
## Didier Y R Stainier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2577549/publications.pdf Version: 2024-02-01



DIDIED Y P STAINIED

| #  | Article                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Developmental Cell, 2008, 15, 272-284.                                                    | 3.1  | 1,489     |
| 2  | Vertebrate Smoothened functions at the primary cilium. Nature, 2005, 437, 1018-1021.                                                                     | 13.7 | 1,317     |
| 3  | Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature, 2015, 524, 230-233.                                               | 13.7 | 1,043     |
| 4  | Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 2010, 464, 601-605.                                               | 13.7 | 965       |
| 5  | The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 2013, 15, 807-817.                                                         | 4.6  | 945       |
| 6  | Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nature Reviews<br>Molecular Cell Biology, 2011, 12, 551-564.          | 16.1 | 888       |
| 7  | Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 2010,<br>464, 108-111.                                     | 13.7 | 885       |
| 8  | Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development<br>(Cambridge), 2005, 132, 5199-5209.                     | 1.2  | 742       |
| 9  | Genetic compensation triggered by mutant mRNA degradation. Nature, 2019, 568, 193-197.                                                                   | 13.7 | 734       |
| 10 | Genetic compensation: A phenomenon in search of mechanisms. PLoS Genetics, 2017, 13, e1006780.                                                           | 1.5  | 628       |
| 11 | Hepatic stellate cells in liver development, regeneration, and cancer. Journal of Clinical Investigation, 2013, 123, 1902-1910.                          | 3.9  | 553       |
| 12 | Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genetics, 2002, 31, 106-110.                                     | 9.4  | 551       |
| 13 | Selective plane illumination microscopy techniques in developmental biology. Development (Cambridge), 2009, 136, 1963-1975.                              | 1.2  | 520       |
| 14 | Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies. Developmental<br>Dynamics, 2007, 236, 1025-1035.                   | 0.8  | 456       |
| 15 | Restricted Expression of Cardiac Myosin Genes Reveals Regulated Aspects of Heart Tube Assembly in<br>Zebrafish. Developmental Biology, 1999, 214, 23-37. | 0.9  | 433       |
| 16 | Optogenetic Control of Cardiac Function. Science, 2010, 330, 971-974.                                                                                    | 6.0  | 426       |
| 17 | Universal GFP reporter for the study of vascular development. Genesis, 2000, 28, 75-81.                                                                  | 0.8  | 424       |
| 18 | A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development.<br>Nature, 2000, 406, 192-195.                          | 13.7 | 410       |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM).<br>Optics Letters, 2007, 32, 2608.                                                                              | 1.7  | 398       |
| 20 | Zebrafish genetics and vertebrate heart formation. Nature Reviews Genetics, 2001, 2, 39-48.                                                                                                                       | 7.7  | 387       |
| 21 | The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature, 2004, 428, 754-758.                                                                                                 | 13.7 | 349       |
| 22 | Formation of the digestive system in zebrafish. I. liver morphogenesis. Developmental Biology, 2003, 253, 279-290.                                                                                                | 0.9  | 347       |
| 23 | Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nature Protocols, 2008, 3, 948-954. | 5.5  | 340       |
| 24 | Foxn4 directly regulates <i>tbx2b</i> expression and atrioventricular canal formation. Genes and Development, 2008, 22, 734-739.                                                                                  | 2.7  | 339       |
| 25 | Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Developmental<br>Biology, 2005, 286, 114-135.                                                                           | 0.9  | 333       |
| 26 | Mesodermal Wnt2b signalling positively regulates liver specification. Nature, 2006, 442, 688-691.                                                                                                                 | 13.7 | 322       |
| 27 | Combinatorial Regulation of Endothelial Gene Expression by Ets and Forkhead Transcription Factors.<br>Cell, 2008, 135, 1053-1064.                                                                                 | 13.5 | 306       |
| 28 | Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development.<br>Development (Cambridge), 2005, 132, 4193-4204.                                                                      | 1.2  | 303       |
| 29 | Arterial-Venous Segregation by Selective Cell Sprouting: An Alternative Mode of Blood Vessel<br>Formation. Science, 2009, 326, 294-298.                                                                           | 6.0  | 302       |
| 30 | Fibronectin Regulates Epithelial Organization during Myocardial Migration in Zebrafish.<br>Developmental Cell, 2004, 6, 371-382.                                                                                  | 3.1  | 297       |
| 31 | A molecular pathway leading to endoderm formation in zebrafish. Current Biology, 1999, 9, 1147-1157.                                                                                                              | 1.8  | 283       |
| 32 | A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature, 2006, 443, 337-339.                                                                                            | 13.7 | 280       |
| 33 | casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes and Development, 2001, 15, 1493-1505.                                                      | 2.7  | 273       |
| 34 | Formation of the digestive system in zebrafish. ii. pancreas morphogenesisâ~†. Developmental Biology,<br>2003, 261, 197-208.                                                                                      | 0.9  | 265       |
| 35 | Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis.<br>Current Biology, 2001, 11, 1492-1502.                                                                         | 1.8  | 264       |
| 36 | UDP-Glucose Dehydrogenase Required for Cardiac Valve Formation in Zebrafish. Science, 2001, 293, 1670-1673.                                                                                                       | 6.0  | 263       |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | casanova Plays an Early and Essential Role in Endoderm Formation in Zebrafish. Developmental<br>Biology, 1999, 215, 343-357.                                                        | 0.9  | 258       |
| 38 | Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.                                                                                                      | 1.5  | 255       |
| 39 | Little Fish, Big Data: Zebrafish as a Model for Cardiovascular and Metabolic Disease. Physiological<br>Reviews, 2017, 97, 889-938.                                                  | 13.1 | 250       |
| 40 | Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development (Cambridge), 2003, 130, 6121-6129.    | 1.2  | 241       |
| 41 | Uncovering the Molecular and Cellular Mechanisms of Heart Development Using the Zebrafish.<br>Annual Review of Genetics, 2012, 46, 397-418.                                         | 3.2  | 236       |
