
## Boris R Krasnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2577714/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Host phylogeny and ecology, but not host physiology, are the main drivers of (dis)similarity between<br>the host spectra of fleas: application of a novel ordination approach to regional assemblages from<br>four continents. Parasitology, 2022, 149, 124-137. | 1.5 | 1         |
| 2  | The compound topology of host–parasite networks is explained by the integrative hypothesis of specialization. Oikos, 2022, 2022, .                                                                                                                               | 2.7 | 9         |
| 3  | Temporal variation of metacommunity structure in arthropod ectoparasites harboured by small mammals: the effects of scale and climatic fluctuations. Parasitology Research, 2022, 121, 537-549.                                                                  | 1.6 | 3         |
| 4  | Dark host specificity in two ectoparasite taxa: repeatability, parasite traits, and environmental effects.<br>Parasitology Research, 2022, 121, 851.                                                                                                             | 1.6 | 2         |
| 5  | Similarity in ixodid tick communities harboured by wildlife and livestock in the Albany Thicket Biome of South Africa. Parasitology, 2022, , 1-8.                                                                                                                | 1.5 | 1         |
| 6  | Fitness consequences of host colonization in two generalist fleas: Contextâ€dependency and the effect<br>of spatial coâ€occurrence. Medical and Veterinary Entomology, 2022, , .                                                                                 | 1.5 | 0         |
| 7  | Phylogenetic signals in flea-host interaction networks from four biogeographic realms: differences<br>between interactors and the effects of environmental factors. International Journal for<br>Parasitology, 2022, 52, 475-484.                                | 3.1 | 4         |
| 8  | Regional flea and host assemblages form biogeographic, but not ecological, clusters: evidence for a<br>dispersal-based mechanism as a driver of species composition. Parasitology, 2022, 149, 1450-1459.                                                         | 1.5 | 5         |
| 9  | Colonization of a novel host by fleas: changes in egg production and egg size. Parasitology Research, 2021, 120, 451-459.                                                                                                                                        | 1.6 | 2         |
| 10 | Spatial and temporal variation of compositional, functional, and phylogenetic diversity in ectoparasite infracommunities harboured by small mammals. Parasitology, 2021, 148, 685-695.                                                                           | 1.5 | 0         |
| 11 | Particle size reduction along the digestive tract of fat sand rats (Psammomys obesus) fed four<br>chenopods. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental<br>Physiology, 2021, 191, 831-841.                                    | 1.5 | 3         |
| 12 | Adaptation to a novel host and performance tradeâ€off in hostâ€generalist and hostâ€specific insect<br>ectoparasites. Insect Science, 2021, , .                                                                                                                  | 3.0 | 4         |
| 13 | Parasite counts or parasite incidences? Testing differences with four analyses of infracommunity<br>modelling for seven parasite–host associations. Parasitology Research, 2021, 120, 2569-2584.                                                                 | 1.6 | 5         |
| 14 | Effects of ectoparasite infestation during pregnancy on physiological stress and reproductive output<br>in a rodent-flea system. International Journal for Parasitology, 2021, 51, 659-666.                                                                      | 3.1 | 2         |
| 15 | Species associations in arthropod ectoparasite infracommunities are spatially and temporally variable and affected by environmental factors. Ecological Entomology, 2021, 46, 1254.                                                                              | 2.2 | 9         |
| 16 | Gastrointestinal nematodes in two galliform birds from South Africa: patterns associated with host sex and age. Parasitology Research, 2021, 120, 3229-3244.                                                                                                     | 1.6 | 1         |
| 17 | Dark diversity of flea assemblages of small mammalian hosts: effects of environment, host traits and host phylogeny. International Journal for Parasitology, 2021, , .                                                                                           | 3.1 | 5         |
| 18 | Dispersal-based versus niche-based processes as drivers of flea species composition on small<br>mammalian hosts: inferences from species occurrences at large and small scales. Oecologia, 2021, 197,<br>471-484.                                                | 2.0 | 13        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Functional and phylogenetic uniqueness of helminth and flea assemblages of two South African rodents. International Journal for Parasitology, 2021, 51, 865-876.                                                                                             | 3.1 | 4         |
| 20 | Environmental, anthropogenic, and spatial factors affecting species composition and species<br>associations in helminth communities of water frogs (Pelophylax esculentus complex) in Latvia.<br>Parasitology Research, 2021, 120, 3461-3474.                | 1.6 | 4         |
| 21 | Flea infestation, social contact, and stress in a gregarious rodent species: minimizing the potential parasitic costs of group-living. Parasitology, 2020, 147, 78-86.                                                                                       | 1.5 | 3         |
| 22 | Species associations and trait dissimilarity in communities of ectoparasitic arthropods harboured by small mammals at three hierarchical scales. Ecological Entomology, 2020, 45, 321-332.                                                                   | 2.2 | 4         |
| 23 | Contrasting responses of beta diversity components to environmental and hostâ€associated factors in insect ectoparasites. Ecological Entomology, 2020, 45, 594-605.                                                                                          | 2.2 | 3         |
| 24 | A global database for metacommunity ecology, integrating species, traits, environment and space.<br>Scientific Data, 2020, 7, 6.                                                                                                                             | 5.3 | 28        |
| 25 | Compositional turnover in ecto- and endoparasite assemblages of an African bat, Miniopterus<br>natalensis (Chiroptera, Miniopteridae): effects of hierarchical scale and host sex. Parasitology, 2020,<br>147, 1728-1742.                                    | 1.5 | 1         |
| 26 | Harrison's rule scales up to entire parasite assemblages but is determined by environmental factors.<br>Journal of Animal Ecology, 2020, 89, 2888-2895.                                                                                                      | 2.8 | 7         |
| 27 | Intraspecific variation of body size in fleas: effects of host sex and flea phenology. Parasitology<br>Research, 2020, 119, 3211-3220.                                                                                                                       | 1.6 | 1         |
| 28 | Spatial and temporal turnover of parasite species and parasite-host interactions: a case study with fleas and gamasid mites parasitic on small mammals. Parasitology Research, 2020, 119, 2093-2104.                                                         | 1.6 | 5         |
| 29 | Species coâ€occurrences in ectoparasite infracommunities: Accounting for confounding factors<br>associated with space, time, and host community composition. Ecological Entomology, 2020, 45,<br>1158-1171.                                                  | 2.2 | 4         |
| 30 | Drivers of compositional turnover are related to species' commonness in flea assemblages from four<br>biogeographic realms: zeta diversity and multi-site generalised dissimilarity modelling. International<br>Journal for Parasitology, 2020, 50, 331-344. | 3.1 | 14        |
| 31 | Feeding performance on a novel host: no adaptation over generations and differential patterns in two flea species. Parasitology, 2020, 147, 721-728.                                                                                                         | 1.5 | 3         |
