List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2577546/publications.pdf Version: 2024-02-01

Υλομομι Κλιλι

#	Article	IF	CITATIONS
1	A Study of Channel Time-Domain Response on Equalization for Reproducing a Double-Layer Magnetic Recording Medium. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	2
2	A Study on Performance Evaluation With Neural Network Detector in SMR System. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	0
3	Optimization of Soft Layer Uniaxial Anisotropy Gradient in Media for Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2022, 58, 1-9.	2.1	3
4	A Study of Three-Dimensional Equalization for Reproducing a Double-Layer Magnetic Recording Medium. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	2
5	A Nonstandard Path Integral Model for Curved Surface Analysis. Energies, 2022, 15, 4322.	3.1	0
6	A Study on Neural Network Detector in SMR System. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	4
7	Improvement of Iterative Decoding With LLR Modulator by Neural Network Using Magnetic Transition Information in SMR System. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	7
8	Effect of FGL Cone Angle on Recording Performance in Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	1
9	A Consistent Scheme for the Precise FDTD Modeling of the Graphene Interband Contribution. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	4
10	MAMR writability and signal-recording characteristics on granular exchange-coupled composite media. Journal of Magnetism and Magnetic Materials, 2021, 529, 167884.	2.3	3
11	A Study on Iterative Decoding by Neural Network Detector in SMR System. , 2021, , .		1
12	A Study of Samples Captured at Phases for Multi-Dimensional Magnetic Recording System with Double Recording Layers. , 2021, , .		2
13	Modeling the Third-Order Electrodynamic Response of Graphene via an Efficient Finite-Difference Time-Domain Scheme. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	2
14	Efficient adjustment of finite graphene scattering properties via magnetic-bias control for advanced beam manipulation. AIP Advances, 2020, 10, .	1.3	1
15	Optimisation of dual structure recording media for microwave-assisted magnetic recording. AIP Advances, 2020, 10, 125130.	1.3	1
16	Micromagnetic Model Simulations Considering Write Head, Spin–Torque Oscillator, and Double-Layered Medium Altogether. IEEE Transactions on Magnetics, 2019, 55, 1-13.	2.1	9
17	Optimization of the Spin-Torque Oscillator Response for Microwave-Assisted Magnetic Recording. IEEE Access, 2019, 7, 140134-140141.	4.2	3
18	Effect of Spin-Torque Oscillator Tilt Angle in Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2019, 55, 1-6.	2.1	3

#	Article	IF	CITATIONS
19	A Study on Iterative Decoding With LLR Modulator Using Neural Network in SMR System. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	11
20	A Model for Predicting Transition Curvature in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2019, , 1-6.	2.1	0
21	Areal Density Capability of Dual-Structure Media for Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2019, 55, 1-9.	2.1	14
22	A Study on Iterative Decoding With LLR Modulator by Neural Network Using Adjacent Track Information in SMR System. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	11
23	Optimization of Dual-Structure Recording Media for Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2019, , 1-5.	2.1	7
24	Total-Field/Scattered-Field Separation Based on \$H\$ -field Correction for the Nonstandard Finite-Difference Time-Domain. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	1
25	Magnetisation switching of ECC grains in microwave-assisted magnetic recording. AIP Advances, 2018, 8, 056502.	1.3	0
26	Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene. AIP Advances, 2018, 8, 056810.	1.3	0
27	Precise Modeling of Magnetically Biased Graphene Through a Recursive Convolutional FDTD Method. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	13