| 42 | Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System. PLoS Biology, 2008,<br>6, e109.                                                                     | 2.6  | 233       |
| 43 | In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 2013, 498, 497-501.                                                                              | 13.7 | 229       |
| 44 | Genetic control of single lumen formation in the zebrafish gut. Nature Cell Biology, 2007, 9, 954-960.                                                                              | 4.6  | 227       |
| 45 | Zebrafish model for human long QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11316-11321.                                | 3.3  | 215       |
| 46 | microRNA-138 modulates cardiac patterning during embryonic development. Proceedings of the<br>National Academy of Sciences of the United States of America, 2008, 105, 17830-17835. | 3.3  | 214       |
| 47 | Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. Journal of Clinical Investigation, 2010, 120, 266-279.                | 3.9  | 213       |
| 48 | Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. ELife, 2017, 6, .                                             | 2.8  | 211       |
| 49 | Patterning the zebrafish heart tube: Acquisition of anteroposterior polarity. Developmental Biology, 1992, 153, 91-101.                                                             | 0.9  | 205       |
| 50 | From endoderm formation to liver and pancreas development in zebrafish. Mechanisms of Development, 2003, 120, 5-18.                                                                 | 1.7  | 205       |
| 51 | Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development (Cambridge), 2012, 139, 1557-1567.            | 1.2  | 197       |
| 52 | Injury-induced <i>ctgfa</i> directs glial bridging and spinal cord regeneration in zebrafish. Science, 2016, 354, 630-634.                                                          | 6.0  | 196       |
| 53 | A dual role for ErbB2 signaling in cardiac trabeculation. Development (Cambridge), 2010, 137, 3867-3875.                                                                            | 1.2  | 195       |
| 54 | Early Myocardial Function Affects Endocardial Cushion Development in Zebrafish. PLoS Biology, 2004,<br>2, e129.                                                                     | 2.6  | 191       |

4

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Bmp and Fgf signaling are essential for liver specification in zebrafish. Development (Cambridge), 2007, 134, 2041-2050.                                                                                     | 1.2  | 190       |
| 56 | Extensive Conversion of Hepatic Biliary Epithelial Cells to Hepatocytes After Near Total Loss of<br>Hepatocytes in Zebrafish. Gastroenterology, 2014, 146, 776-788.                                          | 0.6  | 190       |
| 57 | High-speed imaging of developing heart valves reveals interplay of morphogenesis and function.<br>Development (Cambridge), 2008, 135, 1179-1187.                                                             | 1.2  | 188       |
| 58 | Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nature Genetics, 2007, 39, 397-402.                                                                                           | 9.4  | 182       |
| 59 | Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. ELife, 2015, 4, .                                                                  | 2.8  | 182       |
| 60 | Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis. Cell, 2013, 152, 504-518.                                                                                                   | 13.5 | 176       |
| 61 | Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nature Communications, 2011, 2, 187.                                                                      | 5.8  | 175       |
| 62 | Fast revascularization of the injured area is essential to support zebrafish heart regeneration.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11237-11242. | 3.3  | 172       |
| 63 | Adenosine Signaling Promotes Regeneration of Pancreatic β Cells InÂVivo. Cell Metabolism, 2012, 15,<br>885-894.                                                                                              | 7.2  | 170       |
| 64 | The zebrafish <i>bonnie and clyde</i> gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes and Development, 2000, 14, 1279-1289.                      | 2.7  | 170       |
| 65 | A molecular mechanism for Wnt ligand-specific signaling. Science, 2018, 361, .                                                                                                                               | 6.0  | 169       |
| 66 | Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth.<br>Nature Cell Biology, 2016, 18, 886-896.                                                                  | 4.6  | 168       |
| 67 | The G Protein-Coupled Receptor Agtrl1b Regulates Early Development of Myocardial Progenitors.<br>Developmental Cell, 2007, 12, 403-413.                                                                      | 3.1  | 167       |
| 68 | Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning.<br>Genesis, 1998, 22, 288-299.                                                                                 | 3.1  | 162       |
| 69 | Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nature<br>Chemical Biology, 2013, 9, 97-104.                                                                       | 3.9  | 161       |
| 70 | A glimpse into the molecular entrails of endoderm formation. Genes and Development, 2002, 16, 893-907.                                                                                                       | 2.7  | 159       |
| 71 | Loss-of-function genetic tools for animal models: cross-species and cross-platform differences.<br>Nature Reviews Genetics, 2017, 18, 24-40.                                                                 | 7.7  | 159       |
| 72 | Interferon Gamma Signaling Positively Regulates Hematopoietic Stem Cell Emergence. Developmental<br>Cell, 2014, 31, 640-653.                                                                                 | 3.1  | 158       |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Spinster Homolog, Two of Hearts, Is Required for Sphingosine 1-Phosphate Signaling in Zebrafish.<br>Current Biology, 2008, 18, 1882-1888.                                                                                               | 1.8  | 157       |
| 74 | Distinct populations of quiescent and proliferative pancreatic Î <sup>2</sup> -cells identified by HOTcre mediated<br>labeling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>14896-14901. | 3.3  | 157       |
| 75 | In vivo cell biology: following the zebrafish trend. Trends in Cell Biology, 2006, 16, 105-112.                                                                                                                                             | 3.6  | 153       |
| 76 | Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development (Cambridge), 2014, 141, 3103-3104.                                                                                  | 1.2  | 152       |
| 77 | Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature, 2016, 535, 294-298.                                                                                                                           | 13.7 | 151       |
| 78 | Transcriptional Silencing and Reactivation in Transgenic Zebrafish. Genetics, 2009, 182, 747-755.                                                                                                                                           | 1.2  | 149       |
| 79 | Bmp2 Signaling Regulates the Hepatic versus Pancreatic Fate Decision. Developmental Cell, 2008, 15, 738-748.                                                                                                                                | 3.1  | 142       |