| 32 | Multiâ€ <b>s</b> ite generalized dissimilarity modelling reveals drivers of species turnover in ectoparasite<br>assemblages of small mammals across the northern and central Palaearctic. Global Ecology and<br>Biogeography, 2020, 29, 1579-1594.           | 5.8 | 10        |
| 33 | Sex differences in testosterone reactivity and sensitivity in a non-model gerbil. General and Comparative Endocrinology, 2020, 291, 113418.                                                                                                                  | 1.8 | 4         |
| 34 | Patterns of zeta diversity in ectoparasite communities harboured by small mammals at three hierarchical scales: taxon-invariance and scale-dependence. Oecologia, 2020, 192, 1057-1071.                                                                      | 2.0 | 4         |
| 35 | Beta diversity of gastrointestinal helminths in two closely related South African rodents: species and site contributions. Parasitology Research, 2019, 118, 2863-2875.                                                                                      | 1.6 | 4         |
| 36 | Energy requirements, length of digestive tract compartments and body mass in six gerbilline rodents of the Negev Desert. Zoology, 2019, 137, 125715.                                                                                                         | 1.2 | 6         |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The effects of environment, hosts and space on compositional, phylogenetic and functional beta-diversity in two taxa of arthropod ectoparasites. Parasitology Research, 2019, 118, 2107-2120.                                                                          | 1.6 | 16        |
| 38 | Gastrointestinal helminths from the common warthog, Phacochoerus africanus (Gmelin) (Suidae), in<br>KwaZulu-Natal Province, South Africa, with comments on helminths of Suidae and Tayassuidae<br>worldwide. Parasitology, 2019, 146, 1541-1549.                       | 1.5 | 3         |
| 39 | Reproductive performance in generalist haematophagous ectoparasites: maternal environment, rearing conditions or both?. Parasitology Research, 2019, 118, 2087-2096.                                                                                                   | 1.6 | 4         |
| 40 | Effects of maternal and grandmaternal flea infestation on offspring quality and quantity in a desert rodent: evidence for parasite-mediated transgenerational phenotypic plasticity. International Journal for Parasitology, 2019, 49, 481-488.                        | 3.1 | 5         |
| 41 | Do the pattern and strength of species associations in ectoparasite communities conform to biogeographic rules?. Parasitology Research, 2019, 118, 1113-1125.                                                                                                          | 1.6 | 8         |
| 42 | Species and site contributions to <i>β</i> -diversity in fleas parasitic on the Palearctic small mammals:<br>ecology, geography and host species composition matter the most. Parasitology, 2019, 146, 653-661.                                                        | 1.5 | 9         |
| 43 | Phylogenetic and compositional diversity are governed by different rules: a study of fleas parasitic on small mammals in four biogeographic realms. Ecography, 2019, 42, 1000-1011.                                                                                    | 4.5 | 16        |
| 44 | Nestedness in assemblages of helminth parasites of bats: a function of geography, environment, or host nestedness?. Parasitology Research, 2018, 117, 1621-1630.                                                                                                       | 1.6 | 6         |
| 45 | Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents. Parasitology, 2018, 145, 1623-1632.                                                                                             | 1.5 | 5         |
| 46 | Body size distribution in flea communities harboured by Siberian small mammals as affected by host species, host sex and scale: scale matters the most. Evolutionary Ecology, 2018, 32, 643-662.                                                                       | 1.2 | 12        |
| 47 | Can we predict the success of a parasite to colonise an invasive host?. Parasitology Research, 2018, 117, 2305-2314.                                                                                                                                                   | 1.6 | 0         |
| 48 | Biogeography of parasite abundance: latitudinal gradient and distance decay of similarity in the<br>abundance of fleas and mites, parasitic on small mammals in the Palearctic, at three spatial scales.<br>International Journal for Parasitology, 2018, 48, 857-866. | 3.1 | 21        |
| 49 | Sexual size dimorphism and sex ratio in arthropod ectoparasites: contrasting patterns at different hierarchical scales. International Journal for Parasitology, 2018, 48, 969-978.                                                                                     | 3.1 | 10        |
| 50 | Body size and ecological traits in fleas parasitic on small mammals in the Palearctic: larger species attain higher abundance. Oecologia, 2018, 188, 559-569.                                                                                                          | 2.0 | 15        |
| 51 | The latitudinal, but not the longitudinal, geographic range positions of haematophagous<br>ectoparasites demonstrate historical signatures. International Journal for Parasitology, 2018, 48,<br>743-749.                                                              | 3.1 | 5         |
| 52 | Morphological asymmetry and habitat quality: using fleas and their rodent hosts as a novel experimental system. Journal of Experimental Biology, 2017, 220, 1307-1312.                                                                                                 | 1.7 | 1         |
| 53 | Intra- and interspecific similarity in species composition of helminth communities in two closely-related rodents from South Africa. Parasitology, 2017, 144, 1211-1220.                                                                                               | 1.5 | 13        |
| 54 | Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type.<br>Oecologia, 2017, 184, 507-520.                                                                                                                                 | 2.0 | 5         |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Parasite beta diversity, host beta diversity and environment: application of two approaches to reveal patterns of flea species turnover in Mongolia. Journal of Biogeography, 2017, 44, 1880-1890. | 3.0 | 31        |
| 56 | Effects of parasitism on host reproductive investment in a rodent–flea system: host litter size matters. Parasitology Research, 2017, 116, 703-710.                                                | 1.6 | 4         |
| 57 | Revisiting the role of dissimilarity of host communities in driving dissimilarity of ectoparasite assemblages: non-linear <i>vs</i> linear approach. Parasitology, 2017, 144, 1365-1374.           | 1.5 | 6         |
| 58 | Parasite performance and host alternation: is there a negative effect in host-specific and host-opportunistic parasites?. Parasitology, 2017, 144, 1107-1116.                                      | 1.5 | 2         |
| 59 | Helminth parasitism in two closely related South African rodents: abundance, prevalence, species richness and impinging factors. Parasitology Research, 2017, 116, 1395-1409.                      | 1.6 | 14        |
| 60 | The effect of water contamination and host-related factors on ectoparasite load in an insectivorous bat. Parasitology Research, 2017, 116, 2517-2526.                                              | 1.6 | 11        |
| 61 | Asymmetric disease dynamics in multihost interconnected networks. Journal of Theoretical Biology, 2017, 430, 237-244.                                                                              | 1.7 | 8         |
| 62 | Relationships among different facets of host specificity in three taxa of haematophagous<br>ectoparasites. International Journal for Parasitology, 2017, 47, 961-969.                              | 3.1 | 1         |
| 63 | Community structure of helminth parasites in two closely related South African rodents differing in sociality and spatial behaviour. Parasitology Research, 2017, 116, 2299-2312.                  | 1.6 | 7         |
| 64 | AREAS OF POLYGONS WITH COORDINATES OF VERTICES FROM VARIOUS SEQUENCES. JP Journal of Algebra,<br>Number Theory and Applications, 2017, 39, 551-567.                                                | 0.1 | 0         |