28	Micromagnetic model analysis of spin-torque oscillator (STO) integrated into recording write head for microwave-assisted magnetic recording-Oscillation of STO vs. rise time of in-gap field–. , 2018, , .		1
29	A Study on Iterative Decoding With LLR Modulator by Parity Check Information in SMR System. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	2
30	Optimizing Dual-Layer Recording Using Antiferromagnetic Exchange Coupling. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	5
31	Micromagnetic Model Analysis of Spin-Torque Oscillator (STO) Integrated Into Recording Head for Microwave-Assisted Magnetic Recording—Oscillation of STO Versus Rise Time of In-Gap Field. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	4
32	Micromagnetic model simulation of spin-torque oscillator and write head for microwave-assisted magnetic recording — Spin injection layer with in-plane anisotropy. , 2018, , .		0
33	Antiferromagnetically Coupled Media for Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2018, 54, 1-11.	2.1	6
34	Wide-Angle Elimination of TF/SF-Generated Spurious Waves in the Nonstandard FDTD Technique. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	3
35	Multiple Layer Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2017, 53, 1-10.	2.1	25
36	Parameter Estimation for Dielectric Media Variations Based on the FDTD Method and the Monge–Kantorovich Mass Transfer Problem. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	0

#	Article	IF	CITATIONS
37	TF/SF separation characteristics in the 3D NS-FDTD technique using rectangular cells. , 2017, , .		Ο
38	Wireless power transfer via negative permittivity metamaterials as resonating elements. , 2017, , .		2
39	Micromagnetic Model Analysis of Various Spin-Torque Oscillators With Write Head for Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	3
40	Suppression of ITI by array head reading and 2D-equalization. AIP Advances, 2017, 7, .	1.3	15
41	A Study on Optimal BAR in Array Head Reading. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	7
42	Novel design concept for highly-efficient and higher data rate PMR write head. , 2017, , .		0
43	Optimisation of applied field pulses for microwave assisted magnetic recording. AIP Advances, 2017, 7, .	1.3	4
44	A Study on Relationship Between Recording Pattern and Decoding Reliability in SMR. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	5
45	Micromagnetic Model Analysis of Spin-Transfer Torque Oscillator and Write Heads for Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2017, 53, 1-11.	2.1	11
46	A study on relationship between recording pattern and decoding reliability in SMR. , 2017, , .		1
47	A study on optimal BAR in array head reading. , 2017, , .		0
48	Micromagnetic model analysis of various spin torque oscillators with write head for microwave-assisted magnetic recording. , 2017, , .		2
49	Waveguide optimization for dielectric media variation based on the FDTD method and the Monge-Kantorovich mass transfer problem. , 2016, , .		0
50	Wide-angle elimination of TF/SF-generated spurious waves in the nonstandard-FDTD technique. , 2016, ,		0
51	Generalized Thin-Wire Hybrid VFETD/FDTD Schemes for Nanocomposite and Graphene Applications. Materials Science Forum, 2016, 856, 58-63.	0.3	0
52	Microwave-assisted shingled magnetic recording simulations on an exchange-coupled composite medium. Journal of Magnetism and Magnetic Materials, 2016, 416, 188-193.	2.3	5
53	Rigorous analysis of 3-D statistically-varying EMC problems via a generalized stochastic FDTD method. , 2016, , .		1
54	Efficient suppression of artificial reflections in the TF/SF scheme for the nonstandard FDTD method. , 2016, , .		2

#	Article	IF	CITATIONS
55	Optimization of Bit Geometry and Multi-Reader Geometry for Two-Dimensional Magnetic Recording. IEEE Transactions on Magnetics, 2016, 52, 1-7.	2.1	19
56	Micromagnetic Simulation of Spin-Torque Oscillator for Microwave-Assisted Magnetic Recording—Interaction Between Write Head and STO and Optimum Injected Current. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	8
