Gordon G Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2577411/publications.pdf Version: 2024-02-01

		643	1347
1,227	77,412	123	223
papers	citations	h-index	g-index
1262	1262	1262	61412
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3, 101-105.	31.5	8,393
2	Carbon Nanotube Actuators. Science, 1999, 284, 1340-1344.	12.6	2,343
3	Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced Materials, 2008, 20, 3557-3561.	21.0	1,843
4	Use of Ionic Liquids for pi -Conjugated Polymer Electrochemical Devices. Science, 2002, 297, 983-987.	12.6	1,155
5	Artificial Muscles from Fishing Line and Sewing Thread. Science, 2014, 343, 868-872.	12.6	1,006
6	Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials, 2008, 29, 3393-3399.	11.4	677
7	Electrostatic catalysis of a Diels–Alder reaction. Nature, 2016, 531, 88-91.	27.8	596
8	Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chemistry of Materials, 2009, 21, 2604-2606.	6.7	546
9	Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry, 2002, 6, 73-84.	2.5	529
10	Torsional Carbon Nanotube Artificial Muscles. Science, 2011, 334, 494-497.	12.6	495
11	Bio-ink properties and printability for extrusion printing living cells. Biomaterials Science, 2013, 1, 763.	5.4	484
12	Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Communications, 2013, 4, 1970.	12.8	475
13	Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry, 2002, 6, 85-100.	2.5	446
14	Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell. Nano Letters, 2010, 10, 838-846.	9.1	431
15	Dispersing Carbon Nanotubes with Graphene Oxide in Water and Synergistic Effects between Graphene Derivatives. Chemistry - A European Journal, 2010, 16, 10653-10658.	3.3	373
16	3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials, 2015, 67, 264-273.	11.4	357
17	Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nature Communications, 2012, 3, 650.	12.8	354
18	Scalable One‣tep Wet‣pinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles. Advanced Functional Materials, 2013, 23, 5345-5354.	14.9	354

#	Article	IF	CITATIONS
19	High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles. ACS Nano, 2014, 8, 2456-2466.	14.6	331
20	Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochimica Acta, 2007, 52, 7377-7385.	5.2	310
21	Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings. International Journal of Molecular Sciences, 2014, 15, 11878-11921.	4.1	306
22	Functional 3D Neural Miniâ€Tissues from Printed Gelâ€Based Bioink and Human Neural Stem Cells. Advanced Healthcare Materials, 2016, 5, 1429-1438.	7.6	303
23	Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers. Electroanalysis, 2003, 15, 1089-1094.	2.9	278
24	Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials, 2009, 30, 2614-2624.	11.4	277
25	Graphene oxide dispersions: tuning rheology to enable fabrication. Materials Horizons, 2014, 1, 326-331.	12.2	276
26	Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers. Chemistry of Materials, 2003, 15, 2392-2398.	6.7	274
27	Mechanism of electromechanical actuation in polypyrrole. Synthetic Metals, 1995, 73, 247-256.	3.9	272
28	Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 2020, 15, 618-621.	31.5	269
29	Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Applied Materials & Interfaces, 2015, 7, 21150-21158.	8.0	267
30	Carbon-Nanotube-Reinforced Polyaniline Fibers for High-Strength Artificial Muscles. Advanced Materials, 2006, 18, 637-640.	21.0	266
31	Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth. Journal of Biomedical Materials Research Part B, 1999, 44, 121-129.	3.1	256
32	A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced Functional Materials, 2012, 22, 2692-2699.	14.9	254
33	High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Scientific Reports, 2015, 5, 17045.	3.3	243
34	Organic material in the global troposphere. Reviews of Geophysics, 1983, 21, 921-952.	23.0	242
35	High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. Environmental Science & Technology, 2015, 49, 13566-13574.	10.0	241
36	Strainâ€Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity. Advanced Functional Materials, 2014, 24, 2957-2966.	14.9	238

#	Article	IF	CITATIONS
37	The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials, 2007, 28, 513-523.	11.4	236
38	A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. Journal of Materials Chemistry A, 2014, 2, 13093-13102.	10.3	236
39	Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers. Angewandte Chemie - International Edition, 2000, 39, 3664-3667.	13.8	235
40	Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. Journal of Electroanalytical Chemistry, 2000, 488, 92-98.	3.8	234
41	Tunable and Efficient Tin Modified Nitrogenâ€Đoped Carbon Nanofibers for Electrochemical Reduction of Aqueous Carbon Dioxide. Advanced Energy Materials, 2018, 8, 1702524.	19.5	232
42	<i>In situ</i> handheld threeâ€dimensional bioprinting for cartilage regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 611-621.	2.7	232
43	Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochemistry Communications, 2004, 6, 22-27.	4.7	228
44	Chiral conducting polymers. Chemical Society Reviews, 2010, 39, 2545.	38.1	224
45	Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices. Chemistry of Materials, 2012, 24, 3998-4003.	6.7	224
46	Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon, 2013, 52, 296-304.	10.3	222
47	Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route toward the Next Generation of Self-Assembled Layer-by-Layer Multifunctional 3D Architectures. ACS Nano, 2013, 7, 3981-3990.	14.6	219
48	A comparison of reactive robot chemotaxis algorithms. Robotics and Autonomous Systems, 2003, 45, 83-97.	5.1	216
49	Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chemical Communications, 2012, 48, 4145.	4.1	215
50	Flexible, Aligned Carbon Nanotube/Conducting Polymer Electrodes for a Lithium-Ion Battery. Chemistry of Materials, 2007, 19, 3595-3597.	6.7	212
51	Buckled, Stretchable Polypyrrole Electrodes for Battery Applications. Advanced Materials, 2011, 23, 3580-3584.	21.0	211
52	Conducting polymers, dual neurotrophins and pulsed electrical stimulation — Dramatic effects on neurite outgrowth. Journal of Controlled Release, 2010, 141, 161-167.	9.9	209
53	Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. Advanced Energy Materials, 2015, 5, 1500959.	19.5	208
54	Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials, 2009, 30, 5292-5304.	11.4	207

#	Article	IF	CITATIONS
55	Biofabrication: an overview of the approaches used for printing of living cells. Applied Microbiology and Biotechnology, 2013, 97, 4243-4258.	3.6	206
56	Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta, 2008, 77, 710-717.	5.5	202
57	Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. Journal of Materials Chemistry, 2011, 21, 15987.	6.7	201
58	Liquid Crystals of DNA-Stabilized Carbon Nanotubes. Advanced Materials, 2005, 17, 1673-1676.	21.0	197
59	Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochimica Acta, 2012, 68, 18-24.	5.2	197
60	Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. Journal of Controlled Release, 2006, 116, 285-294.	9.9	196
61	Smart Nanotextiles: A Review of Materials and Applications. MRS Bulletin, 2007, 32, 434-442.	3.5	195
62	Electrochemical synthesis of polypyrrole in ionic liquids. Polymer, 2004, 45, 1447-1453.	3.8	191
63	Intrinsically Stretchable Supercapacitors Composed of Polypyrrole Electrodes and Highly Stretchable Gel Electrolyte. ACS Applied Materials & Interfaces, 2013, 5, 9008-9014.	8.0	190
64	Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sensors and Actuators B: Chemical, 2009, 139, 231-236.	7.8	189
65	Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles and Strain Sensing. ACS Nano, 2016, 10, 9129-9135.	14.6	189
66	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. ACS Applied Materials & Interfaces, 2019, 11, 8838-8848.	8.0	189
67	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials, 2019, 19, 408-423.	18.0	189
68	Pneumatic Carbon Nanotube Actuators. Advanced Materials, 2002, 14, 1728-1732.	21.0	187
69	Strain Response from Polypyrrole Actuators under Load. Advanced Functional Materials, 2002, 12, 437-440.	14.9	186
70	Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 2016, 8, 015019.	7.1	186
71	Carbon nanotube and polyaniline composite actuators*. Smart Materials and Structures, 2003, 12, 626-632.	3.5	184
72	Bio-ink for on-demand printing of living cells. Biomaterials Science, 2013, 1, 224-230.	5.4	184

#	Article	IF	CITATIONS
73	Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO ₂ Reduction to CO. ACS Energy Letters, 2019, 4, 666-672.	17.4	183
74	The use of electropolymerization to produce new sensing surfaces: A review emphasizing electrode position of heteroaromatic compounds. Electroanalysis, 1991, 3, 879-889.	2.9	181
75	Development of polypyrrole-based electromechanical actuators. Synthetic Metals, 2000, 113, 121-127.	3.9	181
76	Selfâ€Assembly of Flexible Freeâ€Standing 3D Porous MoS ₂ â€Reduced Graphene Oxide Structure for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1700234.	14.9	181
77	Three dimensional (3D) printed electrodes for interdigitated supercapacitors. Electrochemistry Communications, 2014, 41, 20-23.	4.7	179
78	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	12.9	179
79	Fast trilayer polypyrrole bending actuators for high speed applications. Synthetic Metals, 2006, 156, 1017-1022.	3.9	178
80	Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications. Advanced Materials, 2013, 25, 6602-6606.	21.0	178
81	Znâ^'Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting. Journal of the American Chemical Society, 2009, 131, 15621-15623.	13.7	177
82	Processable conducting graphene/chitosan hydrogels for tissue engineering. Journal of Materials Chemistry B, 2015, 3, 481-490.	5.8	177
83	Enantioselective electropolymerization of aniline in the presence of (+)- or (â^')-camphorsulfonate ion: a facile route to conducting polymers with preferred one-screw-sense helicity. Polymer, 1994, 35, 3113-3115.	3.8	172
84	Vapor Phase Polymerization of Pyrrole and Thiophene Using Iron(III) Sulfonates as Oxidizing Agents. Macromolecules, 2004, 37, 5930-5935.	4.8	172
85	Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Advanced Energy Materials, 2020, 10, 1903870.	19.5	169
86	Direct Growth of Flexible Carbon Nanotube Electrodes. Advanced Materials, 2008, 20, 566-570.	21.0	168
87	Monolithic Actuators from Flashâ€Welded Polyaniline Nanofibers. Advanced Materials, 2008, 20, 155-158.	21.0	167
88	Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy and Environmental Science, 2012, 5, 9472.	30.8	167
89	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Lowâ€Grade Thermal Energy. Advanced Materials, 2017, 29, 1605652.	21.0	166
90	Conducting electroactive polymer-based biosensors. TrAC - Trends in Analytical Chemistry, 1999, 18, 245-251.	11.4	165

#	Article	IF	CITATIONS
91	Superelastic Hybrid CNT/Graphene Fibers for Wearable Energy Storage. Advanced Energy Materials, 2018, 8, 1702047.	19.5	165
92	EVIDENCE FOR PERSISTENCE OF INFECTIOUS AGENTS IN ISOLATED HUMAN POPULATIONS1. American Journal of Epidemiology, 1974, 100, 230-250.	3.4	164
93	3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Advanced Healthcare Materials, 2017, 6, 1700175.	7.6	164
94	Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair. Scientific Reports, 2017, 7, 5837.	3.3	160
95	One‣tep Wet‣pinning Process of Poly(3,4â€ethylenedioxythiophene):Poly(styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity. Advanced Functional Materials, 2011, 21, 3363-3370.	14.9	158
96	Dye-Sensitized Solar Cell with Integrated Triplet–Triplet Annihilation Upconversion System. Journal of Physical Chemistry Letters, 2013, 4, 2073-2078.	4.6	158
97	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	2.8	158
98	Conducting polymers and the bioanalytical sciences: new tools for biomolecular communications. A review. Analyst, The, 1996, 121, 699.	3.5	157
99	Properties of Carbon Nanotube Fibers Spun from DNA-Stabilized Dispersions. Advanced Functional Materials, 2004, 14, 133-138.	14.9	155
100	Electrochemically Synthesized Polypyrrole/Graphene Composite Film for Lithium Batteries. Advanced Energy Materials, 2012, 2, 266-272.	19.5	155
101	Conducting polymer coated lycra. Synthetic Metals, 2005, 155, 698-701.	3.9	154
102	Extrusion printing of ionic–covalent entanglement hydrogels with high toughness. Journal of Materials Chemistry B, 2013, 1, 4939.	5.8	154
103	Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochimica Acta, 2003, 48, 2355-2359.	5.2	150
104	Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes. Journal of the Electrochemical Society, 2000, 147, 4580.	2.9	149
105	High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nature Communications, 2014, 5, 3928.	12.8	147
106	Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. Advanced Materials, 2018, 30, e1706665.	21.0	147
107	Electrical Stimulation Using Conductive Polymer Polypyrrole Promotes Differentiation of Human Neural Stem Cells: A Biocompatible Platform for Translational Neural Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 385-393.	2.1	146
108	High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synthetic Metals, 2003, 138, 391-398.	3.9	144

#	Article	IF	CITATIONS
109	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Advanced Functional Materials, 2018, 28, 1706592.	14.9	144
110	Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) Blood Groups and Rhesus (D) Antibodies. Electroanalysis, 1999, 11, 215-222.	2.9	136
111	A Conductingâ€Polymer Platform with Biodegradable Fibers for Stimulation and Guidance of Axonal Growth. Advanced Materials, 2009, 21, 4393-4397.	21.0	136
112	Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology, 2012, 23, 085201.	2.6	135
113	Fibronectin and Bovine Serum Albumin Adsorption and Conformational Dynamics on Inherently Conducting Polymers: A QCM-D Study. Langmuir, 2012, 28, 8433-8445.	3.5	134
114	Electrically Conductive, Tough Hydrogels with pH Sensitivity. Chemistry of Materials, 2012, 24, 3425-3433.	6.7	134
115	A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin–Ionic Liquid Polymer Electrolyte. ACS Energy Letters, 2017, 2, 831-836.	17.4	134
116	The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy and Environmental Science, 2013, 6, 1291.	30.8	132
117	Physical surface and electromechanical properties of doped polypyrrole biomaterials. Biomaterials, 2010, 31, 1974-1983.	11.4	130
118	Tissue engineering with gellan gum. Biomaterials Science, 2016, 4, 1276-1290.	5.4	130
119	Preparation and characterization of processable electroactive polyaniline–polyvinyl alcohol composite. Polymer, 2003, 44, 3523-3528.	3.8	129
120	Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO ₂ to CO. Journal of Materials Chemistry A, 2016, 4, 10710-10718.	10.3	129
121	Electrochemical and Electrostatic Cleavage of Alkoxyamines. Journal of the American Chemical Society, 2018, 140, 766-774.	13.7	129
122	3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. Journal of Materials Chemistry B, 2018, 6, 7066-7075.	5.8	129
123	Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. Synthetic Metals, 2003, 137, 1393-1394.	3.9	128
124	Chemical generation of optically active polyaniline via the doping of emeraldine base with (+)- or (?)-camphorsulfonic acid. Polymer, 1995, 36, 3597-3599.	3.8	126
125	Comparison of polyaniline primers prepared with different dopants for corrosion protection of steel. Progress in Organic Coatings, 2003, 48, 43-49.	3.9	126
126	Graphite Oxide to Graphene. Biomaterials to Bionics. Advanced Materials, 2015, 27, 7563-7582.	21.0	126

#	Article	IF	CITATIONS
127	Direct Electrodeposition of Polypyrrole on Aluminum and Aluminum Alloy by Electron Transfer Mediation. Journal of the Electrochemical Society, 2002, 149, C173.	2.9	125
128	Superflexibility of graphene oxide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11088-11093.	7.1	125
129	Energy efficient electrochemical reduction of CO ₂ to CO using a three-dimensional porphyrin/graphene hydrogel. Energy and Environmental Science, 2019, 12, 747-755.	30.8	125
130	Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein. Biomaterials, 2011, 32, 3822-3831.	11.4	124
131	Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter, 2018, 14, 2142-2151.	2.7	123
132	Highâ€Performance Grapheneâ€Fiberâ€Based Neural Recording Microelectrodes. Advanced Materials, 2019, 31, e1805867.	21.0	122
133	Conducting polymers ? bridging the bionic interface. Soft Matter, 2007, 3, 665.	2.7	120
134	Nano-Carbon Electrodes for Thermal Energy Harvesting. Journal of Nanoscience and Nanotechnology, 2015, 15, 1-14.	0.9	118
135	Modified gellan gum hydrogels for tissue engineering applications. Soft Matter, 2013, 9, 3705.	2.7	117
136	Soft, Flexible Freestanding Neural Stimulation and Recording Electrodes Fabricated from Reduced Graphene Oxide. Advanced Functional Materials, 2015, 25, 3551-3559.	14.9	117
137	â€~SWEATCH': A Wearable Platform for Harvesting and Analysing Sweat Sodium Content. Electroanalysis, 2016, 28, 1283-1289.	2.9	117
138	Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensors and Actuators B: Chemical, 2006, 115, 678-684.	7.8	116
139	Inkjet Printable Polyaniline Nanoformulations. Langmuir, 2007, 23, 8569-8574.	3.5	116
140	Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomaterialia, 2013, 9, 8671-8677.	8.3	116
141	3-dimensional (3D) fabricated polymer based drug delivery systems. Journal of Controlled Release, 2014, 193, 27-34.	9.9	116
142	Eosinophilic Meningoencephalitis Caused by a Metastrongylid Lung-Worm of Rats. JAMA - Journal of the American Medical Association, 1962, 179, 620.	7.4	115
143	Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon, 2005, 43, 1891-1896.	10.3	113
144	Highly Conductive Carbon Nanotubeâ€Graphene Hybrid Yarn. Advanced Functional Materials, 2014, 24, 5859-5865.	14.9	113

#	Article	IF	CITATIONS
145	Formation and processability of liquid crystalline dispersions of graphene oxide. Materials Horizons, 2014, 1, 87-91.	12.2	113
146	The use of microelectrodes to probe the electropolymerization mechanism of heterocyclic conducting polymers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 306, 157-167.	0.1	111
147	Molecular recognition using conducting polymers: basis of an electrochemical sensing technology—Plenary lecture. Analyst, The, 1993, 118, 329-334.	3.5	111
148	Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 4677-4699.	10.3	111
149	A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nature Communications, 2022, 13, 1304.	12.8	111
150	The intelligent knee sleeve: A wearable biofeedback device. Sensors and Actuators B: Chemical, 2008, 131, 541-547.	7.8	109
151	Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon, 2014, 79, 554-562.	10.3	109
152	Liquid Crystal Behavior of Single-Walled Carbon Nanotubes Dispersed in Biological Hyaluronic Acid Solutions. Journal of the American Chemical Society, 2007, 129, 9452-9457.	13.7	108
153	Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. Journal of Power Sources, 2007, 163, 1105-1109.	7.8	108
154	Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. Journal of Controlled Release, 2013, 169, 313-320.	9.9	108
155	Fabrication of Polyaniline-Based Gas Sensors Using Piezoelectric Inkjet and Screen Printing for the Detection of Hydrogen Sulfide. IEEE Sensors Journal, 2010, 10, 1419-1426.	4.7	107
156	Simultaneous determination of copper, nickel, cobalt, chromium(VI), and chromium(III) by liquid chromatography with electrochemical detection. Analytical Chemistry, 1982, 54, 1706-1712.	6.5	106
157	The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synthetic Metals, 2005, 152, 77-80.	3.9	106
158	Carbon nanotube network modified carbon fibre paper for Li-ion batteries. Energy and Environmental Science, 2009, 2, 393.	30.8	106
159	Investigation of protein adsorption and electrochemical behavior at a gold electrode. Journal of Colloid and Interface Science, 2003, 261, 312-319.	9.4	105
160	Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials, 2011, 32, 7309-7317.	11.4	105
161	Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNFâ€coated electrodes. Journal of Biomedical Materials Research - Part A, 2009, 91A, 241-250.	4.0	103
162	Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells. Nanoscale, 2010, 2, 282-286.	5.6	103