| 80 | A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development<br>(Cambridge), 2011, 138, 1409-1419.                                                                                                 | 1.2  | 142       |
| 81 | Lessons from "Lower―Organisms: What Worms, Flies, and Zebrafish Can Teach Us about Human Energy<br>Metabolism. PLoS Genetics, 2007, 3, e199.                                                                                                | 1.5  | 140       |
| 82 | Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Developmental Biology, 2009, 334, 213-223.                                                                        | 0.9  | 139       |
| 83 | Microsomal Triglyceride Transfer Protein Is Required for Yolk Lipid Utilization and Absorption of<br>Dietary Lipids in Zebrafish Larvaeâ€. Biochemistry, 2006, 45, 15179-15187.                                                             | 1.2  | 136       |
| 84 | A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Current Biology, 1999, 9, 1131-S4.                                                                           | 1.8  | 134       |
| 85 | Birc2 (clap1) regulates endothelial cell integrity and blood vessel homeostasis. Nature Genetics, 2007, 39, 1397-1402.                                                                                                                      | 9.4  | 131       |
| 86 | ETS Factors Regulate Vegf-Dependent Arterial Specification. Developmental Cell, 2013, 26, 45-58.                                                                                                                                            | 3.1  | 124       |
| 87 | A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Developmental Biology, 2007, 307, 29-42.                                                                                 | 0.9  | 123       |
| 88 | Zebrafish in the Study of Early Cardiac Development. Circulation Research, 2012, 110, 870-874.                                                                                                                                              | 2.0  | 119       |
| 89 | Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation in zebrafish. Development (Cambridge), 2015, 142, 4080-4091.                                                                                       | 1.2  | 117       |
| 90 | High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development (Cambridge), 2014, 141, 585-593.                                                                                     | 1.2  | 116       |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting.<br>Genes and Development, 2012, 26, 282-293.                                                                | 2.7 | 115       |
| 92  | The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly<br>in zebrafish. Development (Cambridge), 2006, 133, 4063-4072.                                         | 1.2 | 113       |
| 93  | A Cellular Framework for Gut-Looping Morphogenesis in Zebrafish. Science, 2003, 302, 662-665.                                                                                                                | 6.0 | 111       |
| 94  | The zebrafish as a model system to study cardiovascular development. Trends in Cardiovascular<br>Medicine, 1994, 4, 207-212.                                                                                 | 2.3 | 109       |
| 95  | <i>Iroquois homeobox gene 3</i> establishes fast conduction in the cardiac His–Purkinje network.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13576-13581. | 3.3 | 109       |
| 96  | <i>glucagon</i> is essential for alpha cell transdifferentiation and beta cell neogenesis. Development<br>(Cambridge), 2015, 142, 1407-1417.                                                                 | 1.2 | 108       |
| 97  | sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development. PLoS Genetics, 2012, 8, e1002754.                                                                                                  | 1.5 | 107       |
| 98  | A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation.<br>Nature Communications, 2016, 7, 11303.                                                              | 5.8 | 106       |
| 99  | In vivo modulation of endothelial polarization by Apelin receptor signalling. Nature Communications, 2016, 7, 11805.                                                                                         | 5.8 | 105       |
| 100 | Cardiac conduction is required to preserve cardiac chamber morphology. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14662-14667.                              | 3.3 | 103       |
| 101 | Isolation of the zebrafish homologues for thetie-1 andtie-2 endothelium-specific receptor tyrosine<br>kinases. Developmental Dynamics, 1998, 212, 133-140.                                                   | 0.8 | 101       |
| 102 | Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Reports, 2004, 5, 78-84.                                                                                            | 2.0 | 98        |
| 103 | Making Sense of Anti-Sense Data. Developmental Cell, 2015, 32, 7-8.                                                                                                                                          | 3.1 | 98        |
| 104 | Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. General and Comparative Endocrinology, 2011, 170, 334-345.                                      | 0.8 | 96        |
| 105 | Hif-1α regulates macrophage-endothelial interactions during blood vessel development in zebrafish.<br>Nature Communications, 2017, 8, 15492.                                                                 | 5.8 | 96        |
| 106 | Use of three-dimensional organoids and lung-on-a-chip methods to study lung development,<br>regeneration and disease. European Respiratory Journal, 2018, 52, 1800876.                                       | 3.1 | 96        |
| 107 | Immune responses in cardiac repair and regeneration: a comparative point of view. Cellular and Molecular Life Sciences, 2019, 76, 1365-1380.                                                                 | 2.4 | 96        |
| 108 | No Organ Left Behind: Tales of Gut Development and Evolution. Science, 2005, 307, 1902-1904.                                                                                                                 | 6.0 | 95        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Tbx5 and Bmp Signaling Are Essential for Proepicardium Specification in Zebrafish. Circulation Research, 2010, 106, 1818-1828.                                                                         | 2.0 | 95        |
| 110 | Endothelial Signals Modulate Hepatocyte Apicobasal Polarization in Zebrafish. Current Biology, 2008,<br>18, 1565-1571.                                                                                 | 1.8 | 94        |
| 111 | Paraxial Mesoderm Is the Major Source of Lymphatic Endothelium. Developmental Cell, 2019, 50, 247-255.e3.                                                                                              | 3.1 | 94        |
| 112 | The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo.<br>Development (Cambridge), 2002, 129, 1623-1632.                                                    | 1.2 | 93        |
| 113 | Coronary Revascularization During Heart Regeneration Is Regulated by Epicardial and Endocardial<br>Cues and Forms a Scaffold for Cardiomyocyte Repopulation. Developmental Cell, 2019, 51, 503-515.e4. | 3.1 | 89        |
| 114 | Intra-Endodermal Interactions Are Required for Pancreatic β Cell Induction. Developmental Cell, 2008, 14, 582-593.                                                                                     | 3.1 | 88        |
| 115 | A Mutation in Zebrafish hmgcr1b Reveals a Role for Isoprenoids in Vertebrate Heart-Tube Formation.<br>Current Biology, 2007, 17, 252-259.                                                              | 1.8 | 87        |