| 65 | Community structure of fleas within and among populations of three closely related rodent hosts: nestedness and beta-diversity. Parasitology, 2016, 143, 1268-1278.                                | 1.5 | 9         |
| 66 | Reproductive consequences of female size in haematophagous ectoparasites. Journal of Experimental<br>Biology, 2016, 219, 2368-76.                                                                  | 1.7 | 14        |
| 67 | Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system:<br>inferring host defense trade-offs. Parasitology Research, 2016, 115, 3337-3344.             | 1.6 | 2         |
| 68 | Szidat's rule re-tested: relationships between flea and host phylogenetic clade ranks in four<br>biogeographic realms. Parasitology, 2016, 143, 723-731.                                           | 1.5 | 3         |
| 69 | Traitâ€based and phylogenetic associations between parasites and their hosts: a case study with small mammals and fleas in the Palearctic. Oikos, 2016, 125, 29-38.                                | 2.7 | 42        |
| 70 | Time budget, oxygen consumption and body mass responses to parasites in juvenile and adult wild rodents. Parasites and Vectors, 2016, 9, 120.                                                      | 2.5 | 9         |
| 71 | Experimental evidence of negative interspecific interactions among imago fleas: flea and host identities matter. Parasitology Research, 2016, 115, 937-947.                                        | 1.6 | 10        |
| 72 | Pentastome assemblages of the Nile crocodile, Crocodylus niloticus Laurenti (Reptilia: Crocodylidae),<br>in the Kruger National Park, South Africa. Folia Parasitologica, 2016, 63, .              | 1.3 | 2         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fitness responses to co-infestation in fleas exploiting rodent hosts. Parasitology, 2015, 142, 1535-1542.                                                                                                  | 1.5 | 6         |
| 74 | Infracommunity dynamics of chiggers (Trombiculidae) parasitic on a rodent. Parasitology, 2015, 142, 1605-1611.                                                                                             | 1.5 | 14        |
| 75 | Under the changing climate: how shifting geographic distributions and sexualselection shape parasite diversification. , 2015, , 58-76.                                                                     |     | 9         |
| 76 | Patterns of diversity and distribution of aquatic invertebrates and their parasites. , 2015, , 39-57.                                                                                                      |     | 6         |
| 77 | Host specificity and species jumps in fish–parasite systems. , 2015, , 401-419.                                                                                                                            |     | 9         |
| 78 | Impacts of parasite diversity on wild vertebrates: limited knowledge but important perspectives. , 2015, , 77-90.                                                                                          |     | 2         |
| 79 | Flea fitness is reduced by high fractional concentrations of CO2 that simulate levels found in their hosts' burrows. Journal of Experimental Biology, 2015, 218, 3596-3603.                                | 1.7 | 5         |
| 80 | Historical biogeography of fleas: the former Bering Land Bridge and phylogenetic dissimilarity between the Nearctic and Palearctic assemblages. Parasitology Research, 2015, 114, 1677-1686.               | 1.6 | 16        |
| 81 | Novel evidence suggests that a â€~ <i><scp>R</scp>ickettsia felis</i> ″ike' organism is an endosymbiont of the desert flea, <i><scp>X</scp>enopsylla ramesis</i> . Molecular Ecology, 2015, 24, 1364-1373. | 3.9 | 20        |
| 82 | <i>Bartonella</i> Infection in Rodents and Their Flea Ectoparasites: An Overview. Vector-Borne and Zoonotic Diseases, 2015, 15, 27-39.                                                                     | 1.5 | 122       |
| 83 | Intraspecific variation of body size in a gamasid mite Laelaps clethrionomydis: environment, geography and host dependence. Parasitology Research, 2015, 114, 3767-3774.                                   | 1.6 | 12        |
| 84 | Environment-related and host-related factors affecting the occurrence of lice on rodents in Central Europe. Parasitology, 2015, 142, 938-947.                                                              | 1.5 | 14        |
| 85 | Habitat fragmentation alters the properties of a host–parasite network: rodents and their helminths<br>in Southâ€East Asia. Journal of Animal Ecology, 2015, 84, 1253-1263.                                | 2.8 | 51        |
| 86 | Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography, 2015, 38, 184-197.                   | 4.5 | 76        |
| 87 | Potential Parasite Transmission in Multi-Host Networks Based on Parasite Sharing. PLoS ONE, 2015, 10, e0117909.                                                                                            | 2.5 | 62        |
| 88 | A Tale of Two Phylogenies: Comparative Analyses of Ecological Interactions. American Naturalist, 2014, 183, 174-187.                                                                                       | 2.1 | 110       |
| 89 | A tradeâ€off between quantity and quality of offspring in haematophagous ectoparasites: the effect of the level of specialization. Journal of Animal Ecology, 2014, 83, 397-405.                           | 2.8 | 22        |
| 90 | Effects of sewage-water contamination on the immune response of a desert bat. Mammalian Biology, 2014, 79, 183-188.                                                                                        | 1.5 | 23        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Ectoparasitism and stress hormones: strategy of host exploitation, common host–parasite history and energetics matter. Journal of Animal Ecology, 2014, 83, 1113-1123.                              | 2.8  | 36        |
| 92  | Host–parasite network structure is associated with community-level immunogenetic diversity. Nature<br>Communications, 2014, 5, 5172.                                                                | 12.8 | 49        |
| 93  | Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitology Research, 2014, 113, 2777-2788.                                | 1.6  | 28        |
| 94  | Age at weaning, immunocompetence and ectoparasite performance in a precocial desert rodent.<br>Journal of Experimental Biology, 2014, 217, 3078-84.                                                 | 1.7  | 4         |
| 95  | Coâ€occurrence and phylogenetic distance in communities of mammalian ectoparasites: limiting similarity versus environmental filtering. Oikos, 2014, 123, 63-70.                                    | 2.7  | 31        |
| 96  | Phylogenetic structure of host spectra in Palaearctic fleas: stability versus spatial variation in widespread, generalist species. Parasitology, 2014, 141, 181-191.                                | 1.5  | 3         |
| 97  | Host reproductive status and reproductive performance of a parasite: offspring quality and trade-offs in a flea parasitic on a rodent. Parasitology, 2014, 141, 914-924.                            | 1.5  | 2         |
| 98  | Patterns of diversity and abundance of fleas and mites in the Neotropics: hostâ€related, parasiteâ€related and environmentâ€related factors. Medical and Veterinary Entomology, 2013, 27, 49-58.    | 1.5  | 28        |
| 99  | Desert Gerbils Affect Bacterial Composition of Soil. Microbial Ecology, 2013, 66, 940-949.                                                                                                          | 2.8  | 14        |
| 100 | Spatial variation in the phylogenetic structure of flea assemblages across geographic ranges of small mammalian hosts in the Palearctic. International Journal for Parasitology, 2013, 43, 763-770. | 3.1  | 5         |
| 101 | Sex-biased parasitism is not universal: evidence from rodent–flea associations from three biomes.<br>Oecologia, 2013, 173, 1009-1022.                                                               | 2.0  | 66        |
| 102 | Ectoparasite performance when feeding on reproducing mammalian females: an unexpected decrease when on pregnant hosts. Journal of Experimental Biology, 2013, 217, 1058-64.                         | 1.7  | 6         |
| 103 | Body size and coexistence in gamasid mites parasitic on small mammals: null model analyses at three hierarchical scales. Ecography, 2013, 36, 508-517.                                              | 4.5  | 9         |