#	Article	IF	CITATIONS
163	Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta, 2015, 172, 12-19.	5.2	103
164	A novel capacitor material based on Nafion-doped polypyrrole. Journal of Power Sources, 2008, 177, 665-668.	7.8	101
165	A highly nitrogen-doped porous graphene – an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 18229-18237.	10.3	101
166	Polypyrrole-based amperometric flow injection biosensor for urea. Analytica Chimica Acta, 1996, 323, 107-113.	5.4	100
167	Characterisation of olive oil by an electronic nose based on conducting polymer sensors. Sensors and Actuators B: Chemical, 2000, 63, 1-9.	7.8	100
168	Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Current Applied Physics, 2004, 4, 402-406.	2.4	100
169	Engineering Surface Amine Modifiers of Ultrasmall Gold Nanoparticles Supported on Reduced Graphene Oxide for Improved Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2018, 8, 1801400.	19.5	100
170	Electrofunctional polymers: their role in the development of new analytical systems. Analyst, The, 1999, 124, 213-219.	3.5	99
171	Electrode-Cellular Interface. Science, 2009, 324, 185-186.	12.6	99
172	Chondrogenesis of Infrapatellar Fat Pad Derived Adipose Stem Cells in 3D Printed Chitosan Scaffold. PLoS ONE, 2014, 9, e99410.	2.5	99
173	Biocompatible Ionic Liquid–Biopolymer Electrolyte-Enabled Thin and Compact Magnesium–Air Batteries. ACS Applied Materials & Interfaces, 2014, 6, 21110-21117.	8.0	99
174	Toward Biodegradable Mg–Air Bioelectric Batteries Composed of Silk Fibroin–Polypyrrole Film. Advanced Functional Materials, 2016, 26, 1454-1462.	14.9	99
175	Micro-humidity sensors based on a processable polyaniline blend. Sensors and Actuators B: Chemical, 2005, 107, 657-665.	7.8	98
176	Printing conducting polymers. Analyst, The, 2010, 135, 2779.	3.5	98
177	The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications, 2008, , 4741.	4.1	97
178	Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials, 2020, 10, 2002539.	19.5	97
179	A Multiswitchable Poly(terthiophene) Bearing a Spiropyran Functionality: Understanding Photo- and Electrochemical Control. Journal of the American Chemical Society, 2011, 133, 5453-5462.	13.7	96
180	Manganese dioxide-anchored three-dimensional nitrogen-doped graphene hybrid aerogels as excellent anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 10403-10412.	10.3	96

#	Article	IF	CITATIONS
181	Conducting polymer coated neural recording electrodes. Journal of Neural Engineering, 2013, 10, 016004.	3.5	95
182	High-performance hybrid carbon nanotube fibers for wearable energy storage. Nanoscale, 2017, 9, 5063-5071.	5.6	95
183	Pulse damperometric detection of proteins using antibody containing conducting polymers. Analytica Chimica Acta, 1993, 279, 209-212.	5.4	94
184	Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline) Tj ETQqO 0 0	rgBT /Ovei 3.5	rlock 10 Tf 50 94
185	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3276-3279.	3.1	94
186	Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber. Synthetic Metals, 2010, 160, 94-98.	3.9	94
187	Fully Roll-to-Roll Gravure Printable Wireless (13.56â€MHz) Sensor-Signage Tags for Smart Packaging. Scientific Reports, 2014, 4, 5387.	3.3	94
188	Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14321-14340.	6.7	94
189	Achieving Outstanding Mechanical Performance in Reinforced Elastomeric Composite Fibers Using Large Sheets of Graphene Oxide. Advanced Functional Materials, 2015, 25, 94-104.	14.9	93
190	Soft Mechanical Sensors Through Reverse Actuation in Polypyrrole. Advanced Functional Materials, 2007, 17, 3216-3222.	14.9	92
191	Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent. Journal of Materials Science: Materials in Medicine, 1999, 10, 19-27.	3.6	91
192	Biomaterials for corneal bioengineering. Biomedical Materials (Bristol), 2018, 13, 032002.	3.3	91
193	Electrochemical Properties of Single-Wall Carbon Nanotube Electrodes. Journal of the Electrochemical Society, 2003, 150, E409.	2.9	90
194	Enhanced control and stability of polypyrrole electromechanical actuators. Synthetic Metals, 2004, 140, 273-280.	3.9	90
195	An Amperometric Enzyme Biosensor Fabricated from Polyaniline Nanoparticles. Electroanalysis, 2005, 17, 423-430.	2.9	90
196	DNAâ€Wrapped Singleâ€Walled Carbon Nanotube Hybrid Fibers for supercapacitors and Artificial Muscles. Advanced Materials, 2008, 20, 466-470.	21.0	90
197	Vapour phase polymerisation of conducting and non-conducting polymers: A review. Talanta, 2014, 119, 133-143.	5.5	90
198	Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions. Electrochimica Acta, 2000, 46, 509-517.	5.2	88

#	Article	IF	CITATIONS
199	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2018, 8, 1801280.	19.5	88
200	Simultaneous determination of free sulfide and cyanide by ion chromatography with electrochemical detection. Analytical Chemistry, 1982, 54, 582-585.	6.5	87
201	3D printed metal columns for capillary liquid chromatography. Analyst, The, 2014, 139, 6343-6347.	3.5	87
202	Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles. Electrochemistry Communications, 2005, 7, 317-322.	4.7	86
203	On the electrodeposition of titanium in ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 2189.	2.8	85
204	Thin, Tough, pH-Sensitive Hydrogel Films with Rapid Load Recovery. ACS Applied Materials & Interfaces, 2014, 6, 4109-4114.	8.0	85
205	STUDIES ON EOSINOPHILIC MENINGITIS. 3. EPIDEMIOLOGIC AND CLINICAL OBSERVATIONS ON PACIFIC ISLANDS AND THE POSSIBLE ETIOLOGIC ROLE OF ANGIOSTRONGYLUS CANTONENSIS1. American Journal of Epidemiology, 1967, 85, 17-44.	3.4	84
206	3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines. Frontiers in Surgery, 2015, 2, 39.	1.4	84
207	A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochimica Acta, 2017, 235, 348-355.	5.2	84
208	Doping-dedoping of polypyrrole: a study using current-measuring and resistance-measuring techniques. Journal of Electroanalytical Chemistry, 1993, 354, 145-160.	3.8	83
209	An erodible polythiophene-based composite for biomedical applications. Journal of Materials Chemistry, 2011, 21, 5555.	6.7	83
210	Hybrid Nanomembranes for High Power and High Energy Density Supercapacitors and Their Yarn Application. ACS Nano, 2012, 6, 327-334.	14.6	83
211	Manganosite–microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications. Electrochimica Acta, 2013, 101, 99-108.	5.2	83
212	Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Scientific Reports, 2017, 7, 8929.	3.3	82
213	Functionalizing graphene with titanate coupling agents as reinforcement for one-component waterborne poly(urethane-acrylate) anticorrosion coatings. Chemical Engineering Journal, 2019, 359, 331-343.	12.7	82
214	Polypyrrole-based potentiometric biosensor for urea part 1. Incorporation of urease. Analytica Chimica Acta, 1993, 281, 611-620.	5.4	81
215	Studies of double layer capacitance and electron transfer at a gold electrode exposed to protein solutions. Electrochimica Acta, 2004, 49, 4223-4230.	5.2	81
216	Self-Oscillatory Actuation at Constant DC Voltage with pH-Sensitive Chitosan/Polyaniline Hydrogel Blend. Chemistry of Materials, 2006, 18, 5805-5809.	6.7	81

#	Article	IF	CITATIONS
217	Development of a polypyrrole-based human serum albumin sensor. Analytica Chimica Acta, 1991, 249, 381-385.	5.4	80
218	Temporal trends of triclosan contamination in dated sediment cores from four urbanized estuaries: Evidence of preservation and accumulation. Chemosphere, 2010, 78, 347-352.	8.2	80
219	3D Printing for Electrocatalytic Applications. Joule, 2019, 3, 1835-1849.	24.0	80
220	Poly(pyrrole-N-carbodithioate) electrode for electroanalysis. Analytical Chemistry, 1986, 58, 128-131.	6.5	79
221	The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. Electrochimica Acta, 2008, 53, 5092-5099.	5.2	79
222	Organic Conducting Polymer–Protein Interactions. Chemistry of Materials, 2012, 24, 828-839.	6.7	79
223	A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta, 2020, 219, 121145.	5.5	79
224	Behavior of copper in southeastern United States estuaries. Marine Chemistry, 1983, 12, 183-193.	2.3	78
225	Preparation, characterisation and biosensor application of conducting polymers based on ferrocene substituted thiophene and terthiophene. Electrochimica Acta, 2002, 47, 2715-2724.	5.2	78
226	Increased upconversion performance for thin film solar cells: a trimolecular composition. Chemical Science, 2016, 7, 559-568.	7.4	78
227	SEROLOGIC AND EPIDEMIOLOGIC OBSERVATIONS ON TOXOPLASMOSIS ON THREE PACIFIC ATOLLS. American Journal of Epidemiology, 1969, 90, 103-111.	3.4	77
228	Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction. Journal of Materials Chemistry, 2007, 17, 4359.	6.7	77
229	Carbon-Nanotube Biofibers. Advanced Materials, 2007, 19, 1244-1248.	21.0	77
230	Ionic-covalent entanglement hydrogels from gellan gum, carrageenan and an epoxy-amine. Soft Matter, 2013, 9, 3009.	2.7	77
231	Facile preparation of optically active polyanilines via the in situ chemical oxidative polymerisation of aniline. Synthetic Metals, 1999, 106, 171-176.	3.9	76
232	Conducting textiles from single-walled carbon nanotubes. Synthetic Metals, 2007, 157, 358-362.	3.9	76
233	Highly Stretchable Conducting SIBSâ€₽3HT Fibers. Advanced Functional Materials, 2011, 21, 955-962	14.9	76
234	Optimizing Electron Densities of Niâ€Nâ€C Complexes by Hybrid Coordination for Efficient Electrocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 929-937.	6.8	76

#	Article	IF	CITATIONS
235	Liquid chromatography with electrochemical and or spectrophotometric detection for automated determination of lead, cadmium, mercury, cobalt, nickel and copper. Analytical Chemistry, 1984, 56, 2085-2090.	6.5	75
236	Pulsed amperometric detection of thaumatin using antibody-containing poly(pyrrole) electrodes. Analyst, The, 1994, 119, 1997.	3.5	75
237	Conducting Polymers and Corrosion III. A Scanning Vibrating Electrode Study of Poly(3-octyl pyrrole) on Steel and Aluminum. Journal of the Electrochemical Society, 2000, 147, 3667.	2.9	75
238	Applications of scanning electrochemical microscopy (SECM) for local characterization of AZ31 surface during corrosion in a buffered media. Corrosion Science, 2014, 86, 93-100.	6.6	75
239	3Dâ€Printed Conical Arrays of TiO ₂ Electrodes for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1701060.	19.5	75
240	Responsive conducting polymer-hydrogel composites. Polymer Gels and Networks, 1997, 5, 251-265.	0.6	74
241	Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) – A highly processable conductive organic biopolymer. Acta Biomaterialia, 2015, 14, 33-42.	8.3	74
242	Co-deposition of carbon dots and reduced graphene oxide nanosheets on carbon-fiber microelectrode surface for selective detection of dopamine. Applied Surface Science, 2017, 412, 131-137.	6.1	74
243	Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles. Synthetic Metals, 2006, 156, 796-803.	3.9	73
244	Detection of electroinactive ions using conducting polymer microelectrodes. Electroanalysis, 1994, 6, 860-864.	2.9	72
245	Studies of the overoxidation of polypyrrole. Synthetic Metals, 1997, 84, 403-404.	3.9	72
246	Disclosure of Adverse Events in the United States and Canada: An Update, and a Proposed Framework for Improvement. Journal of Public Health Research, 2013, 2, jphr.2013.e32.	1.2	72
247	Chemically converted graphene: scalable chemistries to enable processing and fabrication. NPG Asia Materials, 2015, 7, e186-e186.	7.9	72
248	The influence of organic matter and atmospheric deposition on the particulate trace metal concentration of northwest Atlantic surface seawater. Marine Chemistry, 1977, 5, 143-170.	2.3	71
249	Preparation and application of conducting polymers containing chemically active counterions for analytical purposes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 247, 145-156.	0.1	71
250	Electroactive-conducting polymers for corrosion control. Progress in Organic Coatings, 2001, 43, 149-157.	3.9	71
251	Novel electrode substrates for rechargeable lithium/polypyrrole batteries. Journal of Power Sources, 2005, 140, 162-167.	7.8	71
252	Biomolecules as selective dispersants for carbon nanotubes. Carbon, 2005, 43, 1879-1884.	10.3	71

#	Article	IF	CITATIONS
253	Extrusion printed polymer structures: A facile and versatile approach to tailored drug delivery platforms. International Journal of Pharmaceutics, 2012, 422, 254-263.	5.2	71
254	Biofabrication of human articular cartilage: a path towards the development of a clinical treatment. Biofabrication, 2018, 10, 045006.	7.1	71
255	Interobserver agreement in the examination of acute ankle injury patients. American Journal of Emergency Medicine, 1992, 10, 14-17.	1.6	70
256	Polypyrrole-based potentiometric biosensor for urea. Analytica Chimica Acta, 1993, 281, 621-627.	5.4	70
257	Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis. Part I. Use of macroelectrodes. Analytica Chimica Acta, 1997, 339, 201-209.	5.4	70
258	A novel "dual mode―actuation in chitosan/polyaniline/carbon nanotube fibers. Sensors and Actuators B: Chemical, 2007, 121, 616-621.	7.8	70
259	Response Characterization of Electroactive Polymers as Mechanical Sensors. IEEE/ASME Transactions on Mechatronics, 2008, 13, 187-196.	5.8	70
260	High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosensors and Bioelectronics, 2011, 26, 2613-2618.	10.1	70
261	Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate. Journal of Materials Chemistry B, 2014, 2, 793-799.	5.8	70
262	Clinical manifestations of eosinophilic meningitis due to <i>Angiostrongylus cantonensis</i> . Neurology, 1979, 29, 1566-1570.	1.1	70
263	Deposition and electrochemical stripping of mercury ions on polypyrrole based modified electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 246, 181-191.	0.1	69
264	Amperometric Glucose Biosensor on Layer by Layer Assembled Carbon Nanotube and Polypyrrole Multilayer Film. Electroanalysis, 2008, 20, 150-156.	2.9	69
265	Determination of copper as a dithiocarbamate complex by reverse-phase liquid chromatography with electrochemical detection. Analytical Chemistry, 1981, 53, 1209-1213.	6.5	68
266	Facile synthesis of optically active polyaniline and polytoluidine. Polymer, 1996, 37, 359-362.	3.8	68
267	Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor. Analytica Chimica Acta, 1997, 341, 155-160.	5.4	68
268	Inherently Conducting Polymer Nanostructures. Journal of Nanoscience and Nanotechnology, 2002, 2, 441-451.	0.9	68
269	Electrochemical modulation of antigen–antibody binding. Biosensors and Bioelectronics, 2004, 20, 260-268.	10.1	68
270	Carbon Nanotube Biofiber Formation in a Polymerâ€Free Coagulation Bath. Advanced Functional Materials, 2008, 18, 61-66.	14.9	68

#	Article	IF	CITATIONS
271	Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry. Nature Communications, 2017, 8, 2066.	12.8	68
272	Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?. Trends in Biotechnology, 2020, 38, 1316-1328.	9.3	68
273	Studies on Eosinophilic Meningitis. American Journal of Tropical Medicine and Hygiene, 1969, 18, 206-216.	1.4	68
274	Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis. Part II. Use of microelectrodes. Analytica Chimica Acta, 1997, 339, 211-223.	5.4	67
275	Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose. Sensors and Actuators B: Chemical, 2002, 84, 252-257.	7.8	67
276	TITAN: a conducting polymer based microfluidic pump. Smart Materials and Structures, 2005, 14, 1511-1516.	3.5	67
277	A Cytocompatible Robust Hybrid Conducting Polymer Hydrogel for Use in a Magnesium Battery. Advanced Materials, 2016, 28, 9349-9355.	21.0	67
278	Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology—Barriers to Clinical Translation. Frontiers in Surgery, 2018, 5, 70.	1.4	67
279	Influence of the chiral dopant anion on the generation of induced optical activity in polyanilines. Polymer, 1997, 38, 2627-2631.	3.8	66
280	Electrochemical Formation of Chiral Polyaniline Colloids Codoped with (+)- or (â^')-10-Camphorsulfonic Acid and Polystyrene Sulfonate. Macromolecules, 1998, 31, 6521-6528.	4.8	66
281	Electroformation of conducting polymers in a hydrogel support matrix. Polymer, 2000, 41, 1783-1790.	3.8	66
282	Characterisation of the topography and surface potential of electrodeposited conducting polymer films using atomic force and electric force microscopies. Electrochimica Acta, 2000, 46, 519-531.	5.2	66
283	Three-dimensional bio-printing. Science China Life Sciences, 2015, 58, 411-419.	4.9	66
284	A Free-standing Graphene-Polypyrrole Hybrid Paper via Electropolymerization with an Enhanced Areal Capacitance. Electrochimica Acta, 2016, 212, 561-571.	5.2	66
285	Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 245, 389-398.	20.2	66
286	Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 291, 120030.	20.2	66
287	Automated determination of nickel and copper by liquid chromatography with electrochemical and spectrophotometric detection. Analytical Chemistry, 1983, 55, 718-723.	6.5	65
288	Engineering a multimodal nerve conduit for repair of injured peripheral nerve. Journal of Neural Engineering, 2013, 10, 016008.	3.5	65