| 116 | AP-1 Contributes to Chromatin Accessibility to Promote Sarcomere Disassembly and Cardiomyocyte<br>Protrusion During Zebrafish Heart Regeneration. Circulation Research, 2020, 126, 1760-1778.          | 2.0 | 87        |
| 117 | MicroRNA-10 Regulates the Angiogenic Behavior of Zebrafish and Human Endothelial Cells by<br>Promoting Vascular Endothelial Growth Factor Signaling. Circulation Research, 2012, 111, 1421-1433.       | 2.0 | 84        |
| 118 | Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae<br>in the Zebrafish Notochord. Current Biology, 2017, 27, 1982-1989.e3.                             | 1.8 | 83        |
| 119 | The Extracellular Domain of Smoothened Regulates Ciliary Localization and Is Required for High-Level<br>Hh Signaling. Current Biology, 2009, 19, 1034-1039.                                            | 1.8 | 81        |
| 120 | Bmp2b and Oep Promote Early Myocardial Differentiation through Their Regulation of gata5.<br>Developmental Biology, 2001, 234, 330-338.                                                                | 0.9 | 80        |
| 121 | Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas.<br>Genes and Development, 2008, 22, 1445-1450.                                                 | 2.7 | 79        |
| 122 | Characterization of the Huntington's disease (HD) gene homolog in the zebrafish Danio rerio. Gene,<br>1998, 217, 117-125.                                                                              | 1.0 | 78        |
| 123 | Three zebrafish MEF2 genes delineate somitic and cardiac muscle development in wild-type and mutant<br>embryos. Mechanisms of Development, 1996, 59, 205-218.                                          | 1.7 | 77        |
| 124 | Frameshift indels introduced by genome editing can lead to in-frame exon skipping. PLoS ONE, 2017, 12, e0178700.                                                                                       | 1.1 | 77        |
| 125 | Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Developmental Biology, 2011, 350, 50-63.                                                                           | 0.9 | 76        |
| 126 | Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. ELife, 2019, 8, .                                                                  | 2.8 | 76        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Hand2 Regulates Extracellular Matrix Remodeling Essential for Gut-Looping Morphogenesis in<br>Zebrafish. Developmental Cell, 2010, 18, 973-984.                                                                                                    | 3.1  | 75        |
| 128 | The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: Analysis of stellate cell entry into the developing liver. Hepatology, 2012, 56, 1958-1970. | 3.6  | 75        |
| 129 | Metabolic Regulation of Cellular Plasticity in the Pancreas. Current Biology, 2013, 23, 1242-1250.                                                                                                                                                 | 1.8  | 74        |
| 130 | Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of<br>Disrupted Ribosome Biogenesis. PLoS Genetics, 2013, 9, e1003279.                                                                              | 1.5  | 73        |
| 131 | Whole Organism High Content Screening Identifies Stimulators of Pancreatic Beta-Cell Proliferation.<br>PLoS ONE, 2014, 9, e104112.                                                                                                                 | 1.1  | 73        |
| 132 | HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development. Nature Communications, 2018, 9, 2704.                                                                                                      | 5.8  | 70        |
| 133 | TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella. ELife, 2014, 3, e01566.                                                                                                      | 2.8  | 69        |
| 134 | Intracardiac flow dynamics regulate atrioventricular valve morphogenesis. Cardiovascular Research, 2014, 104, 49-60.                                                                                                                               | 1.8  | 67        |
| 135 | Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish. PLoS<br>Genetics, 2015, 11, e1005305.                                                                                                                  | 1.5  | 67        |
| 136 | Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. ELife, 2020, 9, .                                                                                                                                                | 2.8  | 67        |
| 137 | Genetic Evidence for a Noncanonical Function of Seryl-tRNA Synthetase in Vascular Development.<br>Circulation Research, 2009, 104, 1260-1266.                                                                                                      | 2.0  | 64        |
| 138 | Minor class splicing shapes the zebrafish transcriptome during development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3062-3067.                                                                 | 3.3  | 64        |
| 139 | Hand2 Regulates Epithelial Formation during Myocardial Differentiation. Current Biology, 2005, 15, 441-446.                                                                                                                                        | 1.8  | 63        |
| 140 | VMAT2 identified as a regulator of late-stage β-cell differentiation. Nature Chemical Biology, 2014, 10, 141-148.                                                                                                                                  | 3.9  | 63        |
| 141 | Real-time 3D visualization of cellular rearrangements during cardiac valve formation. Development<br>(Cambridge), 2016, 143, 2217-2227.                                                                                                            | 1.2  | 63        |
| 142 | Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature, 1994, 370, 468-471.                                                                                                                                    | 13.7 | 62        |
| 143 | Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish. EMBO<br>Reports, 2020, 21, e49752.                                                                                                                 | 2.0  | 62        |
| 144 | Radial glia regulate vascular patterning around the developing spinal cord. ELife, 2016, 5, .                                                                                                                                                      | 2.8  | 62        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Microarray analysis of zebrafishcloche mutant using amplified cDNA and identification of potential downstream target genes. Developmental Dynamics, 2005, 233, 1163-1172.                                                              | 0.8  | 61        |
| 146 | Actin Binding GFP Allows 4D In Vivo Imaging of Myofilament Dynamics in the Zebrafish Heart and the<br>Identification of Erbb2 Signaling as a Remodeling Factor of Myofibril Architecture. Circulation<br>Research, 2014, 115, 845-856. | 2.0  | 59        |
| 147 | Regulation of cardiomyocyte behavior in zebrafish trabeculation by Neuregulin 2a signaling. Nature<br>Communications, 2017, 8, 15281.                                                                                                  | 5.8  | 59        |
| 148 | Tension heterogeneity directs form and fate to pattern the myocardial wall. Nature, 2020, 588, 130-134.                                                                                                                                | 13.7 | 58        |