57	Effect of Reader Sensitivity Rotation in TDMR With Head Skew. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	12
58	Microwave-Assisted Magnetic Recording on Exchange Coupled Composite Media. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	2
59	Design Optimization of Write Head for Shingled Magnetic Recording. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	0
60	An Enhanced Total-Field/Scattered-Field Scheme for the 3-D Nonstandard Finite-Difference Time-Domain Method. IEEE Transactions on Magnetics, 2016, 52, 1-5.	2.1	4
61	Microwave-Assisted Magnetic Recording on Dual-Thickness and Dual-Layer Bit-Patterned Media. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	5
62	A Generalized Domain-Decomposition Stochastic FDTD Technique for Complex Nanomaterial and Graphene Structures. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	9
63	Microwave-assisted shingled magnetic recording. , 2015, , .		Ο
64	Micromagnetic model analysis of high frequency heat-assisted magnetic recording. Journal of Applied Physics, 2015, 117, .	2.5	6
65	A Study of TDMR Signal Processing Opportunities Based on Quasi-Micromagnetic Simulations. IEEE Transactions on Magnetics, 2015, 51, 1-7.	2.1	15
66	The Dynamics of Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2015, 51, 1-7.	2.1	13
67	Optimal write head design for perpendicular magnetic recording. , 2015, , .		Ο
68	Performance evaluation of LDPC coding and iterative decoding system in TDMR R/W channel with head skew. , 2015, , .		3
69	Optimal Write Head Design for Perpendicular Magnetic Recording. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	1
70	Areal Density Prediction for Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	4
71	Areal density prediction for Microwave Assisted Magnetic Recording (MAMR). , 2015, , .		1
72	Two-Track Reading With a Wide-Track Reader for Shingled Track Recording. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	8

#	Article	IF	CITATIONS
73	Performance Evaluation of TDMR R/W Channel With Head Skew by LDPC Coding and Iterative Decoding System. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	9
74	A 4-D Subgrid Scheme for the NS-FDTD Technique Using the CNS-FDTD Algorithm With the Shepard Method and a Gaussian Smoothing Filter. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	6
75	Bit error rate performance for head skew angle in shingled magnetic recording using dual reader heads. Journal of Applied Physics, 2015, 117, 17A901.	2.5	5
76	Micromagnetic model analysis of integrated single-pole-type head with tilted spin-torque oscillator for high-frequency microwave-assisted magnetic recording. Journal of Applied Physics, 2015, 117, 17C503.	2.5	8
77	Modelling of heat assisted magnetic recording with the Landau-Lifshitz-Bloch equation and Brillouin functions. Journal of Applied Physics, 2015, 117, .	2.5	15
78	Performance evaluation of signal dependent noise predictive maximum likelihood detector for two-dimensional magnetic recording read/write channel. Journal of Applied Physics, 2015, 117, 17D112.	2.5	2
79	Microwave-Assisted Shingled Magnetic Recording. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	0
80	Skew angle effects in shingled magnetic recording system with double/triple reader head array. Journal of Applied Physics, 2014, 115, 17B753.	2.5	7
81	Analysis of unswitched grains in thermally assisted magnetic recording. Journal of Applied Physics, 2014, 115, 17B708.	2.5	1
82	Shingled Thermally Assisted Magnetic Recording for 8 Tbit/in <inline-formula> <tex-math notation="TeX">(^{{2}}) </tex-math </inline-formula> . IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	8
83	Model Analysis of Magnetic Write Head for Shingled Thermally Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	3
84	Model Analysis of Tilted Spin-Torque Oscillator With Magnetic Write Head for Shingled Microwave-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	5
85	A 3-D Interlayer-Based FDTD/NS-FDTD Connection Technique Combined With a Stable Subgrid Model for Low-Cost Simulations. IEEE Transactions on Magnetics, 2014, 50, 153-156.	2.1	4