#	Article	IF	CITATIONS
289	One-Step Synthesis of Graphene/Polypyrrole Nanofiber Composites as Cathode Material for a Biocompatible Zinc/Polymer Battery. ACS Applied Materials & Interfaces, 2014, 6, 16679-16686.	8.0	65
290	Flexible Electrodes and Electrolytes for Energy Storage. Electrochimica Acta, 2015, 175, 87-95.	5.2	65
291	Developments in conducting polymer fibres: from established spinning methods toward advanced applications. RSC Advances, 2016, 6, 44687-44716.	3.6	65
292	UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 31916-31925.	8.0	65
293	Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of â€īntelligent biomaterials'. Supramolecular Science, 1994, 1, 77-83.	0.7	64
294	lron(II) in rainwater, snow, and surface seawater from a coastal environment. Marine Chemistry, 1995, 50, 41-50.	2.3	64
295	Functionalized polythiophene-coated textile: A new anode material for a flexible battery. Journal of Power Sources, 2006, 156, 610-614.	7.8	64
296	One‣tep Synthesis of Conducting Polymer–Noble Metal Nanoparticle Composites using an Ionic Liquid. Advanced Functional Materials, 2008, 18, 2031-2040.	14.9	64
297	Artificial Muscles Based on Polypyrrole/Carbon Nanotube Laminates. Advanced Materials, 2011, 23, 2966-2970.	21.0	64
298	Nanobionics: the impact of nanotechnology on implantable medical bionic devices. Nanoscale, 2012, 4, 4327.	5.6	64
299	Wet-spinning of PEDOT:PSS/Functionalized-SWNTs Composite: a Facile Route Toward Production of Strong and Highly Conducting Multifunctional Fibers. Scientific Reports, 2013, 3, 3438.	3.3	64
300	Photo hemopropulsion – Lightâ€Stimulated Movement of Microdroplets. Advanced Materials, 2014, 26, 7339-7345.	21.0	64
301	Ionic electroactive polymer artificial muscles in space applications. Scientific Reports, 2014, 4, 6913.	3.3	64
302	Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering. Polymer Degradation and Stability, 2015, 111, 71-77.	5.8	64
303	TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical. Journal of the American Chemical Society, 2016, 138, 9611-9619.	13.7	64
304	3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography. Analytica Chimica Acta, 2016, 910, 84-94.	5.4	64
305	A de-doping/re-doping study of organic soluble polyaniline. Synthetic Metals, 2002, 129, 165-172.	3.9	63
306	A highly flexible polymer fibre battery. Journal of Power Sources, 2005, 150, 223-228.	7.8	63

#	Article	IF	CITATIONS
307	The Development and Characterisation of Conducting Polymeric-based Sensing Devices. Synthetic Metals, 2005, 154, 25-28.	3.9	63
308	Nanostructured carbon electrodes. Journal of Materials Chemistry, 2010, 20, 3553.	6.7	63
309	Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions. Advanced Energy Materials, 2021, 11, 2100695.	19.5	63
310	Effect of the counterion employed during synthesis on the properties of polypyrrole membranes. Journal of Membrane Science, 1994, 87, 47-56.	8.2	62
311	Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers. Reactive and Functional Polymers, 2003, 56, 141-146.	4.1	62
312	Actuation behaviour of layered composites of polyaniline, carbon nanotubes and polypyrrole. Synthetic Metals, 2005, 151, 85-91.	3.9	62
313	Creating conductive structures for cell growth: Growth and alignment of myogenic cell types on polythiophenes. Journal of Biomedical Materials Research - Part A, 2010, 95A, 256-268.	4.0	62
314	Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation. Advanced Healthcare Materials, 2019, 8, e1900425.	7.6	62
315	Nanoelectrodes: energy conversion and storage. Materials Today, 2009, 12, 20-27.	14.2	61
316	Electromechanical coupling in polypyrrole sensors and actuators. Sensors and Actuators A: Physical, 2010, 161, 127-133.	4.1	61
317	Inkjet printed polypyrrole/collagen scaffold: A combination of spatial control and electrical stimulation of PC12 cells. Synthetic Metals, 2012, 162, 1375-1380.	3.9	61
318	Electrical Stimulation of Myoblast Proliferation and Differentiation on Aligned Nanostructured Conductive Polymer Platforms. Advanced Healthcare Materials, 2012, 1, 801-808.	7.6	61
319	Experimental Transmission of Toxoplasma Gondii by Filth-Flies. American Journal of Tropical Medicine and Hygiene, 1971, 20, 411-413.	1.4	61
320	Experimental Transmission of Toxoplasma gondii by Cockroaches. Journal of Infectious Diseases, 1972, 126, 545-547.	4.0	60
321	Concentration of particulate trace metals and particulate organic carbon in marine surface waters by a bubble flotation mechanism. Marine Chemistry, 1975, 3, 157-181.	2.3	60
322	Enhanced electrochemical stability of polyaniline in ionic liquids. Current Applied Physics, 2004, 4, 389-393.	2.4	60
323	Fast Carbon Nanotube Charging and Actuation. Advanced Materials, 2006, 18, 870-873.	21.0	60
324	Putting function into fashion: Organic conducting polymer fibres and textiles. Fibers and Polymers, 2007, 8, 135-142.	2.1	60

#	Article	IF	CITATIONS
325	Enhanced Performance of Dye Sensitized Solar Cells Utilizing Platinum Electrodeposit Counter Electrodes. Journal of the Electrochemical Society, 2008, 155, K124.	2.9	60
326	Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid – Collagen conjugate for neural interfacing. Biomaterials, 2011, 32, 4714-4724.	11.4	60
327	Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. Acta Biomaterialia, 2012, 8, 194-200.	8.3	60
328	Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 2012, 60, 201-205.	5.2	60
329	Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon, 2019, 155, 499-505.	10.3	60
330	Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration. Advanced Healthcare Materials, 2020, 9, e2001410.	7.6	60
331	Besnoitia species (Protozoa, Sporozoa, Toxoplasmatidae): recognition of cyclic transmission by cats. Science, 1975, 188, 369-371.	12.6	59
332	Electrochemically controlled transport of potassium chloride across a conducting electro-active polymer membrane. Journal of Electroanalytical Chemistry, 1992, 334, 111-120.	3.8	59
333	Force generation from polypyrrole actuators. Smart Materials and Structures, 2005, 14, 406-412.	3.5	59
334	Liquid Crystallinity and Dimensions of Surfactant-Stabilized Sheets of Reduced Graphene Oxide. Journal of Physical Chemistry Letters, 2012, 3, 2425-2430.	4.6	59
335	Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. Journal of Materials Chemistry, 2012, 22, 11347.	6.7	59
336	Adaptive Membrane Systems Based on Conductive Electroactive Polymers. Journal of Intelligent Material Systems and Structures, 1993, 4, 43-49.	2.5	58
337	In-situ electrochemical studies on the redox properties of polypyrrole in aqueous solutions. European Polymer Journal, 1999, 35, 1761-1772.	5.4	58
338	Exploiting high quality PEDOT:PSS–SWNT composite formulations for wet-spinning multifunctional fibers. Journal of Materials Chemistry, 2012, 22, 25174.	6.7	58
339	THE ROLE OF THE CAT IN THE NATURAL HISTORY OF TOXOPLASMA GONDII. American Journal of Tropical Medicine and Hygiene, 1973, 22, 313-322.	1.4	58
340	Electrochemical Synthesis and Chiroptical Properties of Optically Active Poly(o-methoxyaniline). Macromolecules, 2000, 33, 3237-3243.	4.8	57
341	Determining the Orientation and Molecular Packing of Organic Dyes on a TiO ₂ Surface Using X-ray Reflectometry. Langmuir, 2011, 27, 12944-12950.	3.5	57
342	A pHâ€sensitive, strong doubleâ€network hydrogel: Poly(ethylene glycol) methyl ether methacrylates–poly(acrylic acid). Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 423-430.	2.1	57

#	Article	IF	CITATIONS
343	Novel nanographene/porphyrin hybrids – preparation, characterization, and application in solar energy conversion schemes. Chemical Science, 2013, 4, 3085.	7.4	57
344	Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Applied Materials Today, 2021, 22, 100914.	4.3	57
345	Stirring influences the phytoplankton species composition within enclosed columns of coastal sea water. Journal of Experimental Marine Biology and Ecology, 1978, 32, 219-239.	1.5	56
346	Development of membrane systems based on conducting polymers. Synthetic Metals, 1999, 102, 1338-1341.	3.9	56
347	Conducting Polymers with Fibrillar Morphology Synthesized in a Biphasic Ionic Liquid/Water System. Macromolecules, 2007, 40, 2702-2711.	4.8	56
348	Direct exfoliation of graphite with a porphyrin – creating functionalizable nanographene hybrids. Chemical Communications, 2012, 48, 8745.	4.1	56
349	All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimica Acta, 2012, 83, 209-215.	5.2	56
350	Electrochemical chromatography —packings, hardware and mechanisms of interaction. Journal of Chromatography A, 1991, 544, 305-316.	3.7	55
351	Preparation of hydrogel/conducting polymer composites. Polymer Gels and Networks, 1994, 2, 135-143.	0.6	55
352	Production of polypyrrole fibres by wet spinning. Synthetic Metals, 2008, 158, 104-107.	3.9	55
353	A reactive wet spinning approach to polypyrrole fibres. Journal of Materials Chemistry, 2011, 21, 6421.	6.7	55
354	A flexible capacitor based on conducting polymer electrodes. Synthetic Metals, 2011, 161, 1130-1132.	3.9	55
355	Organic Bionics: A New Dimension in Neural Communications. Advanced Functional Materials, 2012, 22, 2003-2014.	14.9	55
356	Flexible free-standing graphene paper with interconnected porous structure for energy storage. Journal of Materials Chemistry A, 2015, 3, 4428-4434.	10.3	55
357	High Performance Fe Porphyrin/Ionic Liquid Coâ€catalyst for Electrochemical CO ₂ Reduction. Chemistry - A European Journal, 2016, 22, 14158-14161.	3.3	55
358	Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Isletâ€Containing Constructs. Advanced Healthcare Materials, 2019, 8, e1801181.	7.6	55
359	Photovoltaic devices based on polythiophenes and substituted polythiophenes. Synthetic Metals, 2001, 123, 53-60.	3.9	54
360	Surprising shrinkage of expanding gels under an external load. Nature Materials, 2006, 5, 48-51.	27.5	54

#	Article	IF	CITATIONS
361	Incorporation of carbon nanotubes into the biomedical polymer poly(styrene-β-isobutylene-β-styrene). Carbon, 2007, 45, 402-410.	10.3	54
362	Novel carbon materials for thermal energy harvesting. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1229-1235.	3.6	54
363	A smart cyto-compatible asymmetric polypyrrole membrane for salinity power generation. Nano Energy, 2018, 53, 475-482.	16.0	54
364	Thermochromism in Optically Active Polyaniline Salts. Macromolecules, 1998, 31, 6529-6533.	4.8	53
365	Polypyrrole membranes containing chelating ligands: synthesis, characterisation and transport studies. Polymer, 2001, 42, 8571-8579.	3.8	53
366	Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Materials and Structures, 2003, 12, 549-555.	3.5	53
367	DNA Hydrogel Fiber with Selfâ€Entanglement Prepared by Using an Ionic Liquid. Angewandte Chemie - International Edition, 2008, 47, 2470-2474.	13.8	53
368	Wet‧pun Biodegradable Fibers on Conducting Platforms: Novel Architectures for Muscle Regeneration. Advanced Functional Materials, 2009, 19, 3381-3388.	14.9	53
369	Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. Journal of Physical Chemistry C, 2011, 115, 22084-22088.	3.1	53
370	Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode. Journal of Power Sources, 2006, 161, 1458-1462.	7.8	52
371	Electronic interactions within composites of polyanilines formed under acidic and alkaline conditions. Conductivity, ESR, Raman, UV-vis and fluorescence studies. Physical Chemistry Chemical Physics, 2011, 13, 3303.	2.8	52
372	Novel methods of antiepileptic drug delivery — Polymer-based implants. Advanced Drug Delivery Reviews, 2012, 64, 953-964.	13.7	52
373	Development of a porous 3D graphene-PDMS scaffold for improved osseointegration. Colloids and Surfaces B: Biointerfaces, 2017, 159, 386-393.	5.0	52
374	Conductive Tough Hydrogel for Bioapplications. Macromolecular Bioscience, 2018, 18, 1700270.	4.1	52
375	Synthesis and characterisation of polypyrrole/heparin composites. Reactive and Functional Polymers, 1999, 39, 19-26.	4.1	51
376	Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges. MRS Bulletin, 2008, 33, 215-224.	3.5	51
377	Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synthetic Metals, 2010, 160, 76-82.	3.9	51
378	Integrated Highâ€Efficiency Pt/Carbon Nanotube Arrays for PEM Fuel Cells. Advanced Energy Materials, 2011, 1, 671-677.	19.5	51

#	Article	IF	CITATIONS
379	Controlled delivery for neuro-bionic devices. Advanced Drug Delivery Reviews, 2013, 65, 559-569.	13.7	51
380	Disclosing Adverse Events to Patients: International Norms and Trends. Journal of Patient Safety, 2017, 13, 43-49.	1.7	51
381	CATS, RATS, AND TOXOPLASMOSIS ON A SMALL PACIFIC ISLAND. American Journal of Epidemiology, 1972, 95, 475-482.	3.4	50
382	Conducting polymer nanoparticles synthesized in an ionic liquid by chemical polymerisation. Synthetic Metals, 2006, 156, 979-983.	3.9	50
383	Carbon nanotube biogels. Carbon, 2009, 47, 1282-1291.	10.3	50
384	Preparation and characterization of hybrid conducting polymer–carbon nanotube yarn. Nanoscale, 2012, 4, 940-945.	5.6	50
385	High strain stretchable solid electrolytes. Electrochemistry Communications, 2013, 32, 47-50.	4.7	50
386	Observations on the Natural History of Encephalomyocarditis Virus. American Journal of Tropical Medicine and Hygiene, 1978, 27, 133-143.	1.4	50
387	Transport of particulate organic matter by bubbles in marine waters 1. Limnology and Oceanography, 1978, 23, 1155-1167.	3.1	49
388	Electroimmobilisation of sulphite oxidase into a polypyrrole film and its utilisation for flow amperometric detection of sulphite. Analytica Chimica Acta, 1996, 332, 145-153.	5.4	49
389	Optimisation of a polypyrrole based actuator. Synthetic Metals, 1997, 85, 1419-1420.	3.9	49
390	EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials. Physical Chemistry Chemical Physics, 2010, 12, 4135.	2.8	49
391	Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Applied Physics Letters, 2011, 99, .	3.3	49
392	Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochimica Acta, 2012, 60, 213-223.	5.2	49
393	Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochimica Acta, 2013, 113, 17-22.	5.2	49
394	Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO ₂ electroreduction to CO. Sustainable Energy and Fuels, 2017, 1, 1023-1027.	4.9	49
395	Genetic determinants of resistance to ectromelia (mousepox) virus-induced mortality. Journal of Virology, 1985, 55, 890-891.	3.4	49
396	Characterization of novel conducting polymeric stationary phases and electrochemically controlled high-performance liquid chromatography. Analytical Chemistry, 1989, 61, 2391-2394.	6.5	48

#	Article	IF	CITATIONS
397	Ion exchange properties of polypyrrole. Reactive & Functional Polymers, 1992, 18, 133-140.	0.8	48
398	Parameters influencing transport across conducting electroactive polymer membranes. Journal of Membrane Science, 1996, 119, 199-212.	8.2	48
399	Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016, 1, 1600166.	5.8	48
400	Fabrication of a graphene coated nonwoven textile for industrial applications. RSC Advances, 2016, 6, 73203-73209.	3.6	48
401	Development of an all-polymer, axial force electrochemical actuator. Synthetic Metals, 1999, 102, 1317-1318.	3.9	47
402	Optically Active Polymer Carbon Nanotube Composite. Journal of Physical Chemistry B, 2005, 109, 22725-22729.	2.6	47
403	Influence of Biodopants on PEDOT Biomaterial Polymers: Using QCMâ€D to Characterize Polymer Interactions with Proteins and Living Cells. Advanced Materials Interfaces, 2014, 1, 1300122.	3.7	47
404	3D printable conducting hydrogels containing chemically converted graphene. Nanoscale, 2017, 9, 2038-2050.	5.6	47
405	Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Materials Science and Engineering C, 2020, 107, 110312.	7.3	47
406	Isolation of Toxoplasma gondii from the Feces of Naturally Infected Cats. Journal of Infectious Diseases, 1971, 124, 227-228.	4.0	46
407	Effect of polymer composition on the detection of electroinactive species using conductive polymers. Electroanalysis, 1993, 5, 555-563.	2.9	46
408	Spinning Carbon Nanotube-Gel Fibers Using Polyelectrolyte Complexation. Advanced Functional Materials, 2008, 18, 3759-3764.	14.9	46
409	Performance characteristics of a polypyrrole modified polydimethylsiloxane (PDMS) membrane based microfluidic pump. Sensors and Actuators A: Physical, 2008, 148, 239-244.	4.1	46
410	Capillary zone electrophoresis of graphene oxide and chemically converted graphene. Journal of Chromatography A, 2010, 1217, 7593-7597.	3.7	46
411	Carbon Nanohorns as Integrative Materials for Efficient Dyeâ€ S ensitized Solar Cells. Advanced Materials, 2013, 25, 6513-6518.	21.0	46
412	Liquid Ink Deposition from an Atomic Force Microscope Tip: Deposition Monitoring and Control of Feature Size. Langmuir, 2014, 30, 2712-2721.	3.5	46
413	Electro-stimulated release from a reduced graphene oxide composite hydrogel. Journal of Materials Chemistry B, 2015, 3, 2530-2537.	5.8	46
414	The development and characterisation of polyaniline—single walled carbon nanotube composite fibres using 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process. Polymer, 2006, 47, 4996-5002.	3.8	45

#	Article	IF	CITATIONS
415	Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials. Journal of Materials Chemistry, 2011, 21, 2671.	6.7	45
416	Liquid Deposition Patterning of Conducting Polymer Ink onto Hard and Soft Flexible Substrates via Dip-Pen Nanolithography. Langmuir, 2012, 28, 804-811.	3.5	45
417	Recent Advances in Nerve Tissue Engineering. International Journal of Artificial Organs, 2014, 37, 277-291.	1.4	45
418	A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Materials and Structures, 2016, 25, 035015.	3.5	45
419	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	19.5	45
420	Conducting Polmers as a Basis for Responsive Materials Systems. Journal of Intelligent Material Systems and Structures, 1998, 9, 723-731.	2.5	44
421	Effect of electron withdrawing or donating substituents on the photovoltaic performance of polythiophenes. Synthetic Metals, 2002, 128, 35-42.	3.9	44
422	Study on the formation of the Prussian blue films on the polypyrrole surface as a potential mediator system for biosensing applications. Analytica Chimica Acta, 2002, 472, 113-121.	5.4	44
423	Conducting Polymer Electrochemistry in Ionic Liquids Synthetic Metals, 2003, 135-136, 31-32.	3.9	44
424	Swelling Behavior of Chitosan Hydrogels in Ionic Liquidâ `Water Binary Systems. Langmuir, 2006, 22, 9375-9379.	3.5	44
425	Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 2006, 47, 4520-4530.	3.8	44
426	Modulated release of dexamethasone from chitosan–carbon nanotube films. Sensors and Actuators A: Physical, 2009, 155, 120-124.	4.1	44
427	Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation. Journal of Materials Chemistry, 2011, 21, 1918-1924.	6.7	44
428	A bio-friendly, green route to processable, biocompatible graphene/polymer composites. RSC Advances, 2015, 5, 45284-45290.	3.6	44
429	Peptide modification of purified gellan gum. Journal of Materials Chemistry B, 2015, 3, 1106-1115.	5.8	44
430	Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacryloyl, hyaluronic acid methacryloyl. Biofabrication, 2019, 11, 035003.	7.1	44
431	Use of Prussian Blue/Conducting Polymer Modified Electrodes for the Detection of Cytochrome C. Electroanalysis, 1998, 10, 472-476.	2.9	43
432	Influence of Electrochemical Polymerization Temperature on the Chiroptical Properties of (+)-Camphorsulfonic Acid-Doped Polyaniline. Macromolecules, 2006, 39, 5604-5610.	4.8	43