| 149 | Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells.<br>Nature Communications, 2018, 9, 4077.                                                                                           | 5.8  | 55        |
| 150 | Regulation of Vegf signaling by natural and synthetic ligands. Blood, 2016, 128, 2359-2366.                                                                                                                                            | 0.6  | 54        |
| 151 | Regulation of neurocoel morphogenesis by Pard6î <sup>3</sup> b. Developmental Biology, 2008, 324, 41-54.                                                                                                                               | 0.9  | 53        |
| 152 | InÂVivo Visualization of Cardiomyocyte Apicobasal Polarity Reveals Epithelial to Mesenchymal-like<br>Transition during Cardiac Trabeculation. Cell Reports, 2016, 17, 2687-2699.                                                       | 2.9  | 53        |
| 153 | Pituicyte Cues Regulate the Development of Permeable Neuro-Vascular Interfaces. Developmental Cell, 2018, 47, 711-726.e5.                                                                                                              | 3.1  | 53        |
| 154 | Notch signaling can regulate endoderm formation in zebrafish. Developmental Dynamics, 2004, 229,<br>756-762.                                                                                                                           | 0.8  | 51        |
| 155 | Suppression of Ptf1a Activity Induces Acinar-to-Endocrine Conversion. Current Biology, 2011, 21, 712-717.                                                                                                                              | 1.8  | 51        |
| 156 | Nodal signaling regulates endodermal cell motility and actin dynamics via Rac1 and Prex1. Journal of Cell Biology, 2012, 198, 941-952.                                                                                                 | 2.3  | 51        |
| 157 | Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nature Communications, 2017, 8, 1902.                                                                                | 5.8  | 51        |
| 158 | Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression.<br>Developmental Biology, 2017, 424, 147-161.                                                                                              | 0.9  | 49        |
| 159 | The potassium channel KCNJ13 is essential for smooth muscle cytoskeletal organization during mouse tracheal tubulogenesis. Nature Communications, 2018, 9, 2815.                                                                       | 5.8  | 49        |
| 160 | Neuronal differentiation and maturation in the mouse trigeminal sensory system, in vivo and in vitro.<br>Journal of Comparative Neurology, 1991, 311, 300-312.                                                                         | 0.9  | 48        |
| 161 | Myocardium and BMP signaling are required for endocardial differentiation. Development (Cambridge), 2015, 142, 2304-15.                                                                                                                | 1.2  | 48        |
| 162 | Cse1l Is a Negative Regulator of CFTR-Dependent Fluid Secretion. Current Biology, 2010, 20, 1840-1845.                                                                                                                                 | 1.8  | 47        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Focal adhesions are essential to drive zebrafish heart valve morphogenesis. Journal of Cell Biology, 2019, 218, 1039-1054.                                                                                        | 2.3 | 47        |
| 164 | Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Developmental Biology, 2016, 411, 115-127.                             | 0.9 | 46        |
| 165 | The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. ELife, 2018, 7, .                                                                            | 2.8 | 46        |
| 166 | A window to the heart: can zebrafish mutants help us understand heart disease in humans?. Trends in<br>Genetics, 2002, 18, 491-494.                                                                               | 2.9 | 45        |
| 167 | Multiple roles for Med12 in vertebrate endoderm development. Developmental Biology, 2008, 317, 467-479.                                                                                                           | 0.9 | 45        |
| 168 | N-cadherin relocalization during cardiac trabeculation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7569-7574.                                                    | 3.3 | 45        |
| 169 | Chapter 4 Zebrafish: Genetic and Embryological Methods in a Transparent Vertebrate Embryo. Methods<br>in Cell Biology, 1997, 52, 67-82.                                                                           | 0.5 | 44        |
| 170 | Abnormal Nuclear Pore Formation Triggers Apoptosis in the Intestinal Epithelium of elys-Deficient<br>Zebrafish. Gastroenterology, 2009, 136, 902-911.e7.                                                          | 0.6 | 44        |
| 171 | Transcriptional adaptation: a mechanism underlying genetic robustness. Development (Cambridge),<br>2020, 147, .                                                                                                   | 1.2 | 44        |
| 172 | Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Developmental Biology,<br>2012, 361, 68-78.                                                                                           | 0.9 | 43        |
| 173 | Analysis of Sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the<br>growth but not dorsoventral patterning of jaw skeletal precursors. Developmental Biology, 2012, 362,<br>230-241. | 0.9 | 42        |
| 174 | Bone morphogenetic protein signaling governs biliaryâ€driven liver regeneration in zebrafish through<br>tbx2b and id2a. Hepatology, 2017, 66, 1616-1630.                                                          | 3.6 | 42        |
| 175 | Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Scientific Reports, 2018, 8, 10189.                                                       | 1.6 | 42        |
| 176 | Peri-arterial specification of vascular mural cells from naÃ⁻ve mesenchyme requires Notch signaling.<br>Development (Cambridge), 2019, 146, .                                                                     | 1.2 | 42        |
| 177 | Lipid Receptors in Cardiovascular Development. Annual Review of Physiology, 2003, 65, 23-43.                                                                                                                      | 5.6 | 40        |
| 178 | Notochord vacuoles absorb compressive bone growth during zebrafish spine formation. ELife, 2020, 9,                                                                                                               | 2.8 | 40        |
| 179 | Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish. PLoS<br>Genetics, 2018, 14, e1007754.                                                                                 | 1.5 | 39        |
| 180 | <i>In vivo</i> analysis of cardiomyocyte proliferation during trabeculation. Development<br>(Cambridge), 2018, 145, .                                                                                             | 1.2 | 39        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Suppression of Alk8-mediated Bmp signaling cell-autonomously induces pancreatic β-cells in zebrafish.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1142-1147. | 3.3 | 38        |
| 182 | Restriction of hepatic competence by Fgf signaling. Development (Cambridge), 2011, 138, 1339-1348.                                                                                                              | 1.2 | 38        |
