	The interaction between the measles virus nucleoprotein and the Interferon Regulator Factor 3 relies on a specific cellular environment. Virology Journal, 2009, 6, 59.	3.4	23
39	Refined study of the interaction between HIV-1 p6 late domain and ALIX. Retrovirology, 2008, 5, 39.	2.0	15
40	High-density rafts preferentially host the complement activator measles virus F glycoprotein but not the regulators of complement activation. Molecular Immunology, 2008, 45, 3036-3044.	2.2	7
41	Human C3 Deficiency Associated with Impairments in Dendritic Cell Differentiation, Memory B Cells, and Regulatory T Cells. Journal of Immunology, 2008, 181, 5158-5166.	0.8	96
42	Cell-Cell Fusion Induced by Measles Virus Amplifies the Type I Interferon Response. Journal of Virology, 2007, 81, 12859-12871.	3.4	45
43	Structure of the measles virus H glycoprotein sheds light on an efficient vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20639-20640.	7.1	7
44	Cytosolic $5\hat{a}\in^2$ -Triphosphate Ended Viral Leader Transcript of Measles Virus as Activator of the RIG I-Mediated Interferon Response. PLoS ONE, 2007, 2, e279.	2.5	159
45	Viral Hijacking of Cellular Ubiquitination Pathways as an Anti-Innate Immunity Strategy. Viral Immunology, 2006, 19, 349-362.	1.3	30
46	Selection of single-chain antibodies that specifically interact with vesicular stomatitis virus (VSV) nucleocapsid and inhibit viral RNA synthesis. Journal of Virological Methods, 2006, 131, 16-20.	2.1	5
47	Optimized SYBR green real-time PCR assay to quantify the absolute copy number of measles virus RNAs using gene specific primers. Journal of Virological Methods, 2005, 128, 79-87.	2.1	50
48	Inhibition of Ubiquitination and Stabilization of Human Ubiquitin E3 Ligase PIRH2 by Measles Virus Phosphoprotein. Journal of Virology, 2005, 79, 11824-11836.	3.4	47
49	Dynamics of Viral RNA Synthesis during Measles Virus Infection. Journal of Virology, 2005, 79, 6900-6908.	3.4	107
50	Cell surface activation of the alternative complement pathway by the fusion protein of measles virus. Journal of General Virology, 2004, 85, 1665-1673.	2.9	18
51	A physical and functional link between cholesterol and tetraspanins. European Journal of Immunology, 2003, 33, 2479-2489.	2.9	202
52	Virus Entry, Assembly, Budding, and Membrane Rafts. Microbiology and Molecular Biology Reviews, 2003, 67, 226-237.	6.6	422
53	Measles virus protein interactions in yeast: new findings and caveats. Virus Research, 2003, 98, 123-129.	2.2	34
54	Multiple levels of interactions within the tetraspanin web. Biochemical and Biophysical Research Communications, 2003, 304, 107-112.	2.1	116

#	Article	IF	Citations
55	Ligand Binding Determines Whether CD46 Is Internalized by Clathrin-coated Pits or Macropinocytosis. Journal of Biological Chemistry, 2003, 278, 46927-46937.	3.4	70
56	Restriction of Measles Virus RNA Synthesis by a Mouse Host Cell Line: trans-Complementation by Polymerase Components or a Human Cellular Factor(s). Journal of Virology, 2002, 76, 6121-6130.	3.4	34
57	Strength of Envelope Protein Interaction Modulates Cytopathicity of Measles Virus. Journal of Virology, 2002, 76, 5051-5061.	3.4	111
58	A CD46CD[55–46] chimeric receptor, eight short consensus repeats long, acts as an inhibitor of both CD46 (MCP)- and CD150 (SLAM)-mediated cell–cell fusion induced by CD46-using measles virus. Journal of General Virology, 2002, 83, 1147-1155.	2.9	3
59	Evidence for distinct complement regulatory and measles virus binding sites on CD46 SCR2. European Journal of Immunology, 2000, 30, 3457-3462.	2.9	9
60	CD46 (membrane cofactor protein) associates with multiple \hat{l}^21 integrins and tetraspans. European Journal of Immunology, 2000, 30, 900-907.	2.9	93
61	Conformational restriction of the Tyr53 side-chain in the decapeptide HEL[52-61]: effects on binding to MHC-II I-Ak molecule and TCR recognition. Chemical Biology and Drug Design, 2000, 56, 398-408.	1.1	12
62	CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO Journal, 2000, 19, 3304-3313.	7.8	175
63	Measles Virus Assembly within Membrane Rafts. Journal of Virology, 2000, 74, 9911-9915.	3.4	151
64	Measles Virus Structural Components Are Enriched into Lipid Raft Microdomains: a Potential Cellular Location for Virus Assembly. Journal of Virology, 2000, 74, 305-311.	3.4	212
65	Octamerization Enables Soluble CD46 Receptor To Neutralize Measles Virus In Vitro and In Vivo. Journal of Virology, 2000, 74, 4672-4678.	3.4	47
66	Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation. Molecular Immunology, 2000, 37, 687-696.	2.2	5