86	Precise Crosstalk Assessment in Complex Nanointerconnects via a Family of Unconditionally-Stable Nonstandard Time-Domain Algorithms. Materials Science Forum, 2014, 792, 227-232.	0.3	0
87	Thermally Assisted Magnetic Recording at 4 Tbit/in\$^{2}\$. IEEE Transactions on Magnetics, 2013, 49, 2665-2670.	2.1	15
88	Optimal Design of MAMR and HAMR by Applying Response Surface Methodology. IEEE Transactions on Magnetics, 2013, 49, 2719-2722.	2.1	6
89	High Frequency Recording With Shielded Planar Type Heads. IEEE Transactions on Magnetics, 2013, 49, 3806-3809.	2.1	6
90	Influence of Writing ITI Effects in Shingled Magnetic Recording. IEEE Transactions on Magnetics, 2013, 49, 3814-3817.	2.1	9

#	Article	IF	CITATIONS
91	Micromagnetic Model Analysis of Planar-Type Write Head Field Response and Dependence on Pole Tip, Return Yoke, and Shield Structure. IEEE Transactions on Magnetics, 2013, 49, 4970-4976.	2.1	0
92	Nonbinary LDPC Coding and Iterative Decoding System With 2-D Equalizer for TDMR R/W Channel Using Discrete Voronoi Model. IEEE Transactions on Magnetics, 2013, 49, 662-667.	2.1	9
93	A Stability Improvement Technique Using PML Condition for the Three-Dimensional Nonuniform Mesh Nonstandard FDTD Method. IEEE Transactions on Magnetics, 2013, 49, 1569-1572.	2.1	5
94	Accuracy-Adjustable Nonstandard LOD-FDTD Schemes for the Design of Carbon Nanotube Interconnects and Nanocomposite EMC Shields. IEEE Transactions on Magnetics, 2013, 49, 1821-1824.	2.1	9
95	Performance Evaluation of Neuro-ITI Canceller Using a Modified Writing Process for TDMR. IEICE Transactions on Electronics, 2013, E96.C, 1504-1507.	0.6	26
96	Effect of Magnetostatic Interactions between the Spin-Torque Oscillator and the SPT Writer on the Oscillation Characteristics of the Spin-Torque Oscillator. IEICE Transactions on Electronics, 2013, E96.C, 1484-1489.	0.6	6
97	High speed magnetisation reversal in heat-assisted magnetic recording. Journal of Applied Physics, 2012, 111, .	2.5	5
98	Microwave-assisted magnetic recording simulation on exchange-coupled composite medium. Journal of Applied Physics, 2012, 111, 07B711.	2.5	14
99	Analysis and design of shingled magnetic recording systems. Journal of Applied Physics, 2012, 111, 078716.	2.5	11
100	A study on modeling of the writing process and two-dimensional neural network equalization for two-dimensional magnetic recording. Journal of Applied Physics, 2012, 111, 07B727.	2.5	6
101	Modeling of Writing Process for Two-Dimensional Magnetic Recording and Performance Evaluation of Two-Dimensional Neural Network Equalizer. IEEE Transactions on Magnetics, 2012, 48, 4586-4589.	2.1	24
102	A statistical model of write-errors in bit patterned media. Journal of Applied Physics, 2012, 111, 053926.	2.5	8
103	Micromagnetic Model Analysis of Planar Type Recording Write Heads for High Transfer-Rate Recording. IEEE Transactions on Magnetics, 2012, 48, 1723-1730.	2.1	6
104	Magnetization switching in energy assisted recording. IEEE Transactions on Magnetics, 2012, 48, 1794-1800.	2.1	23
105	Requirements for soft magnetic underlayer (SUL)—Micromagnetic simulations of single-pole-type write heads and SUL systems. Journal of Magnetism and Magnetic Materials, 2012, 324, 282-286.	2.3	1
106	The potential of bit patterned media in shingled recording. Journal of Magnetism and Magnetic Materials, 2012, 324, 314-320.	2.3	2
107	Micromagnetic Simulation of Recording Write Heads a Comparison of Various Micromagnetic Software. IEEE Transactions on Magnetics, 2012, 48, 311-314.	2.1	3
108	Characteristics of the Boundary Model in the 2-D NS-FDTD Method. IEEE Transactions on Magnetics, 2012, 48, 191-194.	2.1	2

#	Article	IF	CITATIONS
109	Coefficients of Finite Difference Operator for Rectangular Cell NS-FDTD Method. IEEE Transactions on Antennas and Propagation, 2011, 59, 206-213.	5.1	11
110	Electromagnetic analysis of an RF rectangular resonant cavity applicator for hyperthermic treatment using whole-body voxel human model of Japanese adult male. , 2011, 2011, 337-40.		0