| 183 | Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix. Circulation Research, 2020, 127, 896-907.                                                                                        | 2.0 | 37        |
| 184 | Patterning during organogenesis: genetic analysis of cardiac chamber formation. Seminars in Cell and<br>Developmental Biology, 1999, 10, 93-98.                                                                 | 2.3 | 36        |
| 185 | Regulation of posterior body and epidermal morphogenesis in zebrafish by localized Yap1 and Wwtr1.<br>ELife, 2017, 6, .                                                                                         | 2.8 | 36        |
| 186 | Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish. ELife, 2018, 7, .                                                                                                         | 2.8 | 36        |
| 187 | Determination of Endothelial Stalk versus Tip Cell Potential during Angiogenesis by H2.0-like<br>Homeobox-1. Current Biology, 2012, 22, 1789-1794.                                                              | 1.8 | 35        |
| 188 | Dynamics of zebrafish fin regeneration using a pulsed SILAC approach. Proteomics, 2015, 15, 739-751.                                                                                                            | 1.3 | 35        |
| 189 | Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish.<br>Blood, 2018, 131, 963-973.                                                                              | 0.6 | 35        |
| 190 | Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis.<br>Developmental Cell, 2019, 51, 62-77.e5.                                                                           | 3.1 | 35        |
| 191 | WNT/RYK signaling restricts goblet cell differentiation during lung development and repair.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25697-25706.         | 3.3 | 35        |
| 192 | Cyclopropane Modification of Trehalose Dimycolate Drives Granuloma Angiogenesis and<br>Mycobacterial Growth through Vegf Signaling. Cell Host and Microbe, 2018, 24, 514-525.e6.                                | 5.1 | 34        |
| 193 | Isl2b regulates anterior second heart field development in zebrafish. Scientific Reports, 2017, 7, 41043.                                                                                                       | 1.6 | 33        |
| 194 | Thyroid Hormone Coordinates Pancreatic Islet Maturation During the Zebrafish Larval-to-Juvenile<br>Transition to Maintain Glucose Homeostasis. Diabetes, 2017, 66, 2623-2635.                                   | 0.3 | 33        |
| 195 | Mir-126 is a conserved modulator of lymphatic development. Developmental Biology, 2018, 437, 120-130.                                                                                                           | 0.9 | 33        |
| 196 | Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function.<br>Communications Biology, 2020, 3, 265.                                                                            | 2.0 | 32        |
| 197 | Transcriptional adaptation in Caenorhabditis elegans. ELife, 2020, 9, .                                                                                                                                         | 2.8 | 32        |
| 198 | The mitochondrial import gene <i>tomm22</i> is specifically required for hepatocyte survival and provides a liver regeneration model. DMM Disease Models and Mechanisms, 2010, 3, 486-495.                      | 1.2 | 31        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | TGF-β Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish.<br>Developmental Cell, 2020, 52, 9-20.e7.                                                                | 3.1  | 31        |
| 200 | CNS-resident progenitors direct the vascularization of neighboring tissues. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10137-10142.                     | 3.3  | 30        |
| 201 | Genome-wide strategies reveal target genes of Npas4l associated with vascular development in zebrafish. Development (Cambridge), 2019, 146, .                                                            | 1.2  | 29        |
| 202 | Notch Signaling Functions as a Cell-Fate Switch between the Endothelial and Hematopoietic Lineages.<br>Current Biology, 2009, 19, 1616-1622.                                                             | 1.8  | 28        |
| 203 | Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb. Development (Cambridge), 2013, 140, 2669-2679.                                                                            | 1.2  | 28        |
| 204 | The Hippo pathway effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development<br>(Cambridge), 2018, 145, .                                                                                | 1.2  | 28        |
| 205 | Early sarcomere and metabolic defects in a zebrafish <i>pitx2c</i> cardiac arrhythmia model.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24115-24121. | 3.3  | 28        |
| 206 | Proteolysis regulates cardiomyocyte maturation and tissue integration. Nature Communications, 2017, 8, 14495.                                                                                            | 5.8  | 27        |
| 207 | Myh10 deficiency leads to defective extracellular matrix remodeling and pulmonary disease. Nature Communications, 2018, 9, 4600.                                                                         | 5.8  | 27        |
| 208 | Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish.<br>Circulation Research, 2020, 126, 968-984.                                                                  | 2.0  | 27        |
| 209 | Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration. Science Advances, 2021, 7, eabg6497.                                                   | 4.7  | 27        |
| 210 | Homeostatic generation of reactive oxygen species protects the zebrafish liver from steatosis.<br>Hepatology, 2013, 58, 1326-1338.                                                                       | 3.6  | 26        |
| 211 | Organ Function as a Modulator of Organ Formation. Current Topics in Developmental Biology, 2016, 117, 417-433.                                                                                           | 1.0  | 25        |
| 212 | Induction of interferon-stimulated genes and cellular stress pathways by morpholinos in zebrafish.<br>Developmental Biology, 2019, 454, 21-28.                                                           | 0.9  | 25        |
| 213 | Laminin β1a controls distinct steps during the establishment of digestive organ laterality. Development (Cambridge), 2013, 140, 2734-2745.                                                               | 1.2  | 24        |
| 214 | Whole organism small molecule screen identifies novel regulators of pancreatic endocrine development. Development (Cambridge), 2019, 146, .                                                              | 1.2  | 22        |
| 215 | Twisting the body into shape. Nature, 2003, 425, 461-463.                                                                                                                                                | 13.7 | 21        |
| 216 | Vertebrate Hedgehog signaling: cilia rule. BMC Biology, 2010, 8, 102.                                                                                                                                    | 1.7  | 21        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | The zebrafish ventricle: A hub of cardiac endothelial cells for in vitro cell behavior studies.<br>Scientific Reports, 2017, 7, 2687.                                                                            | 1.6 | 21        |
| 218 | Wnt/β atenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. Hepatology, 2018, 67, 2352-2366.                                                               | 3.6 | 21        |
| 219 | Genetics in Light of Transcriptional Adaptation. Trends in Genetics, 2020, 36, 926-935.                                                                                                                          | 2.9 | 21        |