67	Interaction of CD46 with measles virus: accessory role of CD46 short consensus repeat IV. Journal of General Virology, 2000, 81, 911-917.	2.9	13
68	Octamerization Enables Soluble CD46 Receptor To Neutralize Measles Virus In Vitro and In Vivo. Journal of Virology, 2000, 74, 4672-4678.	3.4	6
69	Inefficient Measles Virus Budding in Murine L.CD46 Fibroblasts. Virology, 1999, 265, 185-195.	2.4	24
70	Control of C3b and C5b deposition by CD46 (membrane cofactor protein) after alternative but not classical complement activation. European Journal of Immunology, 1999, 29, 815-822.	2.9	43
71	Nonstructural C Protein Is Required for Efficient Measles Virus Replication in Human Peripheral Blood Cells. Journal of Virology, 1999, 73, 1695-1698.	3.4	89
72	Infection of Chicken Embryonic Fibroblasts by Measles Virus: Adaptation at the Virus Entry Level. Journal of Virology, 1999, 73, 5220-5224.	3.4	21

#	Article	IF	Citations
73	An accessory peptide binding site with allosteric effect on the formation of peptide-MHC-II complexes?. Comptes Rendus De L'AcadA©mie Des Sciences Série 3, Sciences De La Vie, 1998, 321, 19-24.	0.8	6
74	Molecular modeling of hen egg lysozyme HEL[52-61] peptide binding to I-Ak MHC class II molecule International Immunology, 1998, 10, 1753-1764.	4.0	9
75	Mapping of the Primary Binding Site of Measles Virus to Its Receptor CD46. Journal of Biological Chemistry, 1997, 272, 22072-22079.	3.4	84
76	Transgenic expression of a CD46 (membrane cofactor protein) minigene: Studies of xenotransplantation and measles virus infection. European Journal of Immunology, 1997, 27, 726-734.	2.9	56
77	Selective Expression of a Subset of Measles Virus Receptor-Competent CD46 Isoforms in Human Brain. Virology, 1996, 217, 349-355.	2.4	43
78	Interactions between the ectodomains of haemagglutinin and CD46 as a primary step in measles virus entry. Journal of General Virology, 1996, 77, 1477-1481.	2.9	45
79	The ectodomain of measles virus envelope glycoprotein does not gain access to the cytosol and MHC class I presentation pathway following virus-cell fusion. Journal of General Virology, 1996, 77, 2695-2699.	2.9	5
80	Quantification of measles virus by a virus receptor-dependent and haemagglutinin-specific T cell stimulation assay. Journal of Immunological Methods, 1995, 187, 253-258.	1.4	9
81	Formaldehyde Inactivation of Measles Virus Abolishes CD46-Dependent Presentation of Nucleoprotein to Murine Class I-Restricted CTLs but Not to Class II-Restricted Helper T Cells. Virology, 1995, 212, 255-258.	2.4	19
82	Mode of entry of morbilliviruses. Veterinary Microbiology, 1995, 44, 267-270.	1.9	12
83	CD46-mediated measles virus entry: a first key to host-range specificity. Trends in Microbiology, 1995, 3, 338-345.	7.7	50
84	Efficient major histocompatibility complex class II-restricted presentation of measles virus relies on hemagglutinin-mediated targeting to its cellular receptor human CD46 expressed by murine B cells Journal of Experimental Medicine, 1994, 179, 353-358.	8.5	47
85	Measles virus receptor properties are shared by several CD46 isoforms differing in extracellular regions and cytoplasmic tails. Journal of General Virology, 1994, 75, 2163-2171.	2.9	44
86	Efficient MHC Class II-restricted presentation of measles virus to T cells relies on its targeting to its cellular receptor human CD46 and involves an endosomal pathway. Cell Biology International, 1994, 18, 315-320.	3.0	13
87	Critical residue combinations dictate peptide presentation by MHC class II molecules. Peptides, 1994, 15, 583-590.	2.4	17
88	Major histocompatibility complex class II-restricted presentation of secreted and endoplasmic reticulum resident antigens requires the invariant chains and is sensitive to lysosomotropic agents. European Journal of Immunology, 1993, 23, 3167-3172.	2.9	28
89	Invariant Chain Expression Similarly Controls Presentation of Endogenously Synthesized and Exogenous Antigens by MHC Class II Molecules. Cellular Immunology, 1993, 148, 60-70.	3.0	10
90	Can one predict antigenic peptides for MHC class I-restricted cytotoxic T lymphocytes useful for vaccination?. Vaccine, 1993, 11, 974-978.	3.8	14

#	Article	IF	Citations
91	Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. Journal of General Virology, 1993, 74, 1073-1079.	2.9	137
92	High efficiency of endogenous antigen presentation by MHC class II molecules. International Immunology, 1992, 4, 1113-1121.	4.0	32
93	A Monoclonal Antibody Recognizes a Human Cell Surface Glycoprotein Involved In Measles Virus Binding. Journal of General Virology, 1992, 73, 2617-2624.	2.9	72