#	Article	IF	CITATIONS
433	The effect of reduced graphene oxide addition on the superconductivity of MgB2. Journal of Materials Chemistry, 2012, 22, 13941.	6.7	43
434	Evaluating the corrosion behaviour of Magnesium alloy in simulated biological fluid by using SECM to detect hydrogen evolution. Electrochimica Acta, 2015, 152, 294-301.	5.2	43
435	Highâ€Performance Multifunctional Grapheneâ€PLGA Fibers: Toward Biomimetic and Conducting 3D Scaffolds. Advanced Functional Materials, 2016, 26, 3105-3117.	14.9	43
436	Organic Electrodes and Communications with Excitable Cells. Advanced Functional Materials, 2018, 28, 1700587.	14.9	43
437	Polypyrrole-based amperometric biosensor for sulfite determination. Electroanalysis, 1994, 6, 865-870.	2.9	42
438	Electrochemically controlled transport of small charged organic molecules across conducting polymer membranes. Journal of Membrane Science, 1995, 100, 239-248.	8.2	42
439	Investigation of the applied potential limits for polypyrrole when employed as the active components of a two-electrode device. Synthetic Metals, 2001, 122, 379-385.	3.9	42
440	Photoelectrochemical cells based on polymers and copolymers from terthiophene and nitrostyrylterthiophene. Synthetic Metals, 2001, 123, 225-237.	3.9	42
441	Can fabric sensors monitor breast motion?. Journal of Biomechanics, 2007, 40, 3056-3059.	2.1	42
442	Significant Performance Improvement of Porphyrin-Sensitized TiO ₂ Solar Cells under White Light Illumination. Journal of Physical Chemistry C, 2011, 115, 317-326.	3.1	42
443	Sodium Fluoride-Assisted Modulation of Anodized TiO ₂ Nanotube for Dye-Sensitized Solar Cells Application. ACS Applied Materials & amp; Interfaces, 2011, 3, 1585-1593.	8.0	42
444	A battery composed of a polypyrrole cathode and a magnesium alloy anode—Toward a bioelectric battery. Synthetic Metals, 2012, 162, 584-589.	3.9	42
445	Maintaining Cytocompatibility of Biopolymers Through a Graphene Layer for Electrical Stimulation of Nerve Cells. Advanced Functional Materials, 2014, 24, 769-776.	14.9	42
446	Conductive Polymer Hydrogels. Springer Series on Polymer and Composite Materials, 2016, , 19-44.	0.7	42
447	Wearable Platform for Realâ€ŧime Monitoring of Sodium in Sweat. ChemPhysChem, 2018, 19, 1531-1536.	2.1	42
448	Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance. Nature Communications, 2018, 9, 5070.	12.8	42
449	Effect of thermal treatment on the electroactivity of polyaniline. Polymer, 1996, 37, 917-923.	3.8	41
450	Synthesis, characterisation and transport properties of layered conducting electroactive polypyrrole membranes. Journal of Membrane Science, 1998, 148, 161-172.	8.2	41

#	Article	IF	CITATIONS
451	Synthesis, characterisation and ion transport studies on polypyrrole/polyvinylphosphate conducting polymer materials. Synthetic Metals, 1999, 99, 191-199.	3.9	41
452	Nano-Pt Modified Aligned Carbon Nanotube Arrays Are Efficient, Robust, High Surface Area Electrocatalysts. Chemistry of Materials, 2008, 20, 2603-2605.	6.7	41
453	3D Bio-nanofibrous PPy/SIBS mats as platforms for cell culturing. Chemical Communications, 2008, , 3729.	4.1	41
454	Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy. Electrochemistry Communications, 2017, 76, 6-9.	4.7	41
455	3D Printing of Cytocompatible Graphene/Alginate Scaffolds for Mimetic Tissue Constructs. Frontiers in Bioengineering and Biotechnology, 2020, 8, 824.	4.1	41
456	One-Pot Hydrothermal Synthesis of Solution-Processable MoS ₂ /PEDOT:PSS Composites for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 7285-7296.	8.0	41
457	Intermediate and transport hosts in the natural history of Toxoplasma gondii *. American Journal of Tropical Medicine and Hygiene, 1973, 22, 456-464.	1.4	41
458	High-performance liquid chromatography on polypyrrole-modified silica. Journal of Chromatography A, 1991, 588, 25-31.	3.7	40
459	Lead Deposition in the Shell of the Bivalve, Mya arenaria: an Indicator of Dissolved Lead in Seawater. Estuarine, Coastal and Shelf Science, 1994, 39, 93-104.	2.1	40
460	In-situ mechanical properties of tosylate doped (pts) polypyrrole. Synthetic Metals, 1997, 84, 847-848.	3.9	40
461	Conducting Polyaniline/Calixarene Salts:Â Synthesis and Properties. Macromolecules, 2000, 33, 7044-7050.	4.8	40
462	Capacitive properties of RuO2 and Ru–Co mixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors. Synthetic Metals, 2009, 159, 1389-1392.	3.9	40
463	Conducting gel-fibres based on carrageenan, chitosan and carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 7953.	6.7	40
464	Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode. Acta Biomaterialia, 2012, 8, 2538-2548.	8.3	40
465	Graphene cryogel papers with enhanced mechanical strength for high performance lithium battery anodes. Journal of Materials Chemistry A, 2014, 2, 1325-1331.	10.3	40
466	Processable 2D materials beyond graphene: MoS ₂ liquid crystals and fibres. Nanoscale, 2016, 8, 16862-16867.	5.6	40
467	A "Tandem―Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 22031-22041.	8.0	40
468	Bulk electropolymerization of alkylpyrroles. Polymer, 1996, 37, 2811-2819.	3.8	39

#	Article	IF	CITATIONS
469	The amounts per cycle of polypyrrole electromechanical actuators. Smart Materials and Structures, 2003, 12, 468-472.	3.5	39
470	Preparation of novel ultrafine fibers based on DNA and poly(ethylene oxide) by electrospinning from aqueous solutions. Reactive and Functional Polymers, 2007, 67, 461-467.	4.1	39
471	Carbon nanotube-based transducers for immunoassays. Carbon, 2009, 47, 2337-2343.	10.3	39
472	Inkjet printed LED based pH chemical sensor for gas sensing. Analytica Chimica Acta, 2009, 652, 308-314.	5.4	39
473	Guidance of neurite outgrowth on aligned electrospun polypyrrole/poly(styreneâ€Î²â€isobutyleneâ€Î²â€styrene) fiber platforms. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1004-1011.	4.0	39
474	Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation. Soft Matter, 2010, 6, 1045.	2.7	39
475	Flux pinning mechanisms in graphene-doped MgB2 superconductors. Scripta Materialia, 2011, 65, 634-637.	5.2	39
476	A Porphyrinâ€Doped Polymer Catalyzes Selective, Lightâ€Assisted Water Oxidation in Seawater. Angewandte Chemie - International Edition, 2012, 51, 1907-1910.	13.8	39
477	A facile approach for fabrication of mechanically strong graphene/polypyrrole films with large areal capacitance for supercapacitor applications. RSC Advances, 2015, 5, 102643-102651.	3.6	39
478	Electrodeposition of polyaniline and polyaniline composites from colloidal dispersions. Polymer International, 1995, 37, 87-91.	3.1	38
479	Ion transport membranes based on conducting polymers. Journal of Membrane Science, 1997, 132, 245-253.	8.2	38
480	Conducting polymers electromechanical actuators and strain sensors. Macromolecular Symposia, 2003, 192, 161-170.	0.7	38
481	Nanocomposites of Polyaniline/Poly(2-methoxyaniline-5-sulfonic acid). Macromolecular Rapid Communications, 2006, 27, 1995-2000.	3.9	38
482	A readily-prepared, convergent, oxygen reduction electrocatalyst. Chemical Communications, 2007, , 3353.	4.1	38
483	Novel ACNT arrays based MEA structure-nano-Pt loaded ACNT/Nafion/ACNT for fuel cell applications. Chemical Communications, 2010, 46, 4824.	4.1	38
484	Biocompatibility of Immobilized Aligned Carbon Nanotubes. Small, 2011, 7, 1035-1042.	10.0	38
485	Aqueous dispersions of reduced graphene oxide and multi wall carbon nanotubes for enhanced glucose oxidase bioelectrode performance. Carbon, 2013, 61, 467-475.	10.3	38
486	Local probing of magnetoelectric properties of PVDF/Fe ₃ O ₄ electrospun nanofibers by piezoresponse force microscopy. Nanotechnology, 2017, 28, 065707.	2.6	38

#	Article	IF	CITATIONS
487	Facile Development of a Fiber-Based Electrode for Highly Selective and Sensitive Detection of Dopamine. ACS Sensors, 2019, 4, 2599-2604.	7.8	38
488	Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS Combinatorial Science, 2019, 21, 229-240.	3.8	38
489	The association of copper, mercury and lead with surface-active organic matter in coastal seawater. Marine Chemistry, 1982, 11, 379-394.	2.3	37
490	Transport of copper(II) across stand-alone conducting polypyrrole membranes: the effect of applied potential waveforms. Polymer, 1993, 34, 16-20.	3.8	37
491	Characterisation and analytical use of a polypyrrole electrode containing anti-human serum albumin. Analytica Chimica Acta, 1998, 371, 39-48.	5.4	37
492	Electrochemical preparation of chiral polyaniline nanocomposites. Synthetic Metals, 1999, 106, 89-95.	3.9	37
493	Optically active sulfonated polyanilines. Synthetic Metals, 1999, 106, 129-137.	3.9	37
494	Electrohydrodynamic polymerization of 2-methoxyaniline-5-sulfonic acid. Synthetic Metals, 2000, 114, 267-272.	3.9	37
495	Immobilisation of anti-Listeria in a polypyrrole film. Reactive and Functional Polymers, 2002, 53, 217-227.	4.1	37
496	Tough Supersoft Sponge Fibers with Tunable Stiffness from a DNA Selfâ€Assembly Technique. Angewandte Chemie - International Edition, 2009, 48, 5116-5120.	13.8	37
497	A new twist: controlled shape-shifting of silver nanoparticles from prisms to discs. Journal of Materials Chemistry, 2009, 19, 8294.	6.7	37
498	Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. Electrochimica Acta, 2015, 163, 149-160.	5.2	37
499	Fabrication of Coaxial Wetâ€5pun Graphene–Chitosan Biofibers. Advanced Engineering Materials, 2016, 18, 284-293.	3.5	37
500	Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers. Advanced Materials Interfaces, 2016, 3, 1500672.	3.7	37
501	Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine. Sensors, 2017, 17, 884.	3.8	37
502	Three-Dimensional Printing and Cell Therapy for Wound Repair. Advances in Wound Care, 2018, 7, 145-156.	5.1	37
503	Self-Healing Electrode with High Electrical Conductivity and Mechanical Strength for Artificial Electronic Skin. ACS Applied Materials & amp; Interfaces, 2019, 11, 46026-46033.	8.0	37
504	3Dâ€Printed Wearable Electrochemical Energy Devices. Advanced Functional Materials, 2022, 32, 2103092.	14.9	37

#	Article	IF	CITATIONS
505	Electrochemically controlled transport across conducting polymer composites — Basis of smart membrane materials. Polymer Gels and Networks, 1993, 1, 61-77.	0.6	36
506	Polypyrrole based cation transport membranes. Journal of Membrane Science, 1999, 152, 61-70.	8.2	36
507	Redox-active conducting polymers incorporating ferrocenes. Preparation, characterization and bio-sensing properties of ferrocenylpropyl and -butyl polypyrroles. Electrochimica Acta, 2002, 47, 4227-4238.	5.2	36
508	ATR-IR spectroscopic studies of the influence of phosphate buffer on adsorption of immunoglobulin G to TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 220, 159-167.	4.7	36
509	Metal transport studies on inherently conducting polymer membranes containing cyclodextrin dopants. Journal of Membrane Science, 2005, 249, 9-20.	8.2	36
510	Solutionâ^'Surface Electropolymerization:  A Route to Morphologically Novel Poly(pyrrole) Using an Ionic Liquid. Macromolecules, 2006, 39, 7193-7195.	4.8	36
511	Modelling trilayer conjugated polymer actuators for their sensorless position control. Sensors and Actuators A: Physical, 2012, 185, 82-91.	4.1	36
512	Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synthetic Metals, 2012, 162, 2216-2221.	3.9	36
513	Development and Characterization of Novel Hybrid Hydrogel Fibers. Macromolecular Materials and Engineering, 2015, 300, 1217-1225.	3.6	36
514	Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Annals of Biomedical Engineering, 2017, 45, 1015-1026.	2.5	36
515	Pulsed electrochemical detection of proteins using conducting polymer based sensors. Analytica Chimica Acta, 1995, 315, 27-32.	5.4	35
516	Porous conducting membranes based on polypyrrole–PMMA composites. Synthetic Metals, 1999, 99, 121-126.	3.9	35
517	Conformational Changes in Sulfonated Polyaniline Caused By Metal Salts and OH Synthetic Metals, 2003, 135-136, 289-290.	3.9	35
518	Polypyrrole as cathode materials for Zn-polymer battery with various biocompatible aqueous electrolytes. Electrochimica Acta, 2013, 95, 212-217.	5.2	35
519	Corrosion protection afforded by praseodymium conversion film on Mg alloy AZNd in simulated biological fluid studied by scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2015, 739, 211-217.	3.8	35
520	A high energy density solar rechargeable redox battery. Journal of Materials Chemistry A, 2016, 4, 3446-3452.	10.3	35
521	Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide. ACS Applied Materials & Materia	8.0	35
522	3D Bioprinting Constructs to Facilitate Skin Regeneration. Advanced Functional Materials, 2022, 32, 2105080.	14.9	35

#	Article	IF	CITATIONS
523	Preparation of metal dithiocarbamate complexes for chromatographic separation and multi-element determinations. Analytica Chimica Acta, 1984, 164, 223-232.	5.4	34
524	Determination of metal ions using ion chromatography and indirect amperometric detection. Analytical Chemistry, 1987, 59, 54-57.	6.5	34
525	Electrochemically Controlled Liquid Chromatography on Conducting Polymer Stationary Phases. Journal of Liquid Chromatography and Related Technologies, 1990, 13, 3245-3260.	1.0	34
526	New Conducting Polymer Affinity Chromatography Stationary Phases. Journal of Liquid Chromatography and Related Technologies, 1990, 13, 3091-3110.	1.0	34
527	Electrochemically controlled transport in a dual conducting polymer membrane system. Journal of Membrane Science, 1995, 98, 173-176.	8.2	34
528	Electrochemical production of conducting polymer colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 103, 281-288.	4.7	34
529	Preparation and characterisation of processable conducting polymer–hydrogel composites. Reactive and Functional Polymers, 2000, 44, 31-40.	4.1	34
530	Synthesis, characterisation and ion transport studies on polypyrrole/deoxyribonucleic acid conducting polymer membranes. Synthetic Metals, 2001, 123, 279-286.	3.9	34
531	Electrodeposition of conducting polymers on active metals by electron transfer mediation. Current Applied Physics, 2004, 4, 137-140.	2.4	34
532	Polypyrrole filament sensors for gases and vapours. Current Applied Physics, 2004, 4, 366-369.	2.4	34
533	An HRP based biosensor using sulphonated polyaniline. Synthetic Metals, 2005, 153, 185-188.	3.9	34
534	Free standing carbon nanotube composite bio-electrodes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 37-43.	3.4	34
535	Colouration efficiency measurements in electrochromic polymers: The importance of charge density. Electrochemistry Communications, 2007, 9, 2032-2036.	4.7	34
536	Effect of synthesis conditions on the properties of wet spun polypyrrole fibres. Synthetic Metals, 2009, 159, 1837-1843.	3.9	34
537	The mechanical and the electrical properties of conducting polypyrrole fibers. Journal of Applied Physics, 2010, 107, .	2.5	34
538	The citrate-mediated shape evolution of transforming photomorphic silver nanoparticles. Chemical Communications, 2010, 46, 7807.	4.1	34
539	Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering. Biofabrication, 2014, 6, 025002.	7.1	34
540	Electrical Stimulation with a Conductive Polymer Promotes Neurite Outgrowth and Synaptogenesis in Primary Cortical Neurons in 3D. Scientific Reports, 2018, 8, 9855.	3.3	34

#	Article	IF	CITATIONS
541	Emerging approach in semiconductor photocatalysis: Towards 3D architectures for efficient solar fuels generation in semi-artificial photosynthetic systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 142-160.	11.6	34
542	Carbon Nanotube Based Electronic and Electrochemical Sensors. Sensor Letters, 2005, 3, 183-193.	0.4	34
543	Observations on a feline coccidium with some characteristics of Toxoplasma and Sarcocystis. Zeitschrift Für Parasitenkunde (Berlin, Germany), 1975, 46, 167-178.	0.8	33
544	Determination of P-Cresol (and Other Phenolics) Using a Conducting Polymer Based Electro-Immunological Sensing System. Analytical Letters, 1994, 27, 2417-2429.	1.8	33
545	Electrochemical production of polypyrrole colloids. Polymer, 1994, 35, 3801-3803.	3.8	33
546	Electrosynthesis and characterisation of poly(2-methoxyaniline-5-sulfonic acid)-effect of pH control. Synthetic Metals, 2000, 114, 287-293.	3.9	33
547	Electrochemically controlled transport of metal ions across polypyrrole membranes using a flow-through cell. Reactive and Functional Polymers, 2001, 49, 87-98.	4.1	33
548	Comparison of Emeraldine Salt, Emeraldine Base, and Epoxy Coatings for Corrosion Protection of Steel During Immersion in a Saline Solution. Corrosion, 2003, 59, 22-31.	1.1	33
549	Purification and characterisation of poly(2-methoxyaniline-5-sulfonicacid acid). Synthetic Metals, 2005, 153, 181-184.	3.9	33
550	Characterisation of porous freeze dried conducting carbon nanotube–chitosan scaffolds. Journal of Materials Chemistry, 2008, 18, 5417.	6.7	33
551	A molecular template approach to integration of polyaniline into textiles. Synthetic Metals, 2009, 159, 1135-1140.	3.9	33
552	Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film. Applied Physics Letters, 2011, 98, .	3.3	33
553	Gel electrolytes with ionic liquid plasticiser for electrochromic devices. Electrochimica Acta, 2011, 56, 4408-4413.	5.2	33
554	Evaluation of encapsulating coatings on the performance of polypyrrole actuators. Smart Materials and Structures, 2013, 22, 075005.	3.5	33
555	Phase-controlled microwave synthesis of pure monoclinic BiVO4 nanoparticles for photocatalytic dye degradation. Applied Materials Today, 2015, 1, 67-73.	4.3	33
556	Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. Journal of Materials Chemistry B, 2016, 4, 1142-1149.	5.8	33
557	Fabrication of 3D structures from graphene-based biocomposites. Journal of Materials Chemistry B, 2017, 5, 3462-3482.	5.8	33
558	Selective determination of Cr(VI) oxyanions using a poly-3-methylthiophene-modified electrode. Electroanalysis, 1989, 1, 541-547.	2.9	32