| 220 | Genotype–Phenotype Relationships in the Context of Transcriptional Adaptation and Genetic<br>Robustness. Annual Review of Genetics, 2021, 55, 71-91.                                                             | 3.2 | 21        |
| 221 | Metabolic modulation regulates cardiac wall morphogenesis in zebrafish. ELife, 2019, 8, .                                                                                                                        | 2.8 | 21        |
| 222 | Hepatocyte Growth Factor Signaling in Intrapancreatic Ductal Cells Drives Pancreatic<br>Morphogenesis. PLoS Genetics, 2013, 9, e1003650.                                                                         | 1.5 | 20        |
| 223 | Transient cardiomyocyte fusion regulates cardiac development in zebrafish. Nature Communications, 2017, 8, 1525.                                                                                                 | 5.8 | 20        |
| 224 | A new mode of pancreatic islet innervation revealed by live imaging in zebrafish. ELife, 2018, 7, .                                                                                                              | 2.8 | 20        |
| 225 | Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver. Mechanisms of Development, 2012, 128, 525-535.                                                                             | 1.7 | 19        |
| 226 | Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell<br>development. Developmental Biology, 2021, 479, 11-22.                                                         | 0.9 | 19        |
| 227 | The Guts of Endoderm Formation. Results and Problems in Cell Differentiation, 2002, 40, 28-47.                                                                                                                   | 0.2 | 19        |
| 228 | The Mix family homeodomain gene bonnie and clyde functions with other components of the Nodal<br>signaling pathway to regulate neural patterning in zebrafish. Development (Cambridge), 2003, 130,<br>4989-4998. | 1.2 | 18        |
| 229 | Translational profiling through biotinylation of tagged ribosomes in zebrafish. Development<br>(Cambridge), 2014, 141, 3988-3993.                                                                                | 1.2 | 18        |
| 230 | Endothelial TGF- $\hat{l}^2$ signaling instructs smooth muscle cell development in the cardiac outflow tract. ELife, 2020, 9, .                                                                                  | 2.8 | 18        |
| 231 | The B30 ganglioside is a cell surface marker for neural crest-derived neurons in the developing mouse. Developmental Biology, 1991, 144, 177-188.                                                                | 0.9 | 17        |
| 232 | Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network.<br>Developmental Biology, 2012, 363, 128-137.                                                                          | 0.9 | 17        |
| 233 | Notch signaling regulates venous arterialization during zebrafish fin regeneration. Genes To Cells, 2015, 20, 427-438.                                                                                           | 0.5 | 17        |
| 234 | Adhesion G protein–coupled receptor Gpr126/Adgrg6 is essential for placental development. Science<br>Advances, 2021, 7, eabj5445.                                                                                | 4.7 | 17        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | On the development of the hepatopancreatic ductal system. Seminars in Cell and Developmental<br>Biology, 2017, 66, 69-80.                                                                     | 2.3 | 16        |
| 236 | Recent insights into vascular development from studies in zebrafish. Current Opinion in Hematology, 2018, 25, 204-211.                                                                        | 1.2 | 16        |
| 237 | Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. ELife, 2018, 7, .                                                      | 2.8 | 16        |
| 238 | Effects of pristine or contaminated polyethylene microplastics on zebrafish development.<br>Chemosphere, 2022, 303, 135198.                                                                   | 4.2 | 16        |
| 239 | Cardiac Development. Methods in Cell Biology, 2004, 76, 455-473.                                                                                                                              | 0.5 | 15        |
| 240 | Whole-Organism Chemical Screening Identifies Modulators of Pancreatic β-Cell Function. Diabetes, 2018, 67, 2268-2279.                                                                         | 0.3 | 15        |
| 241 | Hhex regulates the specification and growth of the hepatopancreatic ductal system. Developmental Biology, 2020, 458, 228-236.                                                                 | 0.9 | 15        |
| 242 | Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish. PLoS Genetics, 2016, 12, e1006099.                                                                       | 1.5 | 15        |
| 243 | deLiver'in Regeneration: Injury Response and Development. Seminars in Liver Disease, 2010, 30, 288-295.                                                                                       | 1.8 | 14        |
| 244 | Recovery of Adult Zebrafish Hearts for High-throughput Applications. Journal of Visualized<br>Experiments, 2014, , .                                                                          | 0.2 | 14        |
| 245 | Ccn2a/Ctgfa is an injury-induced matricellular factor that promotes cardiac regeneration in zebrafish. Development (Cambridge), 2021, 148, .                                                  | 1.2 | 14        |
| 246 | Tek/Tie2 is not required for cardiovascular development in zebrafish. Development (Cambridge), 2020,<br>147, .                                                                                | 1.2 | 14        |
| 247 | A Vegfc-Emilin2a-Cxcl8a Signaling Axis Required for Zebrafish Cardiac Regeneration. Circulation Research, 2022, 130, 1014-1029.                                                               | 2.0 | 14        |
| 248 | Pattern Formation: Swimming in Retinoic Acid. Current Biology, 2002, 12, R707-R709.                                                                                                           | 1.8 | 13        |
| 249 | In vivo regulation of the chicken cardiac troponin T gene promoter in zebrafish embryos.<br>Developmental Dynamics, 2003, 227, 484-496.                                                       | 0.8 | 13        |
| 250 | Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development. Developmental Biology, 2016, 412, 71-82.                   | 0.9 | 13        |
| 251 | The Orphan G-Protein Coupled Receptor 182 Is a Negative Regulator of Definitive Hematopoiesis through Leukotriene B4 Signaling. ACS Pharmacology and Translational Science, 2020, 3, 676-689. | 2.5 | 13        |
| 252 | A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes. ELife, 2022, 11, .                                      | 2.8 | 13        |

| #   | Article                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | nanor, a novel zygotic gene, is expressed initially at the midblastula transition in zebrafish.<br>Biochemical and Biophysical Research Communications, 2005, 333, 722-728. | 1.0  | 12        |
| 254 | No Stem Cell Is an Islet (Yet). New England Journal of Medicine, 2006, 354, 521-523.                                                                                        | 13.9 | 12        |
| 255 | The HeArt of Regeneration. Cell, 2006, 127, 462-464.                                                                                                                        | 13.5 | 11        |