111	The feasibility of bit-patterned recording at 4 Tb/in.2 without heat-assist. Journal of Applied Physics, 2011, 109, 078702.	2.5	2
112	Optimal Coefficients of the Spatial Finite Difference Operator for the Complex Nonstandard Finite Difference Time-Domain Method. IEEE Transactions on Magnetics, 2011, 47, 1498-1501.	2.1	6
113	Split-Pole Write Head for Thermally Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2011, 47, 2375-2378.	2.1	6
114	Micromagnetic Analysis to Reduce Adjacent Track Erasure Field in Planar Write Heads. IEEE Transactions on Magnetics, 2011, 47, 3399-3402.	2.1	3
115	Read/Write Channel Modeling and Two-Dimensional Neural Network Equalization for Two-Dimensional Magnetic Recording. IEEE Transactions on Magnetics, 2011, 47, 3558-3561.	2.1	55
116	Micromagnetic study on microwave-assisted magnetic recording in perpendicular medium with intergrain exchange coupling. Journal of Applied Physics, 2011, 109, 123912.	2.5	13
117	Spin Torque Oscillator With Negative Magnetic Anisotropy Materials for MAMR. IEEE Transactions on Magnetics, 2010, 46, 2466-2469.	2.1	31
118	Shingled Magnetic Recording on Bit Patterned Media. IEEE Transactions on Magnetics, 2010, 46, 1460-1463.	2.1	11
119	Micromagnetic Analysis of Shielded Write Heads Using Symmetric Multiprocessing Systems. IEEE Transactions on Magnetics, 2010, 46, 3337-3340.	2.1	7
120	Optimal coefficients of the special FD operator for the CNS-FDTD method. , 2010, , .		0
121	Finite-Element and Micromagnetic Modeling of Write Heads for Shingled Recording. IEEE Transactions on Magnetics, 2010, 46, 715-721.	2.1	56
122	Dependence of Recorded Bit-patterns on Saturation Magnetization in Microwave Assisted Magnetic Recording. IEEJ Transactions on Fundamentals and Materials, 2010, 130, 648-654.	0.2	1
123	Analysis of Spin-Torque Noise in a CPP-GMR Head. Journal of the Magnetics Society of Japan, 2010, 34, 178-181.	0.9	0
124	Investigation of a Spin-Torque Oscillator using Material with Negative Magnetic Anisotropy. Journal of the Magnetics Society of Japan, 2010, 34, 479-489.	0.9	1
125	Scattering Analysis of Large-Scale Coated Cavity Using the Complex Nonstandard FDTD Method With Surface Impedance Boundary Condition. IEEE Transactions on Magnetics, 2009, 45, 1296-1299.	2.1	6
126	Shingled Recording for 2–3 Tbit/in\$^2\$. IEEE Transactions on Magnetics, 2009, 45, 3823-3829.	2.1	108

#	Article	IF	CITATIONS
127	Narrow-track perpendicular write heads. Journal of Magnetism and Magnetic Materials, 2009, 321, 518-525.	2.3	2
128	Nonstandard FDTD Method for Wideband Analysis. IEEE Transactions on Antennas and Propagation, 2009, 57, 2386-2396.	5.1	8
129	Oscillation Characteristics and Influences of Eddy Current on Oscillator for MAMR. Journal of the Magnetics Society of Japan, 2009, 33, 357-361.	0.9	3
130	Read/Write and Thermal Properties of a Coupled Granular /Continuous Medium with a Soft Capping Layer. Journal of the Magnetics Society of Japan, 2009, 33, 193-198.	0.9	0
131	Faster Micromagnetic Simulator for Magnetic Recording Using OpenMP. Journal of the Magnetics Society of Japan, 2009, 33, 189-192.	0.9	1
132	Micromagnetic Analysis of Shielded Single-Pole-Type Heads. Journal of the Magnetics Society of Japan, 2009, 33, 403-413.	0.9	0
133	Micromagnetic recording field analysis of fast-switching single-pole-type heads for bit-patterned media. Journal of Magnetism and Magnetic Materials, 2008, 320, e287-e290.	2.3	9
134	Micromagnetic recording field analysis of a fast-switching single-pole-type head. Journal of Magnetism and Magnetic Materials, 2008, 320, 2971-2974.	2.3	3
135	Simulations of recording media for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si16.gif" overflow="scroll"><mml:mn>1</mml:mn><mml:mspace <br="" width="0.16em">/><mml:mi>Tb</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi>in</mml:mi></mml:mrow> lournal of Magnetism and Magnetic Materials. 2008. 320. 2889-2893.</mml:msup></mml:mspace></mml:math>	<mmil:mrc< td=""><td>w>^ęmml:mn</td></mmil:mrc<>	w> ^ę mml:mn