#	Article	IF	CITATIONS
559	Characterisation of conductive, electroactive polymers using resistometry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 319, 365-371.	0.1	32
560	Communicating with the building blocks of life using organic electronic conductors. Synthetic Metals, 2001, 119, 39-42.	3.9	32
561	Photoelectrochemical cells based on a novel porphyrin containing light harvesting conducting copolymer. Electrochimica Acta, 2004, 49, 329-337.	5.2	32
562	Application of polypyrrole to flexible substrates. Journal of Applied Polymer Science, 2007, 104, 3938-3947.	2.6	32
563	Synthesis and characterisation of controllably functionalised polyaniline nanofibres. Synthetic Metals, 2009, 159, 741-748.	3.9	32
564	Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain–machine interfaces. Analyst, The, 2015, 140, 3164-3174.	3.5	32
565	FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. Biomaterials, 2021, 264, 120383.	11.4	32
566	Simultaneous Determination of Cadmium, Cobalt, Copper, Lead, Mercury and Nickel in Zinc Sulfate Plant Electrolyte Using Liquid Chromatography with Electrochemical and Spectrophotometric Detection. Journal of Liquid Chromatography and Related Technologies, 1983, 6, 1799-1822.	1.0	31
567	Detection of Nitrite Using Electrodes Modified with an Electrodeposited Ruthenium-Containing Polymer. Analytical Letters, 1991, 24, 2059-2073.	1.8	31
568	Preparation of chiral conducting polymer colloids. Synthetic Metals, 1997, 84, 181-182.	3.9	31
569	Mechanism of electropolymerisation of methyl methacrylate and glycidyl acrylate on stainless steel. Electrochimica Acta, 2002, 47, 1935-1948.	5.2	31
570	Controlled Transport of Droplets Using Conducting Polymers. Langmuir, 2009, 25, 11137-11141.	3.5	31
571	Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation. Biomaterials Science, 2013, 1, 368-378.	5.4	31
572	Advances in printing biomaterials and living cells. Current Opinion in Organ Transplantation, 2016, 21, 467-475.	1.6	31
573	Smart graphene-cellulose paper for 2D or 3D "origami-inspired―human stem cell support and differentiation. Colloids and Surfaces B: Biointerfaces, 2019, 176, 87-95.	5.0	31
574	Encapsulation of Human Natural and Induced Regulatory Tâ€Cells in ILâ€2 and CCL1 Supplemented Alginateâ€GelMA Hydrogel for 3D Bioprinting. Advanced Functional Materials, 2020, 30, 2000544.	14.9	31
575	Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness. Acta Biomaterialia, 2020, 106, 156-169.	8.3	31
576	Variable Resistance to Ectromelia (Mousepox) Virus Among Genera of Mus. Current Topics in Microbiology and Immunology, 1986, 127, 319-322.	1.1	31

#	Article	IF	CITATIONS
577	Factors influencing electrochemical release of 2,6-anthraquinone disulphonic acid from polypyrrole. Journal of Controlled Release, 1994, 30, 137-142.	9.9	30
578	The effect of the counterion on the electrochemical properties of conducting polymers — a study using resistometry. Synthetic Metals, 1994, 63, 83-88.	3.9	30
579	Electrochemical induced ductile—brittle transition in tosylate-doped (pTS) polypyrrole. Synthetic Metals, 1998, 97, 117-121.	3.9	30
580	Microsecond Dye Regeneration Kinetics in Efficient Solid State Dye-Sensitized Solar Cells Using a Photoelectrochemically Deposited PEDOT Hole Conductor. Journal of the American Chemical Society, 2010, 132, 9543-9545.	13.7	30
581	Nanostructured aligned CNT platforms enhance the controlled release of a neurotrophic protein from polypyrrole. Nanoscale, 2010, 2, 499.	5.6	30
582	Surface and Biomolecular Forces of Conducting Polymers. Polymer Reviews, 2013, 53, 506-526.	10.9	30
583	Bioengineering of articular cartilage: past, present and future. Regenerative Medicine, 2013, 8, 333-349.	1.7	30
584	Anhydrous organic dispersions of highly reduced chemically converted graphene. Carbon, 2014, 76, 368-377.	10.3	30
585	Conductive surfaces with dynamic switching in response to temperature and salt. Journal of Materials Chemistry B, 2015, 3, 9285-9294.	5.8	30
586	Measuring the effective area and charge density of platinum electrodes for bionic devices. Journal of Neural Engineering, 2018, 15, 046015.	3.5	30
587	The significance of supporting electrolyte on poly (vinyl alcohol)–iron(II)/iron(III) solid-state electrolytes for wearable thermo-electrochemical cells. Electrochemistry Communications, 2021, 124, 106938.	4.7	30
588	Electrochemically-induced fluid movement using polypyrrole. Synthetic Metals, 2005, 151, 60-64.	3.9	29
589	Bio-nanowebs Based on Poly(styrene-β-isobutylene-β-styrene) (SIBS) Containing Single-Wall Carbon Nanotubes. Chemistry of Materials, 2007, 19, 2721-2723.	6.7	29
590	The mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic) acid using linear-diol additives: Its effect on electrochromic performance. Thin Solid Films, 2008, 516, 7828-7835.	1.8	29
591	The influence of poly(2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex. Electrochimica Acta, 2008, 53, 4599-4605.	5.2	29
592	Visualizing Dynamic Actuation of Ultrathin Polypyrrole Films. Langmuir, 2009, 25, 3627-3633.	3.5	29
593	Gellan gum doped polypyrrole neural prosthetic electrode coatings. Soft Matter, 2011, 7, 4690.	2.7	29
594	Investigations into the electrochemical characteristics of nickel oxide hydroxide/multi-walled carbon nanotube nanocomposites for use as supercapacitor electrodes. Synthetic Metals, 2012, 161, 2641-2646.	3.9	29

#	Article	IF	CITATIONS
595	The Role of Unbound Oligomers in the Nucleation and Growth of Electrodeposited Polypyrrole and Method for Preparing High Strength, High Conductivity Films. Langmuir, 2012, 28, 10891-10897.	3.5	29
596	Indigo carmine (IC) doped polypyrrole (PPy) as a free-standing polymer electrode for lithium secondary battery application. Solid State Ionics, 2012, 215, 29-35.	2.7	29
597	Flexible cellulose based polypyrrole–multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. Journal of Materials Chemistry A, 2013, 1, 14300.	10.3	29
598	Differentiation of Stem Cells from Human Infrapatellar Fat Pad: Characterization of Cells Undergoing Chondrogenesis. Tissue Engineering - Part A, 2014, 20, 2213-2223.	3.1	29
599	High-strength graphene and polyacrylonitrile composite fiber enhanced by surface coating with polydopamine. Composites Science and Technology, 2017, 149, 280-285.	7.8	29
600	Threeâ€dimensional neural cultures produce networks that mimic native brain activity. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 490-493.	2.7	29
601	Supercapacitors: Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing (Adv. Funct. Mater. 21/2018). Advanced Functional Materials, 2018, 28, 1870142.	14.9	29
602	Synthesis, properties, and biomedical applications of alginate methacrylate (ALMA)-based hydrogels: Current advances and challenges. Applied Materials Today, 2021, 24, 101150.	4.3	29
603	Transient electrochemical techniques in liquid chromatography with microprocessor-based instrumentation. Analytical Chemistry, 1982, 54, 1702-1705.	6.5	28
604	Electrosynthesis of chromatographic stationary phases. Analytical Chemistry, 1989, 61, 198-201.	6.5	28
605	The use of microelectrodes as substrates for chemically modified sensors. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 283, 87-98.	0.1	28
606	Factors controlling the induction of optical activity in chiral polyanilines. Synthetic Metals, 1997, 84, 115-116.	3.9	28
607	â€~Stuffed' conducting polymers. Polymer, 2005, 46, 4664-4669.	3.8	28
608	Electrosynthesis of novel photochemically active inherently conducting polymers using an ionic liquid electrolyte. Electrochimica Acta, 2006, 51, 2471-2476.	5.2	28
609	Galvanic coupling conducting polymers to biodegradable Mg initiates autonomously powered drug release. Journal of Materials Chemistry, 2008, 18, 3608.	6.7	28
610	Vapor Phase Polymerization of EDOT from Submicrometer Scale Oxidant Patterned by Dip-Pen Nanolithography. Langmuir, 2012, 28, 9953-9960.	3.5	28
611	Resolving Subâ€Molecular Binding and Electrical Switching Mechanisms of Single Proteins at Electroactive Conducting Polymers. Small, 2013, 9, 393-401.	10.0	28
612	A new class of bubble-free water electrolyzer that is intrinsically highly efficient. International Journal of Hydrogen Energy, 2019, 44, 23568-23579.	7.1	28

#	Article	IF	CITATIONS
613	In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering. Acta Biomaterialia, 2021, 123, 286-297.	8.3	28
614	Evaluation of an enzyme-linked immunosorbent assay for the detection of ectromelia (mousepox) antibody. Journal of Clinical Microbiology, 1983, 18, 1220-1225.	3.9	28
615	The use of chemisorbed electrocatalytic polymers for detection in flowing solutions. Electroanalysis, 1989, 1, 245-250.	2.9	27
616	Influence of steric stabilizers on the electropolymerization and properties of polypyrroles. Polymer, 1994, 35, 1754-1758.	3.8	27
617	Interrupted Blood-Feeding byCuliseta melanura(Diptera: Culicidae) on European Starlings. Journal of Medical Entomology, 2001, 38, 59-66.	1.8	27
618	A readily-prepared electrocatalytic coating that is more active than platinum for hydrogen generation in 1 M strong acid. Chemical Communications, 2004, , 308-309.	4.1	27
619	Photocatalytic Oxidation of Methanol Using Titanium Dioxide/Single-Walled Carbon Nanotube Composite. Journal of the Electrochemical Society, 2007, 154, A407.	2.9	27
620	Magnetorheology of single-walled nanotube dispersions. Materials Letters, 2007, 61, 3116-3118.	2.6	27
621	Polypyrrole doped with redox-active poly(2-methoxyaniline-5-sulfonic acid) for lithium secondary batteries. RSC Advances, 2013, 3, 5447.	3.6	27
622	Probing the PEDOT:PSS/cell interface with conductive colloidal probe AFM-SECM. Nanoscale, 2016, 8, 4475-4481.	5.6	27
623	Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth of Primary Prefrontal Cortical Neurons from NRG1-KO and DISC1-LI Mice. Scientific Reports, 2017, 7, 42525.	3.3	27
624	Engineering the poly(vinyl alcohol)-polyaniline colloids for high-performance waterborne alkyd anticorrosion coating. Applied Surface Science, 2019, 481, 960-971.	6.1	27
625	Boosting Formate Production from CO ₂ at High Current Densities Over a Wide Electrochemical Potential Window on a SnS Catalyst. Advanced Science, 2021, 8, e2004521.	11.2	27
626	Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomaterialia, 2021, 131, 41-61.	8.3	27
627	Determination of trace amounts of chloramines by liquid chromatographic separation and amperometric detection. Analytica Chimica Acta, 1990, 237, 149-153.	5.4	26
628	Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 1992, 258, 317-324.	5.4	26
629	Synthesis and properties of a mechanically strong poly(bithiophene) composite polymer containing a polyelectrolyte dopant. Synthetic Metals, 2000, 110, 123-132.	3.9	26
630	Coupling conducting polymers and mediated electrochemical responses for the detection of Listeria. Analytica Chimica Acta, 2003, 475, 37-45.	5.4	26

#	Article	IF	CITATIONS
631	A Simple Means to Immobilize Enzyme into Conducting Polymers via Entrapment. Electrochemical and Solid-State Letters, 2006, 9, H68.	2.2	26
632	Reversible Photoinduced Electron Transfer in a Ruthenium Poly(2-methoxyaniline-5-sulfonic acid) Composite Film. Journal of Physical Chemistry B, 2008, 112, 12907-12912.	2.6	26
633	Processable polyaniline-HCSA/poly(vinyl acetate-co-butyl acrylate) corrosion protection coatings for aluminium alloy 2024-T3: A SVET and Raman study. Electrochimica Acta, 2009, 54, 1483-1490.	5.2	26
634	The effect of molecule size and shape on free charge generation, transport and recombination in all-thiophene dendrimer:fullerene bulk heterojunctions. Organic Electronics, 2010, 11, 573-582.	2.6	26
635	Evaluation of thrust force generated for a robotic fish propelled with polypyrrole actuators. Polymer International, 2010, 59, 357-364.	3.1	26
636	Polyterthiophene as an electrostimulated controlled drug release material of therapeutic levels of dexamethasone. Synthetic Metals, 2010, 160, 1107-1114.	3.9	26
637	Direct Sub-Micrometer Patterning of Nanostructured Conducting Polymer Films via a Low-Energy Infrared Laser. Nano Letters, 2011, 11, 3128-3135.	9.1	26
638	Vapor Phase Synthesis of Conducting Polymer Nanocomposites Incorporating 2D Nanoparticles. Chemistry of Materials, 2014, 26, 4207-4213.	6.7	26
639	Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction. Green Energy and Environment, 2017, 2, 285-293.	8.7	26
640	Knowledge creation in complex inter-organizational arrangements: understanding the barriers and enablers of university-industry knowledge creation in science-based cooperation. Journal of Knowledge Management, 2021, 25, 743-769.	5.1	26
641	STUDIES ON EOSINOPHILIC MENINGITIS. 4. EXPERIMENTAL INFECTION OF FRESH-WATER AND MARINE FISH WITH ANGIOSTRONGYLUS CANTONENSIS1. American Journal of Epidemiology, 1967, 85, 395-402.	3.4	25
642	Sarcocystis in Mice Inoculated with Toxoplasma-Like Oocysts from Cat Feces. Science, 1973, 180, 1375-1377.	12.6	25
643	Determination of metals in urine by direct injection of sample, high-performanc liquid chromatography and electrochemical or spectrophotometric detection. Analytica Chimica Acta, 1986, 182, 47-59.	5.4	25
644	Intelligent Chemical Systems Based on Conductive Electroactive Polymers. Journal of Intelligent Material Systems and Structures, 1991, 2, 228-238.	2.5	25
645	Polypyrrole-coated silica as a new stationary phase for liquid chromatography. Chromatographia, 1993, 37, 423-428.	1.3	25
646	Transport across stand-alone conducting polypyrrole membranes containing dodecylsulfate counterions. Reactive & Functional Polymers, 1994, 23, 213-220.	0.8	25
647	In situ characterization of conducting polymers by measuring dynamic contact angles with Wilhelmy's plate technique. Reactive & Functional Polymers, 1995, 24, 157-164.	0.8	25
648	Amperometric detection of electroinactive anions using conducting polymer electrodes subsequent to chromatographic separation. Electroanalysis, 1997, 9, 461-467.	2.9	25

#	Article	IF	CITATIONS
649	Polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) polymer composite. Polymer Gels and Networks, 1998, 6, 233-245.	0.6	25
650	Study of the surface potential and photovoltage of conducting polymers using electric force microscopy. Synthetic Metals, 2001, 124, 407-414.	3.9	25
651	Effect of growth conditions on the photovoltaic efficiency of poly(terthiophene) based photoelectrochemical cells. Electrochimica Acta, 2005, 50, 3224-3230.	5.2	25
652	Wearable sensors for monitoring sports performance and training. , 2008, , .		25
653	Electrocatalytic Reduction of Carbon Dioxide by Cobalt-Phthalocyanine-Incorporated Polypyrrole. Electrochemical and Solid-State Letters, 2009, 12, E17.	2.2	25
654	ESR, Raman, and Conductivity Studies on Fractionated Poly(2-methoxyaniline-5-sulfonic acid). Journal of Physical Chemistry B, 2010, 114, 2337-2341.	2.6	25
655	Wireless Ion-Selective Electrode Autonomous Sensing System. IEEE Sensors Journal, 2011, 11, 2374-2382.	4.7	25
656	An Electrosynthesized 3D Porous Molybdenum Sulfide/Graphene Film with Enhanced Electrochemical Performance for Lithium Storage. Small, 2018, 14, 1703096.	10.0	25
657	Development and Characterization of a Sucrose Microneedle Neural Electrode Delivery System. Advanced Biology, 2018, 2, 1700187.	3.0	25
658	3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. ACS Biomaterials Science and Engineering, 2019, 5, 4496-4510.	5.2	25
659	Bioprinting an Artificial Pancreas for Type 1 Diabetes. Current Diabetes Reports, 2019, 19, 53.	4.2	25
660	Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application. Advanced Healthcare Materials, 2021, 10, e2100041.	7.6	25
661	Electrochemical Synthesis of Optically Active Polyanilines. Australian Journal of Chemistry, 1998, 51, 23.	0.9	25
662	STUDIES ON EOSINOPHILIC MENINGITIS. 2. EXPERIMENTAL INFECTION OF SHRIMP AND CRABS WITH ANGIOSTRONGYLUS CANTONENSIS1. American Journal of Epidemiology, 1966, 84, 120-131.	3.4	24
663	Open-ocean transport of particulate trace metals by bubbles. Deep-sea Research, 1978, 25, 827-835.	0.5	24
664	First-order removal of particulate aluminium in oceanic surface layers. Nature, 1981, 293, 729-731.	27.8	24
665	Gut contents: A significant contaminant of Mytilus edulis whole body metal concentrations. Archives of Environmental Contamination and Toxicology, 1993, 25, 415-21.	4.1	24
666	Development of a conducting polymer-based microelectrode array detection system. Electroanalysis, 1996, 8, 623-629.	2.9	24