| 104 | Temporal dynamics of direct reciprocal and indirect effects in a host–parasite network. Journal of<br>Animal Ecology, 2013, 82, 987-996.                                                            | 2.8  | 20        |
| 105 | Ecological correlates of body size in gamasid mites parasitic on small mammals: abundance and niche breadth. Ecography, 2013, 36, 1042-1050.                                                        | 4.5  | 18        |
| 106 | Effects of Bartonella spp. on Flea Feeding and Reproductive Performance. Applied and Environmental<br>Microbiology, 2013, 79, 3438-3443.                                                            | 3.1  | 15        |
| 107 | Reproductive consequences of host age in a desert flea. Parasitology, 2013, 140, 461-470.                                                                                                           | 1.5  | 6         |
| 108 | Transmission Dynamics of Bartonella sp. Strain OE 1-1 in Sundevall's Jirds (Meriones crassus). Applied<br>and Environmental Microbiology, 2013, 79, 1258-1264.                                      | 3.1  | 25        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Vertical nontransovarial transmission of <i><scp>B</scp>artonella</i> in fleas. Molecular Ecology, 2013, 22, 4747-4752.                                                                           | 3.9 | 21        |
| 110 | Energy expenditure for egg production in arthropod ectoparasites: the effect of host species.<br>Parasitology, 2013, 140, 1070-1077.                                                              | 1.5 | 7         |
| 111 | Phylogeny determines the role of helminth parasites in intertidal food webs. Journal of Animal Ecology, 2013, 82, 1265-1275.                                                                      | 2.8 | 46        |
| 112 | Digesting blood of an auxiliary host in fleas: effect of phylogenetic distance from a principal host.<br>Journal of Experimental Biology, 2012, 215, 1259-1265.                                   | 1.7 | 12        |
| 113 | Effects of host diet and thermal state on feeding performance of the flea <i>Xenopsylla ramesis</i> .<br>Journal of Experimental Biology, 2012, 215, 1435-1441.                                   | 1.7 | 7         |
| 114 | Feeding performance of fleas on different host species: is phylogenetic distance between hosts important?. Parasitology, 2012, 139, 60-68.                                                        | 1.5 | 10        |
| 115 | Phylogenetic Signal in Module Composition and Species Connectivity in Compartmentalized<br>Host-Parasite Networks. American Naturalist, 2012, 179, 501-511.                                       | 2.1 | 127       |
| 116 | Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology, 2012, 139, 338-347. | 1.5 | 21        |
| 117 | Host body microcosm and ectoparasite infracommunities: arthropod ectoparasites are not spatially segregated. Parasitology, 2012, 139, 1739-1748.                                                  | 1.5 | 15        |
| 118 | Gender-biased parasitism in small mammals: patterns, mechanisms, consequences. Mammalia, 2012, 76,<br>1-13.                                                                                       | 0.7 | 84        |
| 119 | Effects of Anthropogenic Disturbance and Climate on Patterns of Bat Fly Parasitism. PLoS ONE, 2012, 7, e41487.                                                                                    | 2.5 | 59        |
| 120 | Is there sex-biased resistance and tolerance in Mediterranean wood mouse (Apodemus sylvaticus)<br>populations facing multiple helminth infections?. Oecologia, 2012, 170, 123-135.                | 2.0 | 39        |
| 121 | Use it or lose it: reproductive implications of ecological specialization in a haematophagous ectoparasite. Journal of Evolutionary Biology, 2012, 25, 1140-1148.                                 | 1.7 | 17        |
| 122 | Ectoparasite fitness in auxiliary hosts: phylogenetic distance from a principal host matters. Journal of<br>Evolutionary Biology, 2012, 25, 2005-2013.                                            | 1.7 | 34        |
| 123 | Latitudinal mismatches between the components of mammal–flea interaction networks. Global<br>Ecology and Biogeography, 2012, 21, 725-731.                                                         | 5.8 | 22        |
| 124 | The comparative ecology and biogeography of parasites. Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2011, 366, 2379-2390.                                           | 4.0 | 88        |
| 125 | The effect of host age on feeding performance of fleas. Parasitology, 2011, 138, 1154-1163.                                                                                                       | 1.5 | 10        |
| 126 | An attempt to use ectoparasites as tags for habitat occupancy by small mammalian hosts in central<br>Europe: effects of host gender, parasite taxon and season. Parasitology, 2011, 138, 609-618. | 1.5 | 3         |

| #   | Article                                                                                                                                                                                                                       | IF         | CITATIONS            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|
| 127 | Driven to distraction: detecting the hidden costs of flea parasitism through foraging behaviour in gerbils. Ecology Letters, 2011, 14, 47-51.                                                                                 | 6.4        | 41                   |
| 128 | Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera:) Tj ETQq0 0                                                                                                               | Ͻ rg₿Ţ /Ον | erlock 10 Tf 5<br>46 |
| 129 | Scale-dependence of phylogenetic signal in ecological traits of ectoparasites. Ecography, 2011, 34, 114-122.                                                                                                                  | 4.5        | 57                   |
| 130 | Aggregative structure is the rule in communities of fleas: null model analysis. Ecography, 2011, 34, 751-761.                                                                                                                 | 4.5        | 28                   |
| 131 | Nestedness and βâ€diversity in ectoparasite assemblages of small mammalian hosts: effects of parasite affinity, host biology and scale. Oikos, 2011, 120, 630-639.                                                            | 2.7        | 29                   |
| 132 | Host specificity in phylogenetic and geographic space. Trends in Parasitology, 2011, 27, 355-361.                                                                                                                             | 3.3        | 267                  |
| 133 | Beta-specificity: The turnover of host species in space and another way to measure host specificity.<br>International Journal for Parasitology, 2011, 41, 33-41.                                                              | 3.1        | 41                   |
| 134 | Discrimination of host sex by a haematophagous ectoparasite. Animal Behaviour, 2011, 81, 275-281.                                                                                                                             | 1.9        | 17                   |
| 135 | Does investment into "expensive―tissue compromise anti-parasitic defence? Testes size, brain size and parasite diversity in rodent hosts. Oecologia, 2011, 165, 7-16.                                                         | 2.0        | 20                   |
| 136 | Male hosts drive infracommunity structure of ectoparasites. Oecologia, 2011, 166, 1099-1110.                                                                                                                                  | 2.0        | 24                   |
| 137 | Flea infestation does not cause a long-term increase in energy metabolism in <i>Gerbillus nanus</i> .<br>Journal of Experimental Biology, 2011, 214, 3968-3971.                                                               | 1.7        | 3                    |
| 138 | Spatial variation in gender-biased parasitism: host-related, parasite-related and environment-related effects. Parasitology, 2010, 137, 1527-1536.                                                                            | 1.5        | 24                   |
| 139 | Prediction of prevalence from mean abundance via a simple epidemiological model in mesostigmate mites from two geographical regions. Parasitology, 2010, 137, 1227-1237.                                                      | 1.5        | 4                    |