94	Enhancement of in vivo and in vitro T cell response against measles virus haemagglutinin after its incorporation into liposomes: effect of the phospholipid composition. Vaccine, 1991, 9, 340-345.	3.8	21
95	Cytosolic targeting of hen egg lysozyme gives rise to a short-lived protein presented by class I but not class II major histocompatibility complex molecules. European Journal of Immunology, 1991, 21, 761-769.	2.9	23
96	Correlation between invariant chain expression level and capability to present antigen to MHC class II-restricted T cells. International Immunology, 1991, 3, 435-443.	4.0	33
97	Generation of hen egg lysozyme-specific and major histocompatibility complex class I-restricted cytolytic T lymphocytes: recognition of cytosolic and secreted antigen expressed by transfected cells. European Journal of Immunology, 1990, 20, 2325-2332.	2.9	16
98	Antigen processing â€" from cell biology to molecular interactions. Trends in Immunology, 1989, 10, 3-5.	7.5	10
99	Human T-cell leukemia virus type I-induced proliferation of human thymocytes requires the presence of a comitogen. Cellular Immunology, 1988, 112, 391-401.	3.0	6
100	Humoral immune response elicited in rats by measles viral membrane antigens presented in liposomes and ISCOMs. Vaccine, 1988, 6, 445-449.	3.8	14
101	Haemagglutinin of Measles Virus: Purification and Storage with Preservation of Biological and Immunological Properties. Journal of General Virology, 1988, 69, 2061-2069.	2.9	21
102	In Vivo Activation of Nude Mouse Macrophages by Human Melanoma Cells <xref ref-type="fn" rid="FN2">2</xref> . Journal of the National Cancer Institute, 1987, , .	6.3	1
103	A new epitope of the T200 molecule family defined by the 3A35 monoclonal antibody and expressed by macrophages and activated T lymphocytes. European Journal of Immunology, 1987, 17, 327-333.	2.9	2
104	Impairment of immunogenicity by antigen presentation in liposomes made from dimyristoylphosphatidyl-ethanolamine linked to the secretion of prostaglandins by macrophages. European Journal of Immunology, 1987, 17, 1839-1842.	2.9	17
105	Regulation of the expression on mouse T lymphocytes of the epitope identified by monoclonal antibody 3A35. Cellular Immunology, 1987, 106, 122-131.	3.0	0
106	Sustained IL-2 production by the EL4 subline during continuous phorbol diester stimulation is related to an increase of IL-2-mRNA. Journal of Immunological Methods, 1986, 88, 207-215.	1.4	6
107	Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods, 1986, 94, 57-63.	1.4	1,005
108	Interactions with host macrophages and ability of human melanoma cell lines to grow in nude mice. International Journal of Cancer, 1986, 38, 419-424.	5.1	6

#	Article	IF	CITATIONS
109	Tumourigenic phenotypes of human melanoma cell lines in nude mice determined by an active antitumour mechanism. British Journal of Cancer, 1985, 51, 335-345.	6.4	34
110	Localization of an entrapped item within unilamellar vesicle compartments: use of ultrasound disruption as a procedure to separate aqueous phase and lipidic lamellae. Journal of Microencapsulation, 1985, 2, 39-43.	2.8	2
111	Xenografting phenotype of human melanoma cells: Role of macrophage in its expression. European Journal of Cancer & Clinical Oncology, 1985, 21, 1372.	0.7	0
112	Use of an automatic cell harvester in a cellular radioimmunoassay. Journal of Immunological Methods, 1984, 75, 159-166.	1.4	8
113	Physical separation of the aqueous phase and lipoidal lamellae from multilamellar liposomes: An analytical and preparative procedure. Analytical Biochemistry, 1983, 130, 379-384.	2.4	6
114	Non-immunogenicity of enucleated rat hepatoma cells in syngeneic animals. British Journal of Cancer, 1981, 44, 725-732.	6.4	4
115	Resistance of the Meth A sarcoma-associated rejection antigen to inactivation with glutaraldehyde. British Journal of Cancer, 1981, 44, 584-587.	6.4	3
116	Measurement of Gross cell-surface antigen and p30 level in murine retrovirus-infected cell lines. British Journal of Cancer, 1981, 43, 659-668.	6.4	1
117	Association of gross virus-associated cell-surface antigen with liposomes. British Journal of Cancer, 1980, 41, 227-235.	6.4	8
118	Induction of antibody response to liposome-associated Gross-virus cell-surface antigen (GCSAa). British Journal of Cancer, 1980, 41, 236-242.	6.4	18
119	Increase in E. active rosette forming lymphocytes in melanoma patients treated with BCG. European Journal of Cancer, 1977, 13, 321-323.	0.9	6
120	Highly cytotoxic antisera obtained in rats against a syngeneic gross virus induced lymphoma. European Journal of Cancer, 1977, 13, 855-859.	0.9	4