#	Article	IF	CITATIONS
667	Detection of haloacetic acids at conductive electroactive polymer-modified microelectrodes. Analytica Chimica Acta, 1997, 341, 141-153.	5.4	24
668	Electrochemical polymerization of acrylics on stainless steel cathodes. Journal of Applied Polymer Science, 2003, 87, 765-773.	2.6	24
669	Autopolymerization of Pyrrole in the Presence of a Host/Guest Calixarene. Macromolecules, 2005, 38, 1616-1622.	4.8	24
670	Electrochemical synthesis of polypyrrole films using stainless steel mesh as substrate for battery application. Synthetic Metals, 2005, 153, 117-120.	3.9	24
671	Nanofiber Mats from DNA, SWNTs, and Poly(ethylene oxide) and Their Application in Glucose Biosensors. Journal of the Electrochemical Society, 2008, 155, K100.	2.9	24
672	Electrically conductive coatings of nickel and polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) on nylon Lycra® textiles. Progress in Organic Coatings, 2013, 76, 1296-1301.	3.9	24
673	Capacitive behaviour of thermally reduced graphene oxide in a novel ionic liquid containing di-cationic charge. Synthetic Metals, 2014, 193, 110-116.	3.9	24
674	New Insights into the Analysis of the Electrode Kinetics of Flavin Adenine Dinucleotide Redox Center of Glucose Oxidase Immobilized on Carbon Electrodes. Langmuir, 2014, 30, 3264-3273.	3.5	24
675	Disorder engineering of undoped TiO ₂ nanotube arrays for highly efficient solar-driven oxygen evolution. Physical Chemistry Chemical Physics, 2015, 17, 5642-5649.	2.8	24
676	Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomaterials Science, 2019, 7, 3497-3509.	5.4	24
677	Processable Thermally Conductive Polyurethane Composite Fibers. Macromolecular Materials and Engineering, 2019, 304, 1800542.	3.6	24
678	Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. Bioprinting, 2020, 19, e00087.	5.8	24
679	Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation. Biomedicines, 2021, 9, 16.	3.2	24
680	Integration of biocomponents with synthetic structures: use of conducting polymer polyelectrolyte composites. , 1996, 2716, 164.		23
681	Properties of chiral polyaniline in various oxidation states. Synthetic Metals, 1999, 101, 817-818.	3.9	23
682	Electrosynthesis of polyurethane-based core-shell PAn·(+)-HCSA colloids. Synthetic Metals, 2000, 114, 313-320.	3.9	23
683	Redox-active conducting polymers incorporating ferrocenes. Electrochimica Acta, 2004, 49, 691-702.	5.2	23
684	Synthesis of Chiral Polyaniline Films via Chemical Vapor Phase Polymerization. Electrochemical and Solid-State Letters, 2006, 9, C9.	2.2	23

#	Article	IF	CITATIONS
685	Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 2008, 10, 519-522.	4.7	23
686	Wireless aquatic navigator for detection and analysis (WANDA). Sensors and Actuators B: Chemical, 2010, 150, 425-435.	7.8	23
687	Flexible and Compressible Goretexâ^'PEDOT Membrane Electrodes for Solid-State Dye-Sensitized Solar Cells. Langmuir, 2010, 26, 1452-1455.	3.5	23
688	Nano-bioelectronics via dip-pen nanolithography. Journal of Materials Chemistry C, 2015, 3, 6431-6444.	5.5	23
689	Comparison of inorganic electron transport layers in fully roll-to-roll coated/printed organic photovoltaics in normal geometry. Journal of Materials Chemistry A, 2016, 4, 15986-15996.	10.3	23
690	3D graphene-containing structures for tissue engineering. Materials Today Chemistry, 2019, 14, 100199.	3.5	23
691	Conducting Polymer Mediated Electrical Stimulation Induces Multilineage Differentiation with Robust Neuronal Fate Determination of Human Induced Pluripotent Stem Cells. Cells, 2020, 9, 658.	4.1	23
692	Biomimetic corneal stroma using electro-compacted collagen. Acta Biomaterialia, 2020, 113, 360-371.	8.3	23
693	STUDIES ON EOSINOPHILIC MENINGITIS. American Journal of Epidemiology, 1969, 89, 331-344.	3.4	22
694	Studies of the preparation and analytical application of polypyrrole-coated microelectrodes for determination of aluminum. Electroanalysis, 1996, 8, 330-335.	2.9	22
695	Protein transport and separation using polypyrrole coated, platinised polyvinylidene fluoride membranes. Reactive and Functional Polymers, 2000, 45, 217-226.	4.1	22
696	Development of Conducting Polymer Modified Electrodes for the Detection of Phenol. Electroanalysis, 2002, 14, 325-332.	2.9	22
697	Polypyrrole–heparin system for the separation of thrombin. Reactive and Functional Polymers, 2002, 53, 53-62.	4.1	22
698	Poly(3-methylthiophene) electrochemical actuators showing increased strain and work per cycle at higher operating stresses. Polymer, 2006, 47, 7720-7725.	3.8	22
699	High current density and drift velocity in templated conducting polymers. Organic Electronics, 2007, 8, 796-800.	2.6	22
700	Electrochemical polymerization of pyrrole in BMIMPF6 ionic liquid and its electrochemical response to dopamine in the presence of ascorbic acid. Synthetic Metals, 2009, 159, 1542-1545.	3.9	22
701	Ion effects in REDOX cycling of conducting polymer based electrochromic materials. Electrochemistry Communications, 2010, 12, 1505-1508.	4.7	22
702	A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb. Chemical Communications, 2011, 47, 8886.	4.1	22

#	Article	IF	CITATIONS
703	On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments. Corrosion Engineering Science and Technology, 2012, 47, 374-382.	1.4	22
704	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of Chemistry, 2012, 65, 577.	0.9	22
705	Surface modification of polypyrrole/biopolymer composites for controlled protein and cellular adhesion. Biofouling, 2013, 29, 1155-1167.	2.2	22
706	A light-assisted, polymeric water oxidation catalyst that selectively oxidizes seawater with a low onset potential. Chemical Science, 2013, 4, 2797.	7.4	22
707	Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. Journal of Materials Chemistry A, 2014, 2, 20382-20392.	10.3	22
708	Inkâ€onâ€Probe Hydrodynamics in Atomic Force Microscope Deposition of Liquid Inks. Small, 2014, 10, 3717-3728.	10.0	22
709	Optical and Electrochemical Methods for Determining the Effective Area and Charge Density of Conducting Polymer Modified Electrodes for Neural Stimulation. Analytical Chemistry, 2015, 87, 738-746.	6.5	22
710	Fabrication and In Vitro Characterization of Electrochemically Compacted Collagen/Sulfated Xylorhamnoglycuronan Matrix for Wound Healing Applications. Polymers, 2018, 10, 415.	4.5	22
711	Binderâ€Free Electrodes Derived from Interlayerâ€Expanded MoS ₂ Nanosheets on Carbon Cloth with a 3D Porous Structure for Lithium Storage. ChemElectroChem, 2019, 6, 2338-2343.	3.4	22
712	Novel porous thermosensitive gel electrolytes for wearable thermo-electrochemical cells. Chemical Engineering Journal, 2022, 449, 137775.	12.7	22
713	Designing chemically modified electrodes for electroanalysis. TrAC - Trends in Analytical Chemistry, 1988, 7, 143-147.	11.4	21
714	Use of Overoxidised Polypyrrole as a Chromium(VI) Sensor. Analytical Letters, 1992, 25, 429-441.	1.8	21
715	Electropolymerisation of pyrrole under hydrodynamic conditions—effect of solution additives. Electrochimica Acta, 1994, 39, 1409-1413.	5.2	21
716	HISTIDINE-RICH GLYCOPROTEIN FROM THE HEMOLYMPH OF THE MARINE MUSSEL MYTILUS EDULIS L. BINDS CLASS A, CLASS B, AND BORDERLINE METALS. Environmental Toxicology and Chemistry, 2007, 26, 872.	4.3	21
717	Fast bender actuators for fish-like aquatic robots. , 2008, , .		21
718	Towards fully optimized conducting polymer bending sensors: the effect of geometry. Smart Materials and Structures, 2009, 18, 085007.	3.5	21
719	High strain electromechanical actuators based on electrodeposited polypyrrole doped with di-(2-ethylhexyl)sulfosuccinate. Sensors and Actuators B: Chemical, 2011, 155, 278-284.	7.8	21
720	Actuating individual electrospun hydrogel nanofibres. Soft Matter, 2012, 8, 8082.	2.7	21

#	Article	IF	CITATIONS
721	Surface Properties and Interaction Forces of Biopolymer-Doped Conductive Polypyrrole Surfaces by Atomic Force Microscopy. Langmuir, 2013, 29, 6099-6108.	3.5	21
722	Engineering Human Neural Tissue by 3D Bioprinting. Methods in Molecular Biology, 2018, 1758, 129-138.	0.9	21
723	Development of a polymer dispersed-mercury modified electrode. Analytica Chimica Acta, 1990, 238, 345-350.	5.4	20
724	Determination of gold using anion-exchange-based chemically modified electrodes. Electroanalysis, 1991, 3, 191-195.	2.9	20
725	Novel conducting polymer-polyelectrolyte composites. Synthetic Metals, 1997, 84, 323-326.	3.9	20
726	Electron transfer mediated deposition of conducting polymers on active metals. Synthetic Metals, 2003, 135-136, 33-34.	3.9	20
727	Actuators for the cochlear implant. Synthetic Metals, 2003, 135-136, 39-40.	3.9	20
728	Electroless recovery of gold chloride using inherently conducting polymers. Polymer International, 2004, 53, 681-687.	3.1	20
729	Investigation of Ig.G Adsorption and the Effect on Electrochemical Responses at Titanium Dioxide Electrode. Langmuir, 2005, 21, 316-322.	3.5	20
730	Lithium–Polymer battery based on polybithiophene as cathode material. Journal of Power Sources, 2006, 159, 708-711.	7.8	20
731	Preparation of platinum inverse opals using self-assembled templates and their application in methanol oxidation. Materials Letters, 2007, 61, 2887-2890.	2.6	20
732	Towards the development of a fully integrated polymeric microfluidic platform for environmental analysis. Talanta, 2008, 77, 463-467.	5.5	20
733	Homogeneous Catalysts with a Mechanical ("Machineâ€likeâ€) Action. Chemistry - A European Journal, 2009, 15, 4746-4759.	3.3	20
734	Luminescent Metal Complexes within Polyelectrolyte Layers: Tuning Electron and Energy Transfer. Langmuir, 2009, 25, 14053-14060.	3.5	20
735	Insights into the cut edge corrosion of 55% Al–Zn metal coating on steel from simultaneous electrochemical polarization and localised pH sensing experiments. Corrosion Science, 2012, 55, 180-186.	6.6	20
736	Comparative displacement study of bilayer actuators comprising of conducting polymers, fabricated from polypyrrole, poly(3,4-ethylenedioxythiophene) or poly(3,4-propylenedioxythiophene). Sensors and Actuators A: Physical, 2013, 193, 48-53.	4.1	20
737	Cation Exchange at Semiconducting Oxide Surfaces: Origin of Light-Induced Performance Increases in Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11885-11898.	3.1	20
738	Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy. Scientific Reports, 2015, 5, 13334.	3.3	20

#	Article	IF	CITATIONS
739	Implantable electrodes. Current Opinion in Electrochemistry, 2017, 3, 68-74.	4.8	20
740	PEDOT doped with algal, mammalian and synthetic dopants: polymer properties, protein and cell interactions, and influence of electrical stimulation on neuronal cell differentiation. Biomaterials Science, 2018, 6, 1250-1261.	5.4	20
741	Gortex-Based Gas Diffusion Electrodes with Unprecedented Resistance to Flooding and Leaking. ACS Applied Materials & Interfaces, 2018, 10, 28176-28186.	8.0	20
742	Bio-Inspired Stretchable and Contractible Tough Fiber by the Hybridization of GO/MWNT/Polyurethane. ACS Applied Materials & Interfaces, 2019, 11, 31162-31168.	8.0	20
743	A 3Dâ€Printed Electrochemical Water Splitting Cell. Advanced Materials Technologies, 2019, 4, 1900433.	5.8	20
744	Composite Tissue Adhesive Containing Catechol-Modified Hyaluronic Acid and Poly- <scp>l</scp> -lysine. ACS Applied Bio Materials, 2020, 3, 628-638.	4.6	20
745	3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Advanced Healthcare Materials, 2020, 9, e2001342.	7.6	20
746	The biogeochemical fate and toxicity of mercury in Controlled Experimental Ecosystems. Estuarine, Coastal and Shelf Science, 1982, 15, 151-182.	2.1	19
747	Dissolved oxygen: the electroanalytical chemists dilemma. TrAC - Trends in Analytical Chemistry, 1985, 4, 145-148.	11.4	19
748	Electrochemical preparation of polypyrrole colloids using a flow cell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 126, 129-135.	4.7	19
749	Protein Detection Using Conducting Polymer Microarrays. Electroanalysis, 1998, 10, 1101-1107.	2.9	19
750	Electrochemical synthesis of pyrrole through a polystyrene opal matrix. Synthetic Metals, 2001, 121, 1501-1502.	3.9	19
751	Ionic liquids and polypyrrole helix tubes: bringing the electronic Braille screen closer to reality. , 2003, , .		19
752	In situ formed processable polypyrrole nanoparticle/amphiphilic elastomer composites and their properties. Polymer International, 2004, 53, 400-405.	3.1	19
753	An integrated electrochemical sensor–actuator system. Sensors and Actuators A: Physical, 2004, 114, 65-72.	4.1	19
754	Photoelectrochemical Solar Cells based on Polyterthiophenes Containing Porphyrins using Ionic Liquid Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, A528.	2.2	19
755	Bio-sensing textiles - Wearable Chemical Biosensors for Health Monitoring. , 2007, , 35-39.		19
756	Wearable technology for bio-chemical analysis of body fluids during exercise. , 2008, 2008, 5741-4.		19

#	Article	IF	CITATIONS
757	Advanced microwave-assisted production of hybrid electrodes for energy applications. Energy and Environmental Science, 2010, 3, 1979.	30.8	19
758	Capacitive behavior of latex/single-wall carbon nanotube stretchable electrodes. Electrochimica Acta, 2014, 137, 372-380.	5.2	19
759	Next generation bioelectronics: Advances in fabrication coupled with clever chemistries enable the effective integration of biomaterials and organic conductors. APL Materials, 2015, 3, 014913.	5.1	19
760	Using medicolegal data to support safe medical care: A contributing factor coding framework. Journal of Healthcare Risk Management: the Journal of the American Society for Healthcare Risk Management, 2019, 38, 11-18.	0.7	19
761	Highly ordered mesoporous carbon/iron porphyrin nanoreactor for the electrochemical reduction of CO ₂ . Journal of Materials Chemistry A, 2020, 8, 14966-14974.	10.3	19
762	3D bioprinting dermal-like structures using species-specific ulvan. Biomaterials Science, 2021, 9, 2424-2438.	5.4	19
763	Sabin-Feldman Dye Test for Toxoplasmosis. American Journal of Tropical Medicine and Hygiene, 1969, 18, 395-398.	1.4	19
764	Toxoplasmosis and Cats in New Guinea *. American Journal of Tropical Medicine and Hygiene, 1974, 23, 8-14.	1.4	19
765	STUDIES ON EOSINOPHILIC MENINGITIS. American Journal of Epidemiology, 1965, 81, 52-62.	3.4	18
766	Effect of thermal treatment on the electrochemical properties of conducting polypyrrole polymers. Polymer, 1994, 35, 2372-2377.	3.8	18
767	Preparation and preliminary characterization of a poly(4-vinylpyridine) complex of a water-soluble polyaniline. Synthetic Metals, 1997, 90, 13-18.	3.9	18
768	Gold recovery using inherently conducting polymer coated textiles. Fibers and Polymers, 2004, 5, 1-5.	2.1	18
769	Faradaic charge corrected colouration efficiency measurements for electrochromic devices. Electrochimica Acta, 2008, 53, 2250-2257.	5.2	18
770	Fabrication and Characterization of Cytocompatible Polypyrrole Films Inkjet Printed from Nanoformulations Cytocompatible, Inkjetâ€Printed Polypyrrole Films. Small, 2011, 7, 3434-3438.	10.0	18
771	Electrically Induced Disassembly of Electroactive Multilayer Films Fabricated from Water Soluble Polythiophenes. Advanced Functional Materials, 2012, 22, 5020-5027.	14.9	18
772	Extrusion Printed Graphene/Polycaprolactone/Composites for Tissue Engineering. Materials Science Forum, 0, 773-774, 496-502.	0.3	18
773	Tensile testing of individual glassy, rubbery and hydrogel electrospun polymer nanofibres to high strain using the atomic force microscope. Polymer Testing, 2013, 32, 655-664.	4.8	18
774	3D braided yarns to create electrochemical cells. Electrochemistry Communications, 2015, 61, 27-31.	4.7	18

#	Article	IF	CITATIONS
775	Tunable solution-processable anodic exfoliated graphene. Applied Materials Today, 2019, 15, 290-296.	4.3	18
776	3D hybrid printing platform for auricular cartilage reconstruction. Biomedical Physics and Engineering Express, 2020, 6, 035003.	1.2	18
777	Fabrication of Aligned Biomimetic Gellan Gum-Chitosan Microstructures through 3D Printed Microfluidic Channels and Multiple In Situ Cross-Linking Mechanisms. ACS Biomaterials Science and Engineering, 2020, 6, 3638-3648.	5.2	18
778	A robust 3D printed multilayer conductive graphene/polycaprolactone composite electrode. Materials Chemistry Frontiers, 2020, 4, 1664-1670.	5.9	18
779	Incorporation of proteins into conducting electroactive polymers. Reactive & Functional Polymers, 1992, 18, 77-85.	0.8	17
780	Characterising the chemical interactions that occur on polyaniline with inverse thin layer chromatography. Polymer International, 1994, 35, 197-205.	3.1	17
781	Photovoltaic properties of poly(terthiophene) doped with light-harvesting dyes and photocurrent generation mechanism. Synthetic Metals, 2007, 157, 441-447.	3.9	17
782	Chemical and Photoluminescence Properties of Purified Poly(2-methoxyaniline-5-sulfonic acid) and Oligomer. Journal of Physical Chemistry B, 2007, 111, 12738-12747.	2.6	17
783	Self-maintained colorimetric acid/base sensor using polypyrrole actuator. Sensors and Actuators B: Chemical, 2008, 129, 518-524.	7.8	17
784	Switchable redox activity by proton fuelled DNA nano-machines. Chemical Communications, 2009, , 1240.	4.1	17
785	Surfactant-controlled shape change of organic droplets using polypyrrole. Thin Solid Films, 2011, 519, 6486-6491.	1.8	17
786	Hydrophobic conducting polymer films from post deposition thiol exposure. Synthetic Metals, 2012, 162, 1464-1470.	3.9	17
787	A Nonconjugated Bridge in Dimer-Sensitized Solar Cells Retards Charge Recombination without Decreasing Charge Injection Efficiency. ACS Applied Materials & Interfaces, 2013, 5, 10824-10829.	8.0	17
788	Electrochemically Induced Synthesis of Poly(2,6-carbazole). Macromolecular Rapid Communications, 2015, 36, 1749-1755.	3.9	17
789	The effect of treatment time on the ionic liquid surface film formation: Promising surface coating for Mg alloy AZ31. Surface and Coatings Technology, 2016, 296, 192-202.	4.8	17
790	Using Chronopotentiometry to Better Characterize the Charge Injection Mechanisms of Platinum Electrodes Used in Bionic Devices. Frontiers in Neuroscience, 2019, 13, 380.	2.8	17
791	The Prevalence of Toxoplasmosis on Pacific Islands, and the Influence of Ethnic Group. American Journal of Tropical Medicine and Hygiene, 1976, 25, 48-53.	1.4	17
792	Controlled Release of the Dithiocarbamate Ligand From A Polypyrrole Polymer. A Basis For On-Line Electrochemicalycontrolled Derivatisation. Analytical Letters, 1989, 22, 669-681.	1.8	16

