Richard A Jorgensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2577673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408, 796-815.	27.8	8,336
2	The Genome of Black Cottonwood, <i>Populus trichocarpa</i> (Torr. & Gray). Science, 2006, 313, 1596-1604.	12.6	3,945
3	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
4	Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research, 2002, 30, 5036-5055.	14.5	672
5	Genetic and Developmental Control of Anthocyanin Biosynthesis. Annual Review of Genetics, 1991, 25, 173-199.	7.6	581
6	Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell, 1990, 2, 279.	6.6	564
7	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	7.1	563
8	FLOWERING LOCUS T Protein May Act as the Long-Distance Florigenic Signal in the Cucurbits. Plant Cell, 2007, 19, 1488-1506.	6.6	420
9	Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Molecular Biology, 1996, 31, 957-973.	3.9	344
10	Altered gene expression in plants due totrans interactions between homologous genes. Trends in Biotechnology, 1990, 8, 340-344.	9.3	288
11	Phytochrome control of RNA levels in developing pea and mung-bean leaves. Planta, 1983, 158, 487-500.	3.2	278
12	BOTANY: An RNA-Based Information Superhighway in Plants. Science, 1998, 279, 1486-1487.	12.6	217
13	CHLOROPLAST DNA VARIATION AND EVOLUTION IN PISUM: PATTERNS OF CHANGE AND PHYLOGENETIC ANALYSIS. Genetics, 1985, 109, 195-213.	2.9	204
14	Effectiveness of RNA interference in transgenic plants. FEBS Letters, 2004, 566, 223-228.	2.8	188
15	T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Molecular Genetics and Genomics, 1987, 207, 471-477.	2.4	158
16	Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biology, 2007, 5, 32.	3.8	147
17	Structure and variation in ribosomal RNA genes of pea. Plant Molecular Biology, 1987, 8, 3-12.	3.9	131
18	Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Molecular Genetics and Genomics, 1986, 204, 64-69.	2.4	117

RICHARD A JORGENSEN

#	Article	IF	CITATIONS
19	Distinct extremely abundant siRNAs associated with cosuppression in petunia. Rna, 2009, 15, 1965-1970.	3.5	93
20	Conserved Peptide Upstream Open Reading Frames are Associated with Regulatory Genes in Angiosperms. Frontiers in Plant Science, 2012, 3, 191.	3.6	77
21	Distinct patterns of pigment suppression are produced by allelic sense and antisense chalcone synthase transgenes in petunia flowers. Plant Journal, 1998, 13, 401-409.	5.7	69
22	The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence. Plant Cell, 1997, 9, 1357.	6.6	63
23	Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. Journal of Experimental Botany, 2012, 63, 5203-5221.	4.8	58
24	Homology-based control of gene expression patterns in transgenic petunia flowers. , 1998, 22, 100-109.		48
25	Restructuring the Genome in Response to Adaptive Challenge: McClintock's Bold Conjecture Revisited. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 349-354.	1.1	45
26	The origin of land plants: a union of alga and fungus advanced by flavonoids?. BioSystems, 1993, 31, 193-207.	2.0	41
27	Novel evolutionary variation in transcription and location of two chloroplast genes. Nucleic Acids Research, 1982, 10, 6819-6832.	14.5	39
28	RNA traffics information systemically in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11561-11563.	7.1	39
29	Developmental significance of epigenetic impositions on the plant genome: A paragenetic function for chromosomes. Genesis, 1994, 15, 523-532.	2.1	34
30	Do unintended antisense transcripts contribute to sense cosuppression in plants?. Trends in Genetics, 1999, 15, 11-12.	6.7	31
31	Suppression of recombination in wide hybrids of Petunia hybrida as revealed by genetic mapping of marker transgenes. Theoretical and Applied Genetics, 1995, 90, 957-968.	3.6	28
32	A Paragenetic Perspective on Integration of RNA Silencing into the Epigenome and Its Role in the Biology of Higher Plants. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 481-485.	1.1	15
33	Microhomologies between T-DNA ends and target sites often occur in inverted orientation and may be responsible for the high frequency of T-DNA-associated inversions. Plant Cell Reports, 2007, 26, 617-630.	5.6	14
34	Epigenetics: Biology's Quantum Mechanics. Frontiers in Plant Science, 2011, 2, 10.	3.6	11
35	Research note: Maternally-controlled ovule abortion results from cosuppression of dihydroflavonol-4-reductase or flavonoid-3′,5′-hydroxylase genes in Petunia hybrida. Functional Plant Biology, 2002, 29, 1500.	2.1	9
36	Targeted forward mutagenesis by transitive RNAi. Plant Journal, 2010, 61, 873-882.	5.7	9

RICHARD A JORGENSEN

0

#	Article	IF	CITATIONS
37	A specific tetracycline-induced, low-molecular-weight RNA encoded by the inverted repeat of Tn10 (IS10). Plasmid, 1981, 6, 148-150.	1.4	8
38	A Hybrid Seed Production Method Based on Synthesis of Novel Linkages between Marker and Male‣terile Genes 1. Crop Science, 1987, 27, 806-810.	1.8	5
39	Sequencing Maize: Just Sample the Salsa or Go for the Whole Enchilada?. Plant Cell, 2004, 16, 787-788.	6.6	5
40	Elicitation of Organized Pigmentation Patterns by a Chalcone Synthase Transgene. , 1993, , 87-92.		4
41	Silencing Morpheus awakens transgenes. Nature Biotechnology, 2000, 18, 602-603.	17.5	3
42	Criteria for Publication in The Plant Cell. Plant Cell, 2004, 16, 1645-1646.	6.6	3
43	Evaluating and improving cDNA sequence quality with cQC. Bioinformatics, 2005, 21, 4414-4415.	4.1	3
44	21st Century Plant Biology: Viva la RevoluciÃ ³ n?. Plant Cell, 2007, 19, 389-390.	6.6	3
45	Of Genes and Genomes: Challenges for the Twenty-First Century. Frontiers in Plant Science, 2010, 1, 1.	3.6	3
46	We're All Computational Biologists Now?Next Stop, the Global Brain?. Frontiers in Genetics, 2011, 2, 68.	2.3	3
47	Movement of Macromolecules in Plant Cells Through Plasmodesmata. Science Signaling, 2006, 2006, tr2-tr2.	3.6	3
48	Plant Genomes. Plant Cell, 2006, 18, 1099-1099.	6.6	2
49	Large-Scale Biology. Plant Cell, 2006, 18, 2095-2096.	6.6	2
50	A Responsive Regulatory System is Revealed by Sense Suppression of Pigment Genes in Petunia Flowers. Stadler Genetics Symposia Series, 1996, , 159-176.	0.0	2
51	ASPB's Response to the NIH's Public Access Policy. Plant Physiology, 2005, 138, 540-541.	4.8	1
52	ASPB's Response to NIH's Public Access Policy. Plant Cell, 2005, 17, 1637-1637.	6.6	0
53	Rewarding Collaboration. Plant Cell, 2007, 19, 2967-2967.	6.6	0

54 Mutagenesis by Transitive RNAi. , 2011, , 407-418.

#	Article	IF	CITATIONS
55	A Window on the Sophistication of Plants. Science, 2011, 333, 1103-1104.	12.6	0
56	A Vision for 21st Century Agricultural Research. Frontiers in Plant Science, 2012, 3, 157.	3.6	0
57	Reflections on the Issue of Regulation in Molecular and Cellular Biology. Plant Cell, 2019, 31, 1408-1409.	6.6	0