Mieke Dewerchin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2578021/publications.pdf

Version: 2024-02-01

47 papers

7,097 citations

36 h-index 214800 47 g-index

48 all docs

48 docs citations

48 times ranked

10835 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy, 2022, 18, 2409-2426.	9.1	13
2	Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nature Communications, 2022, 13, 2760.	12.8	19
3	Transcriptomic analysis of CFTR-impaired endothelial cells reveals a pro-inflammatory phenotype. European Respiratory Journal, 2021, 57, 2000261.	6.7	10
4	Protocols for endothelial cell isolation from mouse tissues: small intestine, colon, heart, and liver. STAR Protocols, 2021, 2, 100489.	1,2	11
5	Tumor vessel co-option probed by single-cell analysis. Cell Reports, 2021, 35, 109253.	6.4	44
6	Protocols for endothelial cell isolation from mouse tissues: kidney, spleen, and testis. STAR Protocols, 2021, 2, 100523.	1,2	7
7	Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metabolism, 2021, 33, 1763-1776.e5.	16.2	28
8	Protocols for endothelial cell isolation from mouse tissues: brain, choroid, lung, and muscle. STAR Protocols, 2021, 2, 100508.	1.2	12
9	Tissue factor cytoplasmic domain exacerbates post-infarct left ventricular remodeling via orchestrating cardiac inflammation and angiogenesis. Theranostics, 2021, 11, 9243-9261.	10.0	13
10	BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. Nucleic Acids Research, 2020, 48, W385-W394.	14.5	43
11	Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell, 2020, 180, 764-779.e20.	28.9	755
12	An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer Cell, 2020, 37, 21-36.e13.	16.8	253
13	Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis. Cell Metabolism, 2020, 31, 862-877.e14.	16.2	169
14	Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation. Journal of the American Society of Nephrology: JASN, 2020, 31, 118-138.	6.1	117
15	Role and therapeutic potential of dietary ketone bodies in lymph vessel growth. Nature Metabolism, 2019, 1, 666-675.	11.9	45
16	EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Research, 2019, 47, D736-D744.	14.5	70
17	Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature, 2018, 561, 63-69.	27.8	136
18	Live imaging reveals a conserved role of fatty acid \hat{l}^2 -oxidation in early lymphatic development in zebrafish. Biochemical and Biophysical Research Communications, 2018, 503, 26-31.	2.1	3

#	Article	IF	CITATIONS
19	Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. Cell Metabolism, 2018, 28, 573-587.e13.	16.2	127
20	Quiescent Endothelial Cells Upregulate Fatty Acid \hat{l}^2 -Oxidation for Vasculoprotection via Redox Homeostasis. Cell Metabolism, 2018, 28, 881-894.e13.	16.2	174
21	Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. Cell Metabolism, 2018, 28, 866-880.e15.	16.2	154
22	Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology, 2017, 32, 126-140.	3.1	65
23	The role of fatty acid \hat{I}^2 -oxidation in lymphangiogenesis. Nature, 2017, 542, 49-54.	27.8	240
24	Tumor vessel disintegration by maximum tolerable PFKFB3 blockade. Angiogenesis, 2017, 20, 599-613.	7.2	73
25	Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO Journal, 2017, 36, 2334-2352.	7.8	195
26	Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex. Cell Stem Cell, 2017, 20, 360-373.e7.	11.1	64
27	Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO Journal, 2016, 35, 924-941.	7.8	161
28	Metaâ€analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO Molecular Medicine, 2016, 8, 1134-1142.	6.9	83
29	Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. Cancer Cell, 2016, 30, 968-985.	16.8	464
30	De novo design of a biologically active amyloid. Science, 2016, 354, .	12.6	63
31	Glycolytic regulation of cell rearrangement in angiogenesis. Nature Communications, 2016, 7, 12240.	12.8	131
32	The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A. Cell Reports, 2016, 14, 2653-2667.	6.4	46
33	Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism. Cell Metabolism, 2016, 23, 280-291.	16.2	77
34	A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget, 2016, 7, 51875-51897.	1.8	43
35	The Cancer Cell Oxygen Sensor PHD2 Promotes Metastasis via Activation of Cancer-Associated Fibroblasts. Cell Reports, 2015, 12, 992-1005.	6.4	66
36	Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature, 2015, 520, 192-197.	27.8	466

3

#	Article	IF	CITATIONS
37	Metabolic control of the cell cycle. Cell Cycle, 2015, 14, 3379-3388.	2.6	92
38	The PHD2 oxygen sensor paves the way to metastasis. Oncotarget, 2015, 6, 35149-35150.	1.8	19
39	Incomplete and transitory decrease of glycolysis. Cell Cycle, 2014, 13, 16-22.	2.6	52
40	Placental growth factor in cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 1339-1354.	3.4	64
41	Partial and Transient Reduction of Glycolysis by PFKFB3 Blockade Reduces Pathological Angiogenesis. Cell Metabolism, 2014, 19, 37-48.	16.2	429
42	Fibroblast Growth Factor Signaling Affects Vascular Outgrowth and Is Required for the Maintenance of Blood Vessel Integrity. Chemistry and Biology, 2014, 21, 1310-1317.	6.0	34
43	Tumor Vessel Normalization by Chloroquine Independent of Autophagy. Cancer Cell, 2014, 26, 190-206.	16.8	358
44	PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nature Medicine, 2014, 20, 741-747.	30.7	86
45	Role of PFKFB3-Driven Glycolysis in Vessel Sprouting. Cell, 2013, 154, 651-663.	28.9	1,117
46	Role of Delta-like-4/Notch in the Formation and Wiring of the Lymphatic Network in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1695-1702.	2.4	118
47	VEGF: A modifier of the del22q11 (DiGeorge) syndrome?. Nature Medicine, 2003, 9, 173-182.	30.7	288