#	Article	IF	CITATIONS
793	Stabilization of a ruthenium polymer-modified electrode for use in flowing solution analysis. Electroanalysis, 1989, 1, 357-361.	2.9	16
794	Electrochemical production of protein-containing polypyrrole colloids. Reactive and Functional Polymers, 1999, 39, 269-275.	4.1	16
795	Incorporation of novel polyelectrolyte dopants into conducting polymers. Reactive and Functional Polymers, 2000, 44, 245-258.	4.1	16
796	Photoelectrochemical Cells Based on Inherently Conducting Polymers. MRS Bulletin, 2005, 30, 46-49.	3.5	16
797	Novel fullerene-functionalised poly(terthiophenes). Journal of Electroanalytical Chemistry, 2007, 599, 79-84.	3.8	16
798	Electrochemical properties of SWNT/ferritin composite for bioapplications. Sensors and Actuators B: Chemical, 2008, 133, 393-397.	7.8	16
799	Direct Ascorbic Acid Detection with Ferritin Immobilized on Single-Walled Carbon Nanotubes. Electrochemical and Solid-State Letters, 2008, 11, K4.	2.2	16
800	Conjugated Polymer Actuators: Fundamentals. , 0, , 193-227.		16
801	Mechanical Reinforcement of Continuous Flow Spun Polyelectrolyte Complex Fibers. Macromolecular Bioscience, 2009, 9, 354-360.	4.1	16
802	Charge Transport in Dye-Sensitized Solar Cells Based on Flame-made \$hbox{TiO}_{m 2}\$ Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1641-1648.	2.9	16
803	Inkjet printing of self-assembling polyelectrolyte hydrogels. Soft Matter, 2011, 7, 3818.	2.7	16
804	Facile synthesis of reduced graphene oxide/MWNTs nanocomposite supercapacitor materials tested as electrophoretically deposited films on glassy carbon electrodes. Journal of Applied Electrochemistry, 2013, 43, 865-877.	2.9	16
805	Probing Donor–Acceptor Interactions in <i>meso</i> -Substituted Zn(II) Porphyrins Using Resonance Raman Spectroscopy and Computational Chemistry. Journal of Physical Chemistry C, 2015, 119, 22379-22391.	3.1	16
806	Conductive and protein resistant polypyrrole films for dexamethasone delivery. Journal of Materials Chemistry B, 2016, 4, 2570-2577.	5.8	16
807	System and process development for coaxial extrusion in fused deposition modelling. Rapid Prototyping Journal, 2017, 23, 543-550.	3.2	16
808	Evaluation of the Biocompatibility of Polypyrrole Implanted Subdurally in GAERS. Macromolecular Bioscience, 2017, 17, 1600334.	4.1	16
809	Advanced fabrication approaches to controlled delivery systems for epilepsy treatment. Expert Opinion on Drug Delivery, 2018, 15, 915-925.	5.0	16
810	Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs. Acta Biomaterialia, 2019, 91, 173-185.	8.3	16

#	Article	IF	CITATIONS
811	Bipolar electroactive conducting polymers for wireless cell stimulation. Applied Materials Today, 2020, 21, 100804.	4.3	16
812	Abuseâ€Tolerant Electrolytes for Lithiumâ€Ion Batteries. Advanced Science, 2021, 8, e2003694.	11.2	16
813	Polarographic method for the determination of propanedial (malonaldehyde). Analytical Chemistry, 1980, 52, 2211-2213.	6.5	15
814	Research and development topics in Analytical Chemistry. Analytical Proceedings, 1986, 23, 5.	0.4	15
815	Separation and detection of metal ions using in-situ ligand exchange chromatography. Analytical Chemistry, 1988, 60, 830-832.	6.5	15
816	Use of inverse thin layer chromatography with amino acids to characterize molecular interactions on conducting polymers. Polymer International, 1992, 29, 299-305.	3.1	15
817	Development of a polymer-based electrode for selective detection of dichloramine. Analytica Chimica Acta, 1992, 263, 71-75.	5.4	15
818	Chracterization of polyaniline using chromatographic studies. Chromatographia, 1996, 42, 191-198.	1.3	15
819	Chiral Induction in the Acid Doping of Poly(o-methoxyaniline). Australian Journal of Chemistry, 2000, 53, 89.	0.9	15
820	Electrohydrodynamic synthesis, characterisation and metal uptake studies on polypyrrole colloids stabilised by polyvinylphosphate dopant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 175, 291-301.	4.7	15
821	Electrochemical properties of aligned nanotube arrays: basis of new electromechanical actuators. , 2000, , .		15
822	Stabilization of Single-Wall Carbon Nanotubes in Fully Sulfonated Polyaniline. Journal of Nanoscience and Nanotechnology, 2004, 4, 976-981.	0.9	15
823	Electrochemical synthesis and characterisation of polyaniline/poly(2-methoxyaniline-5-sulfonic acid) composites. Electrochimica Acta, 2008, 53, 4146-4155.	5.2	15
824	Reversible Shape Memory of Nanoscale Deformations in Inherently Conducting Polymers without Reprogramming. Journal of Physical Chemistry B, 2011, 115, 3371-3378.	2.6	15
825	Supercapacitive properties of polyaniline/hydrous RuO2 composite electrode. Polymer Bulletin, 2012, 68, 553-560.	3.3	15
826	Pathological Gait Detection of Parkinson's Disease Using Sparse Representation. , 2013, , .		15
827	Polypyrrole stretchable actuators. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 57-63.	2.1	15
828	A merocyanine-based conductive polymer. Journal of Materials Chemistry C, 2013, 1, 3913.	5.5	15

#	Article	IF	CITATIONS
829	Electrical stimulation enhances the acetylcholine receptors available for neuromuscular junction formation. Acta Biomaterialia, 2016, 45, 328-339.	8.3	15
830	Electro-mechano responsive properties of gelatin methacrylate (GelMA) hydrogel on conducting polymer electrodes quantified using atomic force microscopy. Soft Matter, 2017, 13, 4761-4772.	2.7	15
831	CO ₂ electrolysis in seawater: calcification effect and a hybrid self-powered concept. Journal of Materials Chemistry A, 2018, 6, 23301-23307.	10.3	15
832	Facile electrochemical synthesis of ultrathin iron oxyhydroxide nanosheets for the oxygen evolution reaction. Chemical Communications, 2019, 55, 8808-8811.	4.1	15
833	Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures. Scientific Reports, 2020, 10, 7120.	3.3	15
834	Nanoscale piezoelectric effect of biodegradable PLA-based composite fibers by piezoresponse force microscopy. Nanotechnology, 2020, 31, 375708.	2.6	15
835	Hierarchical architectures of mesoporous Pd on highly ordered TiO ₂ nanotube arrays for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 8041-8048.	10.3	15
836	Cathodic exfoliation of graphite into graphene nanoplatelets in aqueous solution of alkali metal salts. Journal of Materials Science, 2021, 56, 3612-3622.	3.7	15
837	Engineering <i>in vitro</i> human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioengineering, 2021, 5, 020901.	6.2	15
838	Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration. ACS Omega, 2022, 7, 5908-5920.	3.5	15
839	Effect of ternary complex formation on chromatographic selectivity using in situ complexation chromatography. Analytical Chemistry, 1985, 57, 1354-1358.	6.5	14
840	The Use of Chronoamperometry and Chemometrics for Optimization of Conducting Polymer Sensor Arrays. Electroanalysis, 1999, 11, 1327-1332.	2.9	14
841	Recovery of gold cyanide using inherently conducting polymers. Polymer International, 2003, 52, 51-55.	3.1	14
842	Freshwater Fish Mercury Concentrations in a Regionally High Mercury Deposition Area. Water, Air, and Soil Pollution, 2008, 191, 15-31.	2.4	14
843	Solvent dependence of electrochromic behaviour of polypyrrole: Rediscovering the effect of molecular oxygen. Synthetic Metals, 2009, 159, 1950-1955.	3.9	14
844	Three-dimensional modeling of Cu and Pb distributions in Boston Harbor, Massachusetts and Cape Cod Bays. Estuarine, Coastal and Shelf Science, 2010, 88, 450-463.	2.1	14
845	Physicochemical study of spiropyran–terthiophene derivatives: photochemistry and thermodynamics. Physical Chemistry Chemical Physics, 2012, 14, 9112.	2.8	14
846	Carbon Nanotubes Induced Gelation of Unmodified Hyaluronic Acid. Langmuir, 2013, 29, 10247-10253.	3.5	14

#	Article	IF	CITATIONS
847	PEGylation of platinum bio-electrodes. Electrochemistry Communications, 2013, 27, 54-58.	4.7	14
848	In vitro growth and differentiation of primary myoblasts on thiophene based conducting polymers. Biomaterials Science, 2013, 1, 983.	5.4	14
849	An Advanced Mathematical Model and its Experimental Verification for Trilayer Conjugated Polymer Actuators. IEEE/ASME Transactions on Mechatronics, 2014, 19, 1279-1288.	5.8	14
850	Performance enhancement of single-walled nanotube–microwave exfoliated graphene oxide composite electrodes using a stacked electrode configuration. Journal of Materials Chemistry A, 2014, 2, 14835-14843.	10.3	14
851	Three-dimensional bioprinting speeds up smart regenerative medicine. National Science Review, 2016, 3, 331-344.	9.5	14
852	Brazing techniques for the fabrication of biocompatible carbon-based electronic devices. Carbon, 2016, 107, 180-189.	10.3	14
853	Electrotactic ionic liquid droplets. Sensors and Actuators B: Chemical, 2017, 239, 1069-1075.	7.8	14
854	An electrochemical cell with Gortex-based electrodes capable of extracting pure hydrogen from highly dilute hydrogen–methane mixtures. Energy and Environmental Science, 2018, 11, 172-184.	30.8	14
855	Switchable Interfaces: Redox Monolayers on Si(100) by Electrochemical Trapping of Alcohol Nucleophiles. Surfaces, 2018, 1, 3-11.	2.3	14
856	Dynamics of Inter-Molecular Interactions Between Single Aβ42 Oligomeric and Aggregate Species by High-Speed Atomic Force Microscopy. Journal of Molecular Biology, 2019, 431, 2687-2699.	4.2	14
857	Scalable Solution Processing MoS ₂ Powders with Liquid Crystalline Graphene Oxide for Flexible Freestanding Films with High Areal Lithium Storage Capacity. ACS Applied Materials & Interfaces, 2019, 11, 46746-46755.	8.0	14
858	Impact of Protein Fouling on the Charge Injection Capacity, Impedance, and Effective Electrode Area of Platinum Electrodes for Bionic Devices. ChemElectroChem, 2021, 8, 1078-1090.	3.4	14
859	Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Communications Biology, 2021, 4, 1097.	4.4	14
860	Film substructure and mechanical properties of electrochemically prepared polypyrrole. Polymer, 1995, 36, 4761-4765.	3.8	14
861	Properties of thermally treated polypyrroles. Polymer, 1992, 33, 2348-2352.	3.8	13
862	Removal of oxygen in flowing solutions using a photochemical process. Electroanalysis, 1992, 4, 323-326.	2.9	13
863	Detection of cytochrome c using a conducting polymer mediator containing electrode. Electroanalysis, 1996, 8, 248-252.	2.9	13
864	Effect of an intermediate on the amperometric response of a polypyrrole-based formate biosensing membrane. Electrochemistry Communications, 2000, 2, 27-31.	4.7	13

#	Article	IF	CITATIONS
865	Polyanilines with a twist. Synthetic Metals, 2001, 119, 101-102.	3.9	13
866	Factors Influencing the Performance of Inherently Conducting Polymers as Corrosion Inhibitors: The Dopant. ACS Symposium Series, 2003, , 103-123.	0.5	13
867	Functionalised poly(terthiophenes). Synthetic Metals, 2003, 135-136, 97-98.	3.9	13
868	Induction of chirality into a fully sulfonated poly(methoxyaniline) via acid–base interactions with chiral amines. Polymer, 2006, 47, 8088-8094.	3.8	13
869	Induction of titanium reduction using pyrrole and polypyrrole in the ionic liquid ethyl-methyl-imidazolium bis(trifluoromethanesulphonyl)amide. Electrochemistry Communications, 2008, 10, 217-221.	4.7	13
870	Singleâ€Walled Carbon Nanotube/Trititanate Nanotube Composite Fibers. Advanced Engineering Materials, 2009, 11, B55.	3.5	13
871	Redox Behavior of Poly(2-methoxyaniline-5-sulfonic acid) and Its Remarkable Thermochromism, Solvatochromism, and Ionochromism. Macromolecules, 2010, 43, 9982-9989.	4.8	13
872	Photolithographic patterning of conducting polyaniline films via flash welding. Synthetic Metals, 2010, 160, 1405-1409.	3.9	13
873	Functionalised inherently conducting polymers as low biofouling materials. Biofouling, 2015, 31, 493-502.	2.2	13
874	Development and validation of a seizure initiated drug delivery system for the treatment of epilepsy. Sensors and Actuators B: Chemical, 2016, 236, 732-740.	7.8	13
875	Alkaline Fuel Cells with Novel Gortexâ€Based Electrodes are Powered Remarkably Efficiently by Methane Containing 5% Hydrogen. Advanced Energy Materials, 2018, 8, 1702285.	19.5	13
876	Wetâ€spinning and carbonization of graphene/PANâ€based fibers: Toward improving the properties of carbon fibers. Journal of Applied Polymer Science, 2019, 136, 47932.	2.6	13
877	Wet-Spun Trojan Horse Cell Constructs for Engineering Muscle. Frontiers in Chemistry, 2020, 8, 18.	3.6	13
878	Catechol functionalized ink system and thrombin-free fibrin gel for fabricating cellular constructs with mechanical support and inner micro channels. Biofabrication, 2022, 14, 015004.	7.1	13
879	Influence of oxygen insertion on the electrochemistry of chromium(III) dithiocarbamate complexes. Inorganic Chemistry, 1984, 23, 1858-1865.	4.0	12
880	Determination of copper(II) and iron(III) in some anaerobic adhesive formulations using high-performance liquid chromatography. Analyst, The, 1987, 112, 1555.	3.5	12
881	Metal Ion Uptake and Voltammetry on a Dithiocarbamate Containing Polymer Modified Electrode. Analytical Letters, 1988, 21, 1969-1986.	1.8	12
882	Photoelectrochemical detection and speciation of thallium (I) and thallium (III). Electroanalysis, 1992, 4, 139-142.	2.9	12

#	Article	IF	CITATIONS
883	Conducting polymer sensors for the amperometric detection of proteins in a flow system - the use of sulfonated dye counterions to induce selectivity. Electroanalysis, 1997, 9, 454-460.	2.9	12
884	Current Chemistry: Separation and Recovery of Gold and Other Metals Using Conducting Polymers. Australian Journal of Chemistry, 2001, 54, 615.	0.9	12
885	Conducting polymer, carbon nanotube, and hybrid actuator materials. , 2001, 4329, 199.		12
886	Photovoltaic devices based on poly(bis-terthiophenes) and substituted poly(bisterthiophene). Synthetic Metals, 2003, 137, 1373-1374.	3.9	12
887	A galvanic cell driven controlled release system based on conducting polymers. Sensors and Actuators B: Chemical, 2008, 129, 605-611.	7.8	12
888	Comparison of the electrochemical behaviour of buckypaper and polymer-intercalated buckypaper electrodes. Journal of Electroanalytical Chemistry, 2011, 652, 52-59.	3.8	12
889	Microwave Decoration of Pt Nanoparticles on Entangled 3D Carbon Nanotube Architectures as PEM Fuel Cell Cathode. ChemSusChem, 2012, 5, 1233-1240.	6.8	12
890	Quantifying fibronectin adhesion with nanoscale spatial resolution on glycosaminoglycan doped polypyrrole using Atomic Force Microscopy. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4305-4313.	2.4	12
891	Levetiracetam-loaded biodegradable polymer implants in the tetanus toxin model of temporal lobe epilepsy in rats. Journal of Clinical Neuroscience, 2013, 20, 148-152.	1.5	12
892	The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy. Expert Review of Neurotherapeutics, 2015, 15, 295-304.	2.8	12
893	Characterisation of graphene fibres and graphene coated fibres using capacitively coupled contactless conductivity detector. Analyst, The, 2016, 141, 2774-2782.	3.5	12
894	Effective Area and Charge Density of Chondroitin Sulphate Doped PEDOT Modified Electrodes. Electrochimica Acta, 2016, 197, 99-106.	5.2	12
895	Development of drug-loaded polymer microcapsules for treatment of epilepsy. Biomaterials Science, 2017, 5, 2159-2168.	5.4	12
896	The Bionic Bra: Using electromaterials to sense and modify breast support to enhance active living. Journal of Rehabilitation and Assistive Technologies Engineering, 2018, 5, 205566831877590.	0.9	12
897	A versatile transition metal ion-binding motif derived from covalent organic framework for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 291, 119915.	20.2	12
898	Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage. Methods in Molecular Biology, 2020, 2140, 145-157.	0.9	12
899	Suitability of Marine- and Porcine-Derived Collagen Type I Hydrogels for Bioprinting and Tissue Engineering Scaffolds. Marine Drugs, 2022, 20, 366.	4.6	12
900	Incorporation of various counter-ions during electropolymerization of 3-methylpyrrole-4-carboxylic acid. Journal of Electroanalytical Chemistry, 1992, 340, 41-52.	3.8	11