| 256 | Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise. PLoS ONE, 2018, 13, e0204312.            | 1.1  | 11        |
| 257 | Disruption of the pancreatic vasculature in zebrafish affects islet architecture and function.<br>Development (Cambridge), 2019, 146, .                                     | 1.2  | 11        |
| 258 | Innervation modulates the functional connectivity between pancreatic endocrine cells. ELife, 2022, 11,                                                                      | 2.8  | 11        |
| 259 | Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS<br>Genetics, 2018, 14, e1007743.                                              | 1.5  | 10        |
| 260 | Endothelial ontogeny and the establishment of vascular heterogeneity. BioEssays, 2021, 43, e2100036.                                                                        | 1.2  | 10        |
| 261 | Spatial domains in the developing forebrain: Developmental regulation of a restricted cell surface protein. Developmental Biology, 1991, 147, 22-31.                        | 0.9  | 9         |
| 262 | Chapter 17 Vascular and Blood Gene Expression. Methods in Cell Biology, 1998, 59, 313-336.                                                                                  | 0.5  | 9         |
| 263 | The transmembrane protein Crb2a regulates cardiomyocyte apicobasal polarity and adhesion in zebrafish. Development (Cambridge), 2019, 146, .                                | 1.2  | 9         |
| 264 | The EMT transcription factor Snai1 maintains myocardial wall integrity by repressing intermediate filament gene expression. ELife, 2021, 10, .                              | 2.8  | 9         |
| 265 | Mutations Affecting Cardiac Development in Zebrafish. , 1999, , 91-110.                                                                                                     |      | 9         |
| 266 | Defective <i>adgra2</i> ( <i>gpr124</i> ) splicing and function in zebrafish <i>ouchless</i> mutants.<br>Development (Cambridge), 2017, 144, 8-11.                          | 1.2  | 8         |
| 267 | Pushing Yap into the Nucleus with Shear Force. Developmental Cell, 2017, 40, 517-518.                                                                                       | 3.1  | 8         |
| 268 | Pitx2c orchestrates embryonic axis extension via mesendodermal cell migration. ELife, 2018, 7, .                                                                            | 2.8  | 8         |
| 269 | Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. Cell Genomics, 2022, 2, 100083.                          | 3.0  | 8         |
| 270 | An integrated model for Gpr124 function in Wnt7a/b signaling among vertebrates. Cell Reports, 2022,<br>39, 110902.                                                          | 2.9  | 7         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Noncanonical Activity of Seryl-Transfer RNA Synthetase and Vascular Development. Trends in<br>Cardiovascular Medicine, 2009, 19, 179-182.                                                                          | 2.3 | 6         |
| 272 | Analyses of Avascular Mutants Reveal Unique Transcriptomic Signature of Non-conventional<br>Endothelial Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 589717.                                       | 1.8 | 6         |
| 273 | Tie1 regulates zebrafish cardiac morphogenesis through Tolloid-like 1 expression. Developmental<br>Biology, 2021, 469, 54-67.                                                                                      | 0.9 | 6         |
| 274 | Cardiomyocyte heterogeneity during zebrafish development and regeneration. Developmental Biology, 2021, 476, 259-271.                                                                                              | 0.9 | 6         |
| 275 | Insulin-producing $\hat{l}^2$ -cells regenerate ectopically from a mesodermal origin under the perturbation of hemato-endothelial specification. ELife, 2021, 10, .                                                | 2.8 | 6         |
| 276 | Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Current Opinion in Cell<br>Biology, 2021, 73, 26-34.                                                                                       | 2.6 | 6         |
| 277 | Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract.<br>Development (Cambridge), 2020, 147, .                                                                                  | 1.2 | 6         |
| 278 | New insights into benzo[âª]pyrene osteotoxicity in zebrafish. Ecotoxicology and Environmental Safety, 2021, 226, 112838.                                                                                           | 2.9 | 6         |
| 279 | An essential function for autocrine hedgehog signaling in epithelial proliferation and differentiation in the trachea. Development (Cambridge), 2022, 149, .                                                       | 1.2 | 6         |
| 280 | DEVELOPMENT: Fishing Out a New Heart. Science, 2002, 298, 2141-2142.                                                                                                                                               | 6.0 | 5         |
| 281 | OUP accepted manuscript. Cardiovascular Research, 2021, , .                                                                                                                                                        | 1.8 | 5         |
| 282 | Differentiation of mouse fetal lung alveolar progenitors in serum-free organotypic cultures. ELife, 2021, 10, .                                                                                                    | 2.8 | 5         |
| 283 | Thyroid Hormones Regulate Goblet Cell Differentiation and Fgf19-Fgfr4 Signaling. Endocrinology, 2021, 162, .                                                                                                       | 1.4 | 4         |
| 284 | Isolation of the zebrafish homologues for the tie-1 and tie-2 endothelium-specific receptor tyrosine kinases. , 1998, 212, 133.                                                                                    |     | 4         |
| 285 | Svep1 stabilises developmental vascular anastomosis in reduced flow conditions. Development<br>(Cambridge), 2022, 149, .                                                                                           | 1.2 | 4         |
| 286 | WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                 | 3.3 | 4         |
| 287 | The stress responsive gene ankrd1a is dynamically regulated during skeletal muscle development and upregulated following cardiac injury in border zone cardiomyocytes in adult zebrafish. Gene, 2021, 792, 145725. | 1.0 | 3         |
| 288 | The E3 ubiquitin-protein ligase Rbx1 regulates cardiac wall morphogenesis in zebrafish. Developmental<br>Biology, 2021, 480, 1-12.                                                                                 | 0.9 | 3         |

| #   | Article                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Whole-Organism Screening for Modulators of Fasting Metabolism Using Transgenic Zebrafish.<br>Methods in Molecular Biology, 2015, 1263, 157-165.                         | 0.4  | 2         |
| 290 | Developmental Biology: Physics Adds a Twist to Gut Looping. Current Biology, 2011, 21, R854-R857.                                                                       | 1.8  | 1         |
| 291 | It takes muscle to make blood cells. Nature, 2014, 512, 257-258.                                                                                                        | 13.7 | 1         |
| 292 | Contribution du poisson zèbre à l'étude moléculaire du développement du cœur des vertébrés.<br>Medecine/Sciences, 2002, 18, 448-456.                                    | 0.0  | 0         |
| 293 | The Max Planck Institute for Heart and Lung Research Curiosity-Driven Basic Research to Fight<br>Cardio-Pulmonary Diseases. Circulation Research, 2017, 120, 1386-1389. | 2.0  | 0         |