| 140 | The effect of larval density on pre-imaginal development in two species of desert fleas. Parasitology,<br>2010, 137, 1925-1935.                                                                                               | 1.5        | 8                    |
| 141 | Similarity in ectoparasite faunas of Palaearctic rodents as a function of host phylogenetic,<br>geographic or environmental distances: Which matters the most?. International Journal for<br>Parasitology, 2010, 40, 807-817. | 3.1        | 69                   |
| 142 | Infestation experience of a rodent host and offspring viability of fleas: variation among host–parasite<br>associations. Journal of Experimental Zoology, 2010, 313A, 680-689.                                                | 1.2        | 7                    |
| 143 | Co-occurrence of ectoparasites on rodent hosts: null model analyses of data from three continents.<br>Oikos, 2010, 119, 120-128.                                                                                              | 2.7        | 52                   |
| 144 | Determinants of ectoparasite assemblage structure on rodent hosts from South American<br>marshlands: the effect of host species, locality and season. Medical and Veterinary Entomology, 2010,<br>24, no-no.                  | 1.5        | 28                   |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Nestedness versus modularity in ecological networks: two sides of the same coin?. Journal of Animal Ecology, 2010, 79, 811-817.                                                                                               | 2.8 | 367       |
| 146 | Deconstructing spatial patterns in species composition of ectoparasite communities: the relative contribution of host composition, environmental variables and geography. Global Ecology and Biogeography, 2010, 19, 515-526. | 5.8 | 31        |
| 147 | <i>Bartonella</i> Genotypes in Fleas (Insecta: Siphonaptera) Collected from Rodents in the Negev<br>Desert, Israel. Applied and Environmental Microbiology, 2010, 76, 6864-6869.                                              | 3.1 | 34        |
| 148 | Host gender and offspring quality in a flea parasitic on a rodent. Journal of Experimental Biology, 2010, 213, 3299-3304.                                                                                                     | 1.7 | 34        |
| 149 | Competition, facilitation or mediation via host? Patterns of infestation of small European mammals by two taxa of haematophagous arthropods. Ecological Entomology, 2010, 35, 37-44.                                          | 2.2 | 11        |
| 150 | Parasite-specific variation and the extent of male-biased parasitism; an example with a South African rodent and ectoparasitic arthropods. Parasitology, 2010, 137, 651-660.                                                  | 1.5 | 34        |
| 151 | Long-term study of population dynamics and habitat selection of rodents in the Negev Desert. Journal of Mammalogy, 2010, 91, 776-786.                                                                                         | 1.3 | 39        |
| 152 | Do Fleas Affect Energy Expenditure of Their Free-Living Hosts?. PLoS ONE, 2010, 5, e13686.                                                                                                                                    | 2.5 | 16        |
| 153 | Are local plague endemicity and ecological characteristics of vectors and reservoirs related? A case study in north-east Tanzania. Environmental Epigenetics, 2009, 55, 200-211.                                              | 1.8 | 20        |
| 154 | Searching for generality in the patterns of parasite abundance and distribution: Ectoparasites of a South African rodent, Rhabdomys pumilio. International Journal for Parasitology, 2009, 39, 781-788.                       | 3.1 | 24        |
| 155 | Does acquired resistance of rodent hosts affect metabolic rate of fleas?. Journal of Experimental Zoology, 2009, 311A, 389-398.                                                                                               | 1.2 | 3         |
| 156 | Effect of host gender on blood digestion in fleas: mediating role of environment. Parasitology<br>Research, 2009, 105, 1667-1673.                                                                                             | 1.6 | 26        |
| 157 | Inferring associations among parasitic gamasid mites from census data. Oecologia, 2009, 160, 175-185.                                                                                                                         | 2.0 | 14        |
| 158 | Stability in abundance and niche breadth of gamasid mites across environmental conditions, parasite identity and host pools. Evolutionary Ecology, 2009, 23, 329-345.                                                         | 1.2 | 30        |
| 159 | Is the feeding and reproductive performance of the flea, Xenopsylla ramesis, affected by the gender of its rodent host, Meriones crassus?. Journal of Experimental Biology, 2009, 212, 1429-1435.                             | 1.7 | 37        |
| 160 | How are the host spectra of hematophagous parasites shaped over evolutionary time? Random choice vs selection of a phylogenetic lineage. Parasitology Research, 2008, 102, 1157-1164.                                         | 1.6 | 6         |
| 161 | Scaleâ€invariance of niche breadth in fleas parasitic on small mammals. Ecography, 2008, 31, 630-635.                                                                                                                         | 4.5 | 18        |
| 162 | Effects of parasite specificity and previous infestation of hosts on the feeding and reproductive success of rodentâ€infesting fleas. Functional Ecology, 2008, 22, 530-536.                                                  | 3.6 | 19        |

| #   | Article                                                                                                                                                                                                                                                                        | IF    | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 163 | Evidence for a negative fitnessâ^'density relationship between parent density and offspring quality for two Xenopsylla spp. parasitic on desert mammals. Medical and Veterinary Entomology, 2008, 22, 156-166.                                                                 | 1.5   | 5         |
| 164 | Latitudinal gradients in niche breadth: empirical evidence from haematophagous ectoparasites.<br>Journal of Biogeography, 2008, 35, 592-601.                                                                                                                                   | 3.0   | 51        |
| 165 | Geographical patterns of abundance: testing expectations of the â€~abundance optimum' model in two taxa of ectoparasitic arthropods. Journal of Biogeography, 2008, 35, 2187-2194.                                                                                             | 3.0   | 8         |
| 166 | The morphology of islets of Langerhans is only mildly affected by the lack of Pdx-1 in the pancreas of adult Meriones jirds. General and Comparative Endocrinology, 2008, 159, 241-249.                                                                                        | 1.8   | 12        |
| 167 | Effects of food abundance, age, and flea infestation on the body condition and immunological<br>variables of a rodent host, and their consequences for flea survival. Comparative Biochemistry and<br>Physiology Part A, Molecular & Integrative Physiology, 2008, 150, 66-74. | 1.8   | 15        |
| 168 | Interaction frequency across the geographical range as a determinant of host specialisation in generalist fleas. International Journal for Parasitology, 2008, 38, 989-997.                                                                                                    | 3.1   | 7         |
| 169 | Why apply ecological laws to epidemiology?. Trends in Parasitology, 2008, 24, 304-309.                                                                                                                                                                                         | 3.3   | 51        |
| 170 | Connectance and parasite diet breadth in fleaâ€mammal webs. Ecography, 2008, 31, 16-20.                                                                                                                                                                                        | 4.5   | 19        |
| 171 | Programmed versus stimulus-driven antiparasitic grooming in a desert rodent. Behavioral Ecology, 2008, 19, 929-935.                                                                                                                                                            | 2.2   | 26        |