136	Optimisation of bit patterned media for 1Tb/in2. Journal of Magnetism and Magnetic Materials, 2008, 320, 3092-3095.	2.3	5
137	Nonstandard FDTD Method for Multifrequency Analysis. IEEE Transactions on Magnetics, 2008, 44, 1390-1393.	2.1	2
138	Landau–Lifshitz–Gilbert Micromagnetic Analysis of Single-Pole-Type Write Head for Perpendicular Magnetic Recording Using Full-FFT Program on PC Cluster System. IEEE Transactions on Magnetics, 2008, 44, 1602-1605.	2.1	16
139	Advanced Optimization of Standard Head Model With Higher Writing Field and Higher Field Gradient Using 3-D ON/OFF Method. IEEE Transactions on Magnetics, 2008, 44, 966-969.	2.1	9
140	Micromagnetic Recording Field Analysis of a Single-Pole-Type Head for 1–2 \${hbox {Tbit/in}}^{2}\$. IEEE Transactions on Magnetics, 2008, 44, 3609-3612.	2.1	7
141	Modeling and Simulation of the Writing Process on Bit-Patterned Perpendicular Media. IEEE Transactions on Magnetics, 2008, 44, 3423-3429.	2.1	24
142	Characterization of a 2 \${hbox {Tbit/in}}^{2}\$ Patterned Media Recording System. IEEE Transactions on Magnetics, 2008, 44, 3434-3437.	2.1	4
143	Investigation on Magnetic Fields From Field-Generating Layer in MAMR. IEEE Transactions on Magnetics, 2008, 44, 3408-3411.	2.1	4
144	Magnetic Recording in Patterned Media at 5–10 Tb/in\$^{2}\$. IEEE Transactions on Magnetics, 2008, 44, 3430-3433.	2.1	32

#	Article	IF	CITATIONS
145	Simplified Neural Network Equalizer With Noise Whitening Function for GPRML System. IEEE Transactions on Magnetics, 2008, 44, 3777-3780.	2.1	19
146	Read/Write and Thermal Properties of Reverse-Exchange-Coupled Composite Media. Journal of the Magnetics Society of Japan, 2008, 32, 471-476.	0.9	1
147	Numerical and Experimental Studies on Heating Characteristics of an RF Rectangular Resonant Cavity Applicator for Hyperthermic Treatment of Deep-seated Tumors Using a Human Model Equipped with Conductive Caps. Thermal Medicine, 2008, 24, 73-81.	0.1	1
148	Micromagnetic Calculations of SPT Head Field with Trailing Shield. Journal of the Magnetics Society of Japan, 2008, 32, 201-204.	0.9	2
149	Discussion Based on Numerical and Experimental Studies on Heating Characteristics of an RF Rectangular Resonant Cavity Applicator for Hyperthermia Targeting Deep-seated Tumors. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 3536-9.	0.5	1
150	Micromagnetic Recording Field Analysis of an SPT Head with a Narrow Main Pole Tip. Journal of the Magnetics Society of Japan, 2007, 31, 427-434.	0.4	0
151	Characteristics of Evanescent Waves in the Nonstandard FDTD Method. IEEE Transactions on Magnetics, 2007, 43, 1313-1316.	2.1	0
152	Micromagnetic Simulations of Perpendicular Single-Pole-Type Head for Various Pole-Tip Structures. IEEE Transactions on Magnetics, 2007, 43, 1665-1668.	2.1	12
153	Overlap Algorithm for the Nonstandard FDTD Method Using Nonuniform Mesh. IEEE Transactions on Magnetics, 2007, 43, 1317-1320.	2.1	6
154	A Comparative Study of Perpendicular Media. IEEE Transactions on Magnetics, 2007, 43, 2118-2120.	2.1	8
155	Simulations of Perpendicular Recording Media for 600 Gb/in2. Journal of the Magnetics Society of Japan, 2007, 31, 36-39.	0.4	0
156	Micromagnetic simulations of discrete track media. Journal of Magnetism and Magnetic Materials, 2006, 303, e1-e5.	2.3	0
157	Trailing Shield Head Recording in Discrete Track Media. IEEE Transactions on Magnetics, 2006, 42, 2408-2410.	2.1	6
158	Discrete track media for 600Gbitsâ^•in2 recording. Journal of Applied Physics, 2006, 99, 08F903.	2.5	11
159	Trailing shield head recording in discrete track media. , 2006, , .		2
160	Fundamental Heating Characteristics of an RF Hyperthermic System Using a Rectangular Resonant Cavity Applicator for Deep-Seated Tumors. Thermal Medicine(Japanese Journal of Hyperthermic) Tj ETQq0 0 0 rgE	3T (D verlo	ck

161	Single-pole-type head showing a large recording field suitable for 1Tbpsi with discrete-track media. Journal of Magnetism and Magnetic Materials, 2005, 287, 362-366.	2.3	5
162	Simulations of perpendicular media for 400 Gb/in/sup 2/. IEEE Transactions on Magnetics, 2005, 41, 713-718.	2.1	4

