
Mikhail Spivakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2578230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OA30 Identification of causal genes and mechanisms by which genetic variation mediates juvenile idiopathic arthritis susceptibility using functional genomics and CRISPR-Cas9. Rheumatology, 2022, 61, .	1.9	0
2	Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease. Nature Communications, 2021, 12, 2298.	12.8	32
3	TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell, 2021, 184, 2618-2632.e17.	28.9	80
4	Transcriptional enhancers and their communication with gene promoters. Cellular and Molecular Life Sciences, 2021, 78, 6453-6485.	5.4	25
5	Detecting chromosomal interactions in Capture Hi-C data with CHiCAGO and companion tools. Nature Protocols, 2021, 16, 4144-4176.	12.0	21
6	Prioritisation of Candidate Genes Underpinning COVID-19 Host Genetic Traits Based on High-Resolution 3D Chromosomal Topology. Frontiers in Genetics, 2021, 12, 745672.	2.3	5
7	Cohesin-Dependent and -Independent Mechanisms Mediate Chromosomal Contacts between Promoters and Enhancers. Cell Reports, 2020, 32, 107929.	6.4	106
8	Silencers in the spotlight. Nature Genetics, 2020, 52, 244-245.	21.4	9
9	Functional effects of variation in transcription factor binding highlight long-range gene regulation by epromoters. Nucleic Acids Research, 2020, 48, 2866-2879.	14.5	15
10	Chicdiff: a computational pipeline for detecting differential chromosomal interactions in Capture Hi-C data. Bioinformatics, 2019, 35, 4764-4766.	4.1	20
11	Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nature Communications, 2018, 9, 4567.	12.8	219
12	Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. Genome Biology, 2018, 19, 126.	8.8	29
13	Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks. Nature Communications, 2018, 9, 2526.	12.8	48
14	Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation. Molecular Cell, 2017, 66, 420-435.e5.	9.7	188
15	Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation. Nature Genetics, 2017, 49, 1522-1528.	21.4	255
16	Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nature Communications, 2017, 8, 16058.	12.8	50
17	207â€Vascular smooth muscle cell heterogeneity and plasticity. Heart, 2017, 103, A138.2-A138.	2.9	0
18	Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome Biology, 2017, 18, 165.	8.8	68

2

MIKHAIL SPIVAKOV

#	Article	IF	CITATIONS
19	Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells. ELife, 2017, 6, .	6.0	130
20	Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model. Blood, 2016, 127, e12-e23.	1.4	49
21	Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination. Cell Reports, 2016, 15, 2475-2487.	6.4	78
22	Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Genome Biology, 2016, 17, 152.	8.8	46
23	CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biology, 2016, 17, 127.	8.8	344
24	Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell, 2016, 167, 1369-1384.e19.	28.9	863
25	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	28.9	404
26	Defining cell type with chromatin profiling. Nature Biotechnology, 2016, 34, 1126-1128.	17.5	4
27	A novel phosphate-starvation response in fission yeast requires the endocytic function of Myosin I. Journal of Cell Science, 2015, 128, 3707-13.	2.0	2
28	Dynamic Reorganization of Extremely Long-Range Promoter-Promoter Interactions between Two States of Pluripotency. Cell Stem Cell, 2015, 17, 748-757.	11.1	179
29	Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2235-2240.	7.1	91
30	Genomic and Phenotypic Characterization of a Wild Medaka Population: Towards the Establishment of an Isogenic Population Genetic Resource in Fish. G3: Genes, Genomes, Genetics, 2014, 4, 433-445.	1.8	54
31	Spurious transcription factor binding: Nonâ€functional or genetically redundant?. BioEssays, 2014, 36, 798-806.	2.5	80
32	A Comparison of Peak Callers Used for DNase-Seq Data. PLoS ONE, 2014, 9, e96303.	2.5	71
33	Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B–cell differentiation. Blood, 2013, 121, 1769-1782.	1.4	102
34	Analysis of variation at transcription factor binding sites in Drosophila and humans. Genome Biology, 2012, 13, R49.	9.6	83
35	A Transcription Factor Collective Defines Cardiac Cell Fate and Reflects Lineage History. Cell, 2012, 148, 473-486.	28.9	239
36	Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biology, 2010, 12, 618-624.	10.3	274

MIKHAIL SPIVAKOV

#	Article	IF	CITATIONS
37	Cohesins Functionally Associate with CTCF on Mammalian Chromosome Arms. Cell, 2008, 132, 422-433.	28.9	800
38	T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7797-7802.	7.1	747
39	Distinct Promoters Mediate the Regulation of Ebf1 Gene Expression by Interleukin-7 and Pax5. Molecular and Cellular Biology, 2007, 27, 579-594.	2.3	150
40	The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biology, 2007, 8, R169.	9.6	68
41	Epigenetic signatures of stem-cell identity. Nature Reviews Genetics, 2007, 8, 263-271.	16.3	352
42	Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 2006, 8, 532-538.	10.3	1,213
43	A Dynamic Switch in the Replication Timing of Key Regulator Genes in Embryonic Stem Cells upon Neural Induction. Cell Cycle, 2004, 3, 1619-1624.	2.6	77
44	A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle, 2004, 3, 1645-50.	2.6	46