| 172 | Sex ratio in flea infrapopulations: number of fleas, host gender and host age do not have an effect.<br>Parasitology, 2008, 135, 1133-1141.                                                                                                                                    | 1.5   | 10        |
| 173 | Searching for general patterns in parasite ecology: host identity versus environmental influence on gamasid mite assemblages in small mammals. Parasitology, 2008, 135, 229-242.                                                                                               | 1.5   | 41        |
| 174 | HIGH INTERVALITY EXPLAINED BY PHYLOGENETIC CONSTRAINTS IN HOST–PARASITE WEBS. Ecology, 2008, 89 2043-2051.                                                                                                                                                                     | ' 3.2 | 27        |
| 175 | Ecology of host selection. , 2008, , 115-153.                                                                                                                                                                                                                                  |       | 1         |
| 176 | Reproductive success in two species of desert fleas: density dependence and host effect. Journal of Experimental Biology, 2007, 210, 2121-2127.                                                                                                                                | 1.7   | 5         |
| 177 | Species abundance and asymmetric interaction strength in ecological networks. Oikos, 2007, 116, 1120-1127.                                                                                                                                                                     | 2.7   | 58        |
| 178 | Density dependence of feeding success in haematophagous ectoparasites. Parasitology, 2007, 134, 1379-1386.                                                                                                                                                                     | 1.5   | 8         |
| 179 | Locomotor response to light and surface angle in three species of desert fleas. Parasitology<br>Research, 2007, 100, 973-982.                                                                                                                                                  | 1.6   | 7         |
| 180 | Species abundance and asymmetric interaction strength in ecological networks. Oikos, 2007, 116, 1120-1127.                                                                                                                                                                     | 2.7   | 497       |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Benefits, Costs and Constraints of Anti-Parasitic Grooming in Adult and Juvenile Rodents. Ethology, 2007, 113, 394-402.                                                                                                    | 1.1 | 64        |
| 182 | Geographical variation in the 'bottom-up' control of diversity: fleas and their small mammalian hosts.<br>Global Ecology and Biogeography, 2007, 16, 179-186.                                                              | 5.8 | 35        |
| 183 | Decay of similarity of gamasid mite assemblages parasitic on Palaearctic small mammals: geographic distance, host-species composition or environment. Journal of Biogeography, 2007, 34, 1691-1700.                        | 3.0 | 66        |
| 184 | Geographical range size and host specificity in ectoparasites: a case study with Amphipsylla fleas and rodent hosts. Journal of Biogeography, 2007, 34, 1679-1690.                                                         | 3.0 | 41        |
| 185 | Are there general rules governing parasite diversity? Small mammalian hosts and gamasid mite assemblages. Diversity and Distributions, 2007, 13, 353-360.                                                                  | 4.1 | 39        |
| 186 | Host defence versus intraspecific competition in the regulation of infrapopulations of the flea<br>Xenopsylla conformis on its rodent host Meriones crassus. International Journal for Parasitology,<br>2007, 37, 919-925. | 3.1 | 19        |
| 187 | Between-host phylogenetic distance and feeding efficiency in hematophagous ectoparasites: rodent fleas and a bat host. Parasitology Research, 2007, 101, 365-371.                                                          | 1.6 | 20        |
| 188 | Host community structure and infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. Oecologia, 2007, 154, 185-194.                                                                     | 2.0 | 45        |
| 189 | Ultimate mechanisms of age-biased flea parasitism. Oecologia, 2007, 154, 601-609.                                                                                                                                          | 2.0 | 18        |
| 190 | Aggregation and species coexistence in fleas parasitic on small mammals. Ecography, 2006, 29, 159-168.                                                                                                                     | 4.5 | 33        |
| 191 | Micromammals and macroparasites: Who is who and how do they interact?. , 2006, , 3-9.                                                                                                                                      |     | 11        |
| 192 | Resource predictability and host specificity in fleas: the effect of host body mass. Parasitology, 2006, 133, 81.                                                                                                          | 1.5 | 30        |
| 193 | Conservatism of host specificity in parasites. Ecography, 2006, 29, 596-602.                                                                                                                                               | 4.5 | 49        |
| 194 | Relationship between host abundance and parasite distribution: inferring regulating mechanisms from census data. Journal of Animal Ecology, 2006, 75, 575-583.                                                             | 2.8 | 56        |
| 195 | Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models.<br>Journal of Animal Ecology, 2006, 75, 1330-1339.                                                                     | 2.8 | 54        |
| 196 | Flea infestation and energy requirements of rodent hosts: are there general rules?. Functional Ecology, 2006, 20, 1028-1036.                                                                                               | 3.6 | 28        |
| 197 | Immunocompetence and flea parasitism of a desert rodent. Functional Ecology, 2006, 20, 637-646.                                                                                                                            | 3.6 | 23        |
| 198 | AGE-DEPENDENT FLEA (SIPHONAPTERA) PARASITISM IN RODENTS: A HOST'S LIFE HISTORY MATTERS. Journal of Parasitology, 2006, 92, 242-248.                                                                                        | 0.7 | 38        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Host Specificity, Parasite Community Size and the Relation between Abundance and its Variance.<br>Evolutionary Ecology, 2006, 20, 75-91.                                                      | 1.2 | 26        |
| 200 | Habitat variation in species composition of flea assemblages on small mammals in central Europe.<br>Ecological Research, 2006, 21, 460-469.                                                   | 1.5 | 46        |
| 201 | Relationships between local and regional species richness in flea communities of small mammalian hosts: saturation and spatial scale. Parasitology Research, 2006, 98, 403-413.               | 1.6 | 20        |
| 202 | Temporal variation in parasite infestation of a host individual: does a parasite-free host remain uninfested permanently?. Parasitology Research, 2006, 99, 541-545.                          | 1.6 | 33        |
| 203 | Ectoparasites and age-dependent survival in a desert rodent. Oecologia, 2006, 148, 30-39.                                                                                                     | 2.0 | 71        |
| 204 | Ecological characteristics of flea species relate to their suitability as plague vectors. Oecologia, 2006, 149, 474-481.                                                                      | 2.0 | 30        |
| 205 | Is abundance a species attribute? An example with haematophagous ectoparasites. Oecologia, 2006, 150, 132-140.                                                                                | 2.0 | 47        |