#	Article	IF	CITATIONS
163	A single-pole-type head design for 400 Gb/in/sup 2/ recording. IEEE Transactions on Magnetics, 2005, 41, 687-695.	2.1	19
164	Analysis and development of a radio-frequency rectangular resonant cavity applicator with multiple antennas for a hyperthermic treatment. IEEE Transactions on Magnetics, 2005, 41, 1880-1883.	2.1	9
165	The effect of write head structures on written transitions in perpendicular media. IEEE Transactions on Magnetics, 2005, 41, 3058-3060.	2.1	0
166	Controlling the written track width in perpendicular recording media. Transactions of the Magnetics Society of Japan, 2005, 5, 57-60.	0.5	0
167	The Nonstandard FDTD Method Using a Complex Formulation. IEEE Transactions on Magnetics, 2004, 40, 1448-1451.	2.1	12
168	On the duality of electric and magnetic fields using the nonstandard FDTD method. Microwave and Optical Technology Letters, 2004, 40, 148-151.	1.4	1
169	Recording field analysis of narrow-track SPT head with side shields, tapered main pole, and tapered return path for 1 Tb/in/sup 2/. IEEE Transactions on Magnetics, 2003, 39, 1955-1960.	2.1	45
170	Phase velocity errors of the nonstandard FDTD method and comparison with other high-accuracy FDTD methods. IEEE Transactions on Magnetics, 2003, 39, 2125-2128.	2.1	17
171	Finite-element model analysis of single-pole-type head for 1 Tbit/in/sup 2/. IEEE Transactions on Magnetics, 2003, 39, 2405-2407.	2.1	11
172	Numerical analysis of narrow-track single-pole-type head with side shields for 1 Tb/in.2. Journal of Applied Physics, 2003, 93, 7738-7740.	2.5	2
173	Write field calculation for a narrow-track, single-pole head with a thin underlayer of perpendicular medium. IEEE Transactions on Magnetics, 2002, 38, 169-174.	2.1	13
174	FDTD analysis of microwave circuits using edge condition. IEEE Transactions on Magnetics, 2002, 38, 705-708.	2.1	5
175	The phase velocity error and stability condition of the three-dimensional nonstandard FDTD method. IEEE Transactions on Magnetics, 2002, 38, 661-664.	2.1	20
176	New structured planar write head for 100 Gb/in/sup 2/ and beyond. IEEE Transactions on Magnetics, 2002, 38, 2210-2212.	2.1	5
177	A method of SAR measurement using a high-molecular-weight gel phantom: On the correspondence of the surface of the clouded region to the surface of equipower absorption. Electronics and Communications in Japan, 2002, 85, 51-60.	0.1	0
178	Write field analysis of narrow-track SPT head for GHz response. Journal of Magnetism and Magnetic Materials, 2001, 235, 368-374.	2.3	4
179	Numerical study of a narrow-track single-pole head useful for GHz response and large field strength requirements. IEEE Transactions on Magnetics, 2001, 37, 1357-1359.	2.1	7
180	A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement. IEEE Transactions on Magnetics, 2001, 37, 3311-3314.	2.1	46

#	Article	IF	CITATIONS
181	Nonlinear Eddy Current Write Field Analysis of a Single-pole Write Head Journal of the Magnetics Society of Japan, 2001, 25, 531-534.	0.4	1
182	Thin film write head field analysis using a benchmark problem. IEEE Transactions on Magnetics, 2000, 36, 1784-1787.	2.1	7
183	Resonant frequency analysis of reentrant resonant cavity applicator by using FEM and FD-TD method. IEEE Transactions on Magnetics, 2000, 36, 1750-1753.	2.1	10
184	Automatic mesh generation for 3D electromagnetic field analysis by FD-TD method. IEEE Transactions on Magnetics, 1998, 34, 3383-3386.	2.1	12
185	A novel numerical approach to interpret images obtained by magnetic force microscope. IEEE Transactions on Magnetics, 1998, 34, 3455-3458.	2.1	1
186	Analysis of a hyperthermic treatment using a reentrant resonant cavity applicator for a heterogeneous model with blood flow. IEEE Transactions on Magnetics, 1997, 33, 2175-2178.	2.1	15
187	Relation between the MFM Image and the Magnetization Distribution of a Ferromagnetic Tip. Journal of the Magnetics Society of Japan, 1997, 21, 409-412.	0.4	1