| 206 | Evolution of host specificity in fleas: Is it directional and irreversible?. International Journal for Parasitology, 2006, 36, 185-191.                                                       | 3.1 | 64        |
| 207 | Temporal dynamics of a T-cell mediated immune response in desert rodents. Comparative Biochemistry<br>and Physiology Part A, Molecular & Integrative Physiology, 2006, 145, 554-559.          | 1.8 | 50        |
| 208 | Age, intensity of infestation by flea parasites and body mass loss in a rodent host. Parasitology, 2006, 133, 187.                                                                            | 1.5 | 40        |
| 209 | Fleas: Permanent satellites of small mammals. , 2006, , 161-177.                                                                                                                              |     | 22        |
| 210 | Patterns of macroparasite diversity in small mammals. , 2006, , 197-231.                                                                                                                      |     | 12        |
| 211 | Patterns of host specificity in parasites exploiting small mammals. , 2006, , 233-256.                                                                                                        |     | 24        |
| 212 | Global changes and the future of micromammal-macroparasite interactions. , 2006, , 617-635.                                                                                                   |     | 3         |
| 213 | Diversification of ectoparasite assemblages and climate: an example with fleas parasitic on small mammals. Global Ecology and Biogeography, 2005, 14, 167-175.                                | 5.8 | 20        |
| 214 | Species abundance and the distribution of specialization in host-parasite interaction networks.<br>Journal of Animal Ecology, 2005, 74, 946-955.                                              | 2.8 | 199       |
| 215 | Spatial variation in species diversity and composition of flea assemblages in small mammalian hosts: geographical distance or faunal similarity?. Journal of Biogeography, 2005, 32, 633-644. | 3.0 | 98        |
| 216 | ls a starving host tastier? Reproduction in fleas parasitizing food-limited rodents. Functional<br>Ecology, 2005, 19, 625-631.                                                                | 3.6 | 59        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Host specificity and geographic range in haematophagous ectoparasites. Oikos, 2005, 108, 449-456.                                                                                              | 2.7 | 82        |
| 218 | Abundance patterns and coexistence processes in communities of fleas parasitic on small mammals.<br>Ecography, 2005, 28, 453-464.                                                              | 4.5 | 36        |
| 219 | Nested pattern in flea assemblages across the host's geographic range. Ecography, 2005, 28, 475-484.                                                                                           | 4.5 | 33        |
| 220 | Distribution of fleas (Siphonaptera) among small mammals: Mean abundance predicts prevalence via simple epidemiological model. International Journal for Parasitology, 2005, 35, 1097-1101.    | 3.1 | 17        |
| 221 | What are the factors determining the probability of discovering a flea species (Siphonaptera)?.<br>Parasitology Research, 2005, 97, 228-237.                                                   | 1.6 | 17        |
| 222 | Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent.<br>Oecologia, 2005, 146, 200-208.                                                         | 2.0 | 72        |
| 223 | Abundance and distribution of fleas on desert rodents: linking Taylor's power law to ecological specialization and epidemiology. Parasitology, 2005, 131, 825.                                 | 1.5 | 17        |
| 224 | Dietary intake and time budget in two desert rodents: a diurnal herbivore, Psammomys obesus, and a<br>nocturnal granivore, Meriones crassus. Mammalia, 2005, 69, .                             | 0.7 | 10        |
| 225 | Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia, 2005, 146, 209-217.                                                                                | 2.0 | 146       |
| 226 | Larval interspecific competition in two flea species parasitic on the same rodent host. Ecological Entomology, 2005, 30, 146-155.                                                              | 2.2 | 53        |
| 227 | Covariance in species diversity and facilitation among non-interactive parasite taxa: all against the host. Parasitology, 2005, 131, 557.                                                      | 1.5 | 31        |
| 228 | Energy costs of blood digestion in a host-specific haematophagous parasite. Journal of Experimental<br>Biology, 2005, 208, 2489-2496.                                                          | 1.7 | 46        |
| 229 | Relationship between host diversity and parasite diversity: flea assemblages on small mammals. Journal of Biogeography, 2004, 31, 1857-1866.                                                   | 3.0 | 70        |
| 230 | Sampling fleas: the reliability of host infestation data. Medical and Veterinary Entomology, 2004, 18, 232-240.                                                                                | 1.5 | 38        |
| 231 | Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: the influence of phylogeny and local environmental conditions. Ecography, 2004, 27, 787-797.    | 4.5 | 89        |
| 232 | Fitness consequences of host selection in ectoparasites: testing reproductive patterns predicted by isodar theory in fleas parasitizing rodents. Journal of Animal Ecology, 2004, 73, 815-820. | 2.8 | 56        |
| 233 | Flea species richness and parameters of host body, host geography and host â€~milieu'. Journal of Animal Ecology, 2004, 73, 1121-1128.                                                         | 2.8 | 125       |
| 234 | Metabolic rate and jump performance in seven species of desert fleas. Journal of Insect Physiology, 2004, 50, 149-156.                                                                         | 2.0 | 27        |

| #   | Article                                                                                                                                                                                                                          | IF                | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 235 | Relationships between parasite abundance and the taxonomic distance among a parasite's host species:<br>an example with fleas parasitic on small mammals. International Journal for Parasitology, 2004, 34,<br>1289-1297.        | 3.1               | 69            |
| 236 | Immune responses to fleas in two rodent species differing in natural prevalence of infestation and diversity of flea assemblages. Parasitology Research, 2004, 94, 304-311.                                                      | 1.6               | 51            |
| 237 | Temporal dynamics in spatial organization of a rodent community in the Negev Highlands (Israel).<br>Journal of Zoology, 2004, 263, 207-218.                                                                                      | 1.7               | 9             |
| 238 | Immune response to fleas in a wild desert rodent: effect of parasite species, parasite burden, sex of host and host parasitological experience. Journal of Experimental Biology, 2004, 207, 2725-2733.                           | 1.7               | 74            |
| 239 | Ectoparasitic "Jacksâ€ofâ€Allâ€Trades†Relationship between Abundance and Host Specificity in Fleas<br>(Siphonaptera) Parasitic on Small Mammals. American Naturalist, 2004, 164, 506-516.                                        | 2.1               | 101           |
| 240 | Host specificity and foraging efficiency in blood-sucking parasite: feeding patterns of the flea<br>Parapulex chephrenis on two species of desert rodents. Parasitology Research, 2003, 90, 393-399.                             | 1.6               | 62            |
| 241 | Density-dependent host selection in ectoparasites: An application of isodar theory to fleas parasitizing rodents. Oecologia, 2003, 134, 365-372.                                                                                 | 2.0               | 57            |
| 242 | Sexual size dimorphism, morphological traits and jump performance in seven species of desert fleas<br>(Siphonaptera). Journal of Zoology, 2003, 261, 181-189.                                                                    | 1.7               | 35            |