188	Analysis of a hyperthermic treatment in a reentrant resonant cavity applicator by solving time-dependent electromagnetic-heat transfer equations. IEEE Transactions on Magnetics, 1996, 32, 1661-1664.	2.1	14
189	Automatic Variable Mesh Generating Program for 3-D Electromagnetic Field Analysis by FD-TD Method Terebijon Gakkaishi (Journal of the Institute of Television Engineers of Japan), 1996, 50, 1598-1602.	0.0	0
190	Read-write characteristics of dual-sided metal-in-gap heads with various media. IEEE Transactions on Magnetics, 1994, 30, 1483-1486.	2.1	3
191	Modeling of magnetic recording heads for 2-D and 3-D finite element analysis. IEEE Transactions on Magnetics, 1994, 30, 2948-2951.	2.1	5
192	New structured metal-in-gap head for high density and high transfer rate recordings. IEEE Transactions on Magnetics, 1993, 29, 3900-3902.	2.1	1
193	A study of head field gradient and velocity on transition noise. IEEE Transactions on Magnetics, 1993, 29, 3894-3896.	2.1	0
194	An Influence of Head Field on the Transition Noise of Thin Film Disk. IEEE Translation Journal on Magnetics in Japan, 1992, 7, 779-786.	0.1	0
195	An Influence of Head Field on the Transition Noise of Thin Film Disk Journal of the Magnetics Society of Japan, 1992, 16, 99-104.	0.4	3
196	A Three-Dimensional Reconstruction of Stray Magnetic Fields of a Magnetic Head by Electron Beam Tomography. IEEE Translation Journal on Magnetics in Japan, 1991, 6, 826-834.	0.1	1
197	Influence of Head Fields and Media Properties on Transitions of Magnetization Reversals on Thin Film Disk. IEEE Translation Journal on Magnetics in Japan, 1991, 6, 1010-1016.	0.1	0
198	ON TRANSITION CONFIGURATION AND WRITE FIELD OF MIG HEADS. Journal of the Magnetics Society of Japan, 1991, 15, S2_269-274.	0.4	2

#	Article	IF	CITATIONS
199	Design of a metal-in-gap head for higher coercivity media. IEEE Transactions on Magnetics, 1991, 27, 4894-4896.	2.1	3
200	A three-dimensional reconstruction of stray magnetic fields of a magnetic head by electron beam tomography Journal of the Magnetics Society of Japan, 1991, 15, 145-150.	0.4	11
201	Influence of head fields and media properties on transitions of magnetization reversals on thin film disk Journal of the Magnetics Society of Japan, 1991, 15, 151-154.	0.4	11
202	Gauge condition of magnetic vector potential and a new finite-element formulation for three-dimensional magnetostatic field analysis IEEJ Transactions on Industry Applications, 1990, 110, 265-272.	0.2	0
203	Further discussion on magnetic vector potential finite-element formulation for three-dimensional magnetostatic field analysis. IEEE Transactions on Magnetics, 1990, 26, 411-414.	2.1	3
204	Gauge condition of magnetic vector potential and a new finite element formulation for threeâ€dimensional magnetostatic field analysis. Electrical Engineering in Japan (English Translation of) Tj ETQq0	0 @.4 gBT	Overlock 10
205	Analysis and design of a metal-in-gap head for rigid disk files. IEEE Transactions on Magnetics, 1988, 24, 2623-2625.	2.1	12
206	New formulation of finite-element method with gauge condition for three-dimensional magnetic field analysis. IEEE Transactions on Magnetics, 1988, 24, 3123-3125.	2.1	5
207	Fast and stable non-linear converging method. IEEE Transactions on Magnetics, 1987, 23, 3290-3292.	2.1	5
208	Visualization and 3-D measurement of local SAR using a gel phantom. , 0, , .		6
209	Accuracy improvement in permittivity measurement of construction materials by use of a model of the standing wave method in free space. , 0, , .		4
210	New structured planar write head for 100 Gb/in/sup 2/ and beyond. , 0, , .		0
211	Recording field analysis of narrow-track SPT head with side-shields. , 0, , .		2
212	FEM analysis of single pole type head for 1 TBPSI recording. , 0, , .		0
213	Overlap Algorithm for the Nonstandard FDTD Method Using Nonuniform Mesh. , 0, , .		0
214	Characteristics of Evanescent Waves in the Nonstandard FDTD Method. , 0, , .		0
215	Micromagnetic Simulations of Perpendicular Single-Pole-Type Head for Various Pole Tip Structures. , 0, , .		0