| 243 | COEVOLUTIONARY EVENTS IN THE HISTORY OF ASSOCIATION BETWEEN JERBOAS (RODENTIA: DIPODIDAE)<br>AND THEIR FLEA PARASITES. Israel Journal of Zoology, 2002, 48, 331-350.                                                             | 0.2               | 38            |
| 244 | Novel case of a tenebrionid beetle using discontinuous gas exchange cycle when dehydrated.<br>Physiological Entomology, 2002, 27, 79-83.                                                                                         | 1.5               | 29            |
| 245 | Habitat-dependent differences in architecture and microclimate of the burrows of Sundevall's jird<br>(Meriones crassus) (Rodentia: Gerbillinae) in the Negev Desert, Israel. Journal of Arid Environments,<br>2002, 51, 265-279. | 2.4               | 69            |
| 246 | THE EFFECT OF HOST DENSITY ON ECTOPARASITE DISTRIBUTION: AN EXAMPLE OF A RODENT PARASITIZED BY FLEAS. Ecology, 2002, 83, 164-175.                                                                                                | 3.2               | 126           |
| 247 | Water Balance in Two Species of Desert Fleas,Xenopsylla ramesisandX. conformis(Siphonaptera:) Tj ETQq1 1 0.78                                                                                                                    | 84314 rgB<br>1.8  | T /Overlock   |
| 248 | The effect of substrate on survival and development of two species of desert fleas (Siphonaptera:) Tj ETQq0 0 0 r                                                                                                                | gBT /Overl<br>2.0 | ၀ၚန္ 10 Tf 50 |
| 249 | Energy cost of ectoparasitism: the fleaXenopsylla ramesison the desert gerbilGerbillus dasyurus.<br>Journal of Zoology, 2002, 258, 349-354.                                                                                      | 1.7               | 91            |
| 250 | Can interaction coefficients be determined from census data? Testing two estimation methods with Negev Desert rodents. Oikos, 2002, 99, 47-58.                                                                                   | 2.7               | 29            |
| 251 | Annual cycles of four flea species in the central Negev desert. Medical and Veterinary Entomology, 2002, 16, 266-276.                                                                                                            | 1.5               | 60            |
| 252 | Host discrimination by two desert fleas using an odour cue. Animal Behaviour, 2002, 64, 33-40.                                                                                                                                   | 1.9               | 56            |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Metabolic rate and respiratory gas-exchange patterns in tenebrionid beetles from the Negev<br>Highlands, Israel. Journal of Experimental Biology, 2002, 205, 791-798.                                   | 1.7 | 34        |
| 254 | The Effect of Host Density on Ectoparasite Distribution: An Example of a Rodent Parasitized by Fleas.<br>Ecology, 2002, 83, 164.                                                                        | 3.2 | 4         |
| 255 | Effect of Air Temperature and Humidity on the Survival of Pre-Imaginal Stages of Two Flea Species<br>(Siphonaptera: Pulicidae). Journal of Medical Entomology, 2001, 38, 629-637.                       | 1.8 | 164       |
| 256 | BODY MASS AND ENVIRONMENT: A STUDY IN NEGEV RODENTS. Israel Journal of Zoology, 2001, 47, 1-13.                                                                                                         | 0.2 | 16        |
| 257 | The effect of vegetation cover on vigilance and foraging tactics in the fat sand rat Psammomys obesus. Journal of Ethology, 2001, 19, 105-113.                                                          | 0.8 | 56        |
| 258 | Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Medical and Veterinary Entomology, 2001, 15, 249-258.                                                     | 1.5 | 91        |
| 259 | Intra- and interspecific variation in vigilance and foraging of two gerbillid rodents, Rhombomys<br>opimus andPsammomys obesus : the effect of social environment. Animal Behaviour, 2001, 62, 965-972. | 1.9 | 29        |
| 260 | Respiratory Gas Exchange in the Flea <i>Xenopsylla conformis</i> (Siphonaptera: Pulicidae). Journal of<br>Medical Entomology, 2001, 38, 735-739.                                                        | 1.8 | 18        |
| 261 | Does foodâ€searching ability determine habitat selection? Foraging in sand of three species of gerbilline rodents. Ecography, 2000, 23, 122-129.                                                        | 4.5 | 6         |
| 262 | Does food-searching ability determine habitat selection? Foraging in sand of three species of gerbilline rodents. Ecography, 2000, 23, 122-129.                                                         | 4.5 | 2         |
| 263 | Space use in Wagner's gerbil Gerbillus dasyurus in the Negev Highlands, Israel. Acta Theriologica, 2000, 45, 175-182.                                                                                   | 1.1 | 13        |
| 264 | Average daily metabolic rate of rodents: habitat and dietary comparisons. Functional Ecology, 1998, 12, 63-73.                                                                                          | 3.6 | 52        |
| 265 | Habitat Dependence of a Parasite-Host Relationship: Flea (Siphonaptera) Assemblages in Two Gerbil<br>Species of the Negev Desert. Journal of Medical Entomology, 1998, 35, 303-313.                     | 1.8 | 76        |
| 266 | Spatial patterns of rodent communities in the Ramon erosion cirque, Negev Highlands, Israel. Journal of Arid Environments, 1996, 32, 319-327.                                                           | 2.4 | 47        |
| 267 | Discrimination of midday jird's odour by house mice. Animal Behaviour, 1996, 52, 659-665.                                                                                                               | 1.9 | 13        |
| 268 | Seasonal changes in darkling beetle communities (Coleoptera: Tenebrionidae) in the Ramon erosion cirque, Negev Highlands, Israel. Journal of Arid Environments, 1995, 31, 335-347.                      | 2.4 | 26        |
| 269 | Population dynamics of ectoparasites of terrestrial hosts. , 0, , 21-34.                                                                                                                                |     | 0         |
|     |                                                                                                                                                                                                         |     |           |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Geographic patterns of diversification: an example with ectoparasitic insects. Biological Journal of the Linnean Society, 0, 95, 807-814.                                                                                         | 1.6 | 1         |
| 272 | Evolutionary history of Siphonaptera: fossils, origins, vectors. , 0, , 230-245.                                                                                                                                                  |     | 4         |
| 273 | Quantifying parasite diversity. , 0, , 9-26.                                                                                                                                                                                      |     | 3         |
| 274 | Host correlates of diversification in avian lice. , 0, , 215-229.                                                                                                                                                                 |     | 6         |
| 275 | Comparative analysis: recent developments and uses with parasites. , 0, , 337-350.                                                                                                                                                |     | 1         |
| 276 | Phylogenetic signals in ecological properties of parasites. , 0, , 351-359.                                                                                                                                                       |     | 2         |
| 277 | Relationships between parasite diversity and host diversity. , 0, , 27-38.                                                                                                                                                        |     | 2         |
| 278 | Identification of the missing links in parasite–host networks using the dark diversity concept: a case<br>study with two taxonomic groups of ectoparasitic arthropods and small mammalian hosts.<br>Ecological Entomology, 0, , . | 2.2 | 1         |

Ecological Entomology, 0, , .