#	Article	IF	CITATIONS
901	The formation of surface-active organic complexes of copper in coastal marine waters. Marine Chemistry, 1995, 51, 145-157.	2.3	11
902	The effect of different electrical stimuli on the oxidation/reduction behaviour of polypyrrole-pts A Study Using the Electrochemical Quartz Crystal Microbalance. Synthetic Metals, 1997, 84, 823-824.	3.9	11
903	Enzymatic sensor based on conducting polymer coatings on metallised membranes. Analytical Communications, 1998, 35, 245-248.	2.2	11
904	Photoluminescence and photo-redox reactions of poly(2-methoxyaniline-5-sulfonic acid). Current Applied Physics, 2004, 4, 394-397.	2.4	11
905	Electrochemical Hydrogen Storage in Single-Walled Carbon Nanotube Paper. Journal of Nanoscience and Nanotechnology, 2006, 6, 713-718.	0.9	11
906	Influence of added hydrogen bonding agents on the chiroptical properties of chiral polyaniline. Synthetic Metals, 2009, 159, 715-717.	3.9	11
907	Electrochemical investigation of carbon nanotube nanoweb architecture in biological media. Electrochemistry Communications, 2010, 12, 1471-1474.	4.7	11
908	Influence of biopolymer loading on the physiochemical and electrochemical properties of inherently conducting polymer biomaterials. Synthetic Metals, 2015, 200, 40-47.	3.9	11
909	Fabrication of novel core-shell PLGA and alginate fiber for dual-drug delivery system. Polymers for Advanced Technologies, 2016, 27, 1014-1019.	3.2	11
910	Effect of post-spinning on the electrical and electrochemical properties of wet spun graphene fibre. RSC Advances, 2016, 6, 46427-46432.	3.6	11
911	Synthesis and Characterization of Covalently Linked Graphene/Chitosan Composites. Jom, 2016, 68, 384-390.	1.9	11
912	Effective Area and Charge Density of Iridium Oxide Neural Electrodes. Electrochimica Acta, 2017, 230, 285-292.	5.2	11
913	Dual Delivery of Gemcitabine and Paclitaxel by Wetâ€&pun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. Advanced Healthcare Materials, 2020, 9, e2001115.	7.6	11
914	Bidirectional Core Sandwich Structure of Reduced Graphene Oxide and Spinnable Multiwalled Carbon Nanotubes for Electromagnetic Interference Shielding Effectiveness. ACS Applied Materials & Interfaces, 2020, 12, 46883-46891.	8.0	11
915	Wireless electrochemiluminescence at functionalised gold microparticles using 3D titanium electrode arrays. Chemical Communications, 2021, 57, 4642-4645.	4.1	11
916	Synthesis and Characterization of Chiral Conducting Polymers Based on Polypyrrole. Australian Journal of Chemistry, 1997, 50, 939.	0.9	11
917	Precision Medicine in Ossiculoplasty. Otology and Neurotology, 2021, 42, e177-e185.	1.3	11
918	Comparison of the In Vitro and In Vivo Electrochemical Performance of Bionic Electrodes. Micromachines, 2022, 13, 103.	2.9	11

#	Article	IF	CITATIONS
919	Filter washing, a simple means of reducing blank values and variability in trace metal environmental samples. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1977, 12, 493-506.	0.1	10
920	Investigations into the Use of Poly (3-Methylpyrrole-4-Carboxylic Acid) Coated Silica as a Chromatographic Stationary Phase. Journal of Liquid Chromatography and Related Technologies, 1993, 16, 1023-1044.	1.0	10
921	Factors affecting the electrochemical formation of polypyrrole-nitrate colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 137, 295-300.	4.7	10
922	Facile Synthesis of a Chiral Ionic Liquid Derived from 1-Phenylethylamine. Australian Journal of Chemistry, 2007, 60, 64.	0.9	10
923	Carbon-Nanotube Biofiber Microelectrodes. Journal of the Electrochemical Society, 2009, 156, P117.	2.9	10
924	Solid State Photochemistry of Novel Composites Containing Luminescent Metal Centers and Poly(2-methoxyaniline-5-sulfonic acid). Journal of Physical Chemistry B, 2009, 113, 7443-7448.	2.6	10
925	6 GHz microstrip patch antennas with PEDOT and polypyrrole conducting polymers. , 2010, , .		10
926	Inkjetâ€Printed Alginate Microspheres as Additional Drug Carriers for Injectable Hydrogels. Advances in Polymer Technology, 2016, 35, 439-446.	1.7	10
927	Stem Cell Bioprinting: Functional 3D Neural Miniâ€Tissues from Printed Gelâ€Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016). Advanced Healthcare Materials, 2016, 5, 1428-1428.	7.6	10
928	Effective area and charge density of dextran sulphate doped PEDOT modified electrodes. Synthetic Metals, 2016, 220, 394-401.	3.9	10
929	A novel and facile approach to fabricate a conductive and biomimetic fibrous platform with sub-micron and micron features. Journal of Materials Chemistry B, 2016, 4, 1056-1063.	5.8	10
930	Functional Electro-materials Based on Ferricyanide Redox-active Ionic Liquids. Electrochimica Acta, 2017, 245, 934-940.	5.2	10
931	Towards thermally stable high performance lithium-ion batteries: the combination of a phosphonium cation ionic liquid and a 3D porous molybdenum disulfide/graphene electrode. Chemical Communications, 2018, 54, 5338-5341.	4.1	10
932	Solid‣tate Poly(ionic liquid) Gels for Simultaneous CO ₂ Adsorption and Electrochemical Reduction. Energy Technology, 2018, 6, 702-709.	3.8	10
933	A bioprinting printing approach to regenerate cartilage for microtia treatment. Bioprinting, 2018, 12, e00031.	5.8	10
934	Data on the bipolar electroactive conducting polymers for wireless cell stimulation. Data in Brief, 2020, 33, 106406.	1.0	10
935	A Selfâ€Assembled CO ₂ Reduction Electrocatalyst: Posyâ€Bouquetâ€Shaped Goldâ€Polyaniline Coreâ€Shell Nanocomposite. ChemSusChem, 2020, 13, 5023-5030.	6.8	10
936	Additive manufacturing enables personalised porous high-density polyethylene surgical implant manufacturing with improved tissue and vascular ingrowth. Applied Materials Today, 2021, 22, 100965.	4.3	10

#	Article	IF	CITATIONS
937	Unzipping chemical bonds of non-layered bulk structures to form ultrathin nanocrystals. Matter, 2021, 4, 955-968.	10.0	10
938	Polyisocyanate bridged environmental graphene/epoxy nanocomposite coatings with excellent anticorrosion performance. Progress in Organic Coatings, 2021, 153, 106167.	3.9	10
939	3D Bioprinting and Differentiation of Primary Skeletal Muscle Progenitor Cells. Methods in Molecular Biology, 2020, 2140, 229-242.	0.9	10
940	Experimental Infection of Pacific Island Mollusks with Angiostrongylus Cantonensis. American Journal of Tropical Medicine and Hygiene, 1969, 18, 13-19.	1.4	10
941	Current status of membraneless water electrolysis cells. Current Opinion in Electrochemistry, 2022, 32, 100881.	4.8	10
942	Electrical stimulation to human dermal papilla cells for hair regenerative medicine. Journal of Bioscience and Bioengineering, 2022, 133, 281-290.	2.2	10
943	Inherently Conducting Polymers —A Versatile and Adaptive Chemical Sensing System. Journal of Intelligent Material Systems and Structures, 1993, 4, 123-128.	2.5	9
944	Redox Chromatography Using Polypyrrole as a Stationary Phase. Journal of Liquid Chromatography and Related Technologies, 1996, 19, 2457-2476.	1.0	9
945	Communicative Polymers: The Basis for Development of Intelligent Material. Journal of Chemical Education, 1997, 74, 703.	2.3	9
946	Optically active polypyrroles containing chiral dopant anions. Australian Journal of Chemistry, 2000, 53, 83.	0.9	9
947	Scanning Vibrating Electrode Studies of Electroactive Conducting Polymers on Active Metals. ACS Symposium Series, 2003, , 228-253.	0.5	9
948	Electropolymerised acrylic coatings for polymer-metal adhesion enhancement. Journal of Adhesion Science and Technology, 2003, 17, 1403-1423.	2.6	9
949	Asymmetric proliferation with optically active polyanilines. Chemical Communications, 2005, , 4539.	4.1	9
950	Poly(2-methoxyaniline-5-sulfonic Acid) - Surfactant Complexes and Their Redox and Solvatochromic Behaviour. Australian Journal of Chemistry, 2007, 60, 159.	0.9	9
951	Preparation of Low Loading Pt/C Catalyst by Carbon Xerogel Method for Ethanol Electrooxidation. Catalysis Letters, 2008, 122, 111-114.	2.6	9
952	Functionalising carbon nanotubes. International Journal of Nanotechnology, 2008, 5, 331.	0.2	9
953	Attractive and Repulsive Interactions Originating from Lateral Nanometer Variations in Surface Charge/Energy of Hyaluronic Acid and Chondroitin Sulfate Doped Polypyrrole Observed Using Atomic Force Microscopy. Journal of Physical Chemistry B, 2012, 116, 13498-13505.	2.6	9
954	Synthesis and optimization of PEDOT:PSS based ink for printing nanoarrays using Dip-Pen Nanolithography. Synthetic Metals, 2013, 181, 64-71.	3.9	9

#	Article	IF	CITATIONS
955	Optical switching of protein interactions on photosensitive–electroactive polymers measured by atomic force microscopy. Journal of Materials Chemistry B, 2013, 1, 2162.	5.8	9
956	Preparation and characterisation of graphene composite hydrogels. Synthetic Metals, 2013, 168, 36-42.	3.9	9
957	Novel reversible and switchable electrolytes based on magneto-rheology. Scientific Reports, 2015, 5, 15663.	3.3	9
958	Flexible Tuning of Unsaturated β ubstituents on Zn Porphyrins: A Synthetic, Spectroscopic and Computational Study. Chemistry - A European Journal, 2015, 21, 15622-15632.	3.3	9
959	Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis. Brain Research, 2015, 1619, 72-83.	2.2	9
960	3D Printed Edible Hydrogel Electrodes. MRS Advances, 2016, 1, 527-532.	0.9	9
961	In vivo biocompatibility of porous and non-porous polypyrrole based trilayered actuators. Journal of Materials Science: Materials in Medicine, 2017, 28, 172.	3.6	9
962	3D Printed Electrodes for Improved Gas Reactant Transport for Electrochemical Reactions. 3D Printing and Additive Manufacturing, 2018, 5, 215-219.	2.9	9
963	Patterning and process parameter effects in 3D suspension near-field electrospinning of nanoarrays. Nanotechnology, 2019, 30, 495301.	2.6	9
964	3D textile structures with integrated electroactive electrodes for wearable electrochemical sensors. Journal of the Textile Institute, 2020, 111, 1587-1595.	1.9	9
965	Inherently Conducting Polymer Nanostructures. Journal of Nanoscience and Nanotechnology, 2002, 2, 441-451.	0.9	9
966	Porosity of Bleb Capsule declines rapidly with Fluid Challenge. Journal of Current Glaucoma Practice, 2016, 10, 91-96.	0.5	9
967	Matured Myofibers in Bioprinted Constructs with In Vivo Vascularization and Innervation. Gels, 2021, 7, 171.	4.5	9
968	A Non-Noble Metal Catalyst-Based Electrolyzer for Efficient CO ₂ -to-Formate Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 16394-16402.	6.7	9
969	Mouse pox threat. Science, 1981, 211, 438-438.	12.6	8
970	Invetigations into the use of an auxiliary metal ion for indirect amperometri detection. Chromatographia, 1988, 25, 162-166.	1.3	8
971	Instrumentation for 7-day continuous cycle monitoring of metals with automated on-line sample preparation, high-performance liquid chromatography, and electrochemical detection. Analytical Chemistry, 1988, 60, 1357-1360.	6.5	8
972	Research and development topics in Analytical Chemistry. Analytical Proceedings, 1989, 26, 2.	0.4	8

#	Article	IF	CITATIONS
973	Determination of anionic surfactants by bis(ethylenediamine)copper(II) extraction and anodic stripping voltammetry. Analytica Chimica Acta, 1991, 244, 197-200.	5.4	8
974	Factors influencing the rate of the electrochemical oxidation of heterocyclic monomers. Polymer International, 1992, 27, 255-260.	3.1	8
975	Electrochemical Preparation of Conducting Polymer Colloids. Synthetic Metals, 1997, 84, 361-362.	3.9	8
976	Development of Conducting Polymer Coated Screen-Printed Sensors for Measurement of Volatile Compounds. Electroanalysis, 2002, 14, 575.	2.9	8
977	Electrohydrodynamic synthesis of polypyrrole coated polyurethane colloidal dispersions using the electrocatalyst Tiron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207, 1-12.	4.7	8
978	Preparation and characterization of a polyaniline/poly(butyl acrylate-vinyl acetate) composite as a novel conducting polymer composite. Journal of Applied Polymer Science, 2003, 90, 2525-2531.	2.6	8
979	The Effect of Added Water on the Conformation of Optically Active Polyaniline in Organic Solvents. Synthetic Metals, 2003, 135-136, 241-242.	3.9	8
980	Electrodeposition and Characterisation of Polypyrroles Containing Sulfonated Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 3487-3494.	0.9	8
981	Electrochemical co-deposition of Tin+ phases with gold in ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 5863.	2.8	8
982	Wearable technology for the real-time analysis of sweat during exercise. , 2008, , .		8
983	Ionic liquid as electrolyte in a self-powered controlled release system. Sensors and Actuators B: Chemical, 2009, 141, 452-457.	7.8	8
984	Nanoscale platinum printing on insulating substrates. Nanotechnology, 2013, 24, 505301.	2.6	8
985	Use of conducting polymers to facilitate neurite branching in schizophrenia-related neuronal development. Biomaterials Science, 2016, 4, 1244-1251.	5.4	8
986	Choosing the right nanoparticle size – designing novel ZnO electrode architectures for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 7516-7522.	10.3	8
987	Tuning the structure of three dimensional nanostructured molybdenum disulfide/nitrogen-doped carbon composite for high lithium storage. Electrochimica Acta, 2018, 291, 197-205.	5.2	8
988	Charge Injection from Chronoamperometry of Platinum Electrodes for Bionic Devices. Journal of the Electrochemical Society, 2018, 165, G3033-G3041.	2.9	8
989	A contactless approach for monitoring the mechanical properties of swollen hydrogels. Soft Matter, 2018, 14, 7228-7236.	2.7	8
990	Electrochemical methods for analysing and controlling charge transfer at the electrode–tissue interface. Current Opinion in Electrochemistry, 2019, 16, 143-148.	4.8	8

#	Article	IF	CITATIONS
991	Insights into the Electron Transfer Kinetics, Capacitance and Resistance Effects of Implantable Electrodes Using Fourier Transform AC Voltammetry on Platinum. Journal of the Electrochemical Society, 2019, 166, G131-G140.	2.9	8
992	A microvalve cell printing technique using riboflavin photosensitizer for selective cell patterning onto a retinal chip. Bioprinting, 2020, 20, e00097.	5.8	8
993	3D Printed Sugar‧ensing Hydrogels. Macromolecular Rapid Communications, 2020, 41, e1900610.	3.9	8
994	Conducting Polymer Fibers. , 2015, , 31-62.		8
995	Development of a Platelet Lysate–Based Printable, Transparent Biomaterial With Regenerative Potential for Epithelial Corneal Injuries. Translational Vision Science and Technology, 2020, 9, 40.	2.2	8
996	All-polymer wearable thermoelectrochemical cells harvesting body heat. IScience, 2021, 24, 103466.	4.1	8
997	MALONALDEHYDE IN CERVICA MUCUS ASSOCIATED WITH COPPER IUD. Lancet, The, 1980, 315, 1087-1088.	13.7	7
998	Dispersed mercury microelectrodes using non-conducting polymer coatings. Analytica Chimica Acta, 1990, 235, 451-455.	5.4	7
999	A new polymeric mercury thin-film electrode. Electroanalysis, 1992, 4, 97-105.	2.9	7
1000	Electropolymerization of 4-(3-pyrrolyl)-4-oxobutyric acid by in situ potentiodynamic pre-reduction/oxidation. Polymer, 1993, 34, 2684-2686.	3.8	7
1001	Investigation of conducting polymer materials for sensor array. Synthetic Metals, 2003, 137, 1445-1446.	3.9	7
1002	Actuation behaviour of polyaniline films and tubes prepared by the phase inversion technique. Smart Materials and Structures, 2007, 16, 1549-1554.	3.5	7
1003	Immobilisation of Fully Sulfonated Polyaniline on Nanostructured Calcium Silicate. Journal of Nanoscience and Nanotechnology, 2007, 7, 4303-4310.	0.9	7
1004	Electrochemical pneumatic actuators utilising carbon nanotube electrodes. Sensors and Actuators B: Chemical, 2009, 138, 48-54.	7.8	7
1005	Actuated Pins for Braille Displays. , 0, , 265-277.		7
1006	Nafion-Doped Polypyrrole as a Supercapacitor Electrode in Ionic Liquid. Molecular Crystals and Liquid Crystals, 2010, 520, 262/[538]-266/[542].	0.9	7
1007	Colour tunable electrochromic devices based on PProDOT-(Hx)2 and PProDOT-(EtHx)2 polymers. Journal of Materials Chemistry C, 2013, 1, 7430.	5.5	7
1008	A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy. Journal of Materials Chemistry B, 2015, 3, 7255-7261.	5.8	7

#	Article	IF	CITATIONS
1009	Correlation of Impedance and Effective Electrode Area of Dextran Sulfate Doped PEDOT Modified Electrodes. Journal of the Electrochemical Society, 2016, 163, H534-H540.	2.9	7
1010	A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. Synthetic Metals, 2016, 219, 101-108.	3.9	7
1011	A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays. Nanotechnology, 2019, 30, 195301.	2.6	7
1012	Implementing Obstetrics Quality Improvement, Driven by Medico-legal Risk, is Associated With Improved Workplace Culture. Journal of Obstetrics and Gynaecology Canada, 2020, 42, 38-47.e5.	0.7	7
1013	Energy materials for transient power sources. MRS Bulletin, 2020, 45, 121-128.	3.5	7
1014	Ethical and regulatory considerations for surgeons as consumers and creators of threeâ€dimensional printed medical devices. ANZ Journal of Surgery, 2020, 90, 1477-1481.	0.7	7
1015	Fused filament fabrication 3D printed polylactic acid electroosmotic pumps. Lab on A Chip, 2021, 21, 3338-3351.	6.0	7
1016	Electrochemiluminescence at 3D Printed Titanium Electrodes. Frontiers in Chemistry, 2021, 9, 662810.	3.6	7
1017	Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films. Bulletin of the Korean Chemical Society, 2010, 31, 2185-2189.	1.9	7
1018	Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting. Polymers, 2022, 14, 319.	4.5	7
1019	3D-Printed Coaxial Hydrogel Patches with Mussel-Inspired Elements for Prolonged Release of Gemcitabine. Polymers, 2021, 13, 4367.	4.5	7
1020	Development of a customised 3D printer as a potential tool for direct printing of patient-specific facial prosthesis. International Journal of Advanced Manufacturing Technology, 2022, 120, 7143-7155.	3.0	7
1021	Laser Sintering Approaches for Bone Tissue Engineering. Polymers, 2022, 14, 2336.	4.5	7
1022	RE: "ASSOCIATION OF CATS AND TOXOPLASMOSIS― American Journal of Epidemiology, 1981, 113, 198-199).3.4	6
1023	Separation of metal ions using in-situ complexation chromatography with ethyl xanthate and 1,10 phenanthroline as ligands. Chromatographia, 1986, 22, 275-277.	1.3	6
1024	Evaluation of flow-through photochemical reactors for liquid chromatography with electrochemical detection. Electroanalysis, 1989, 1, 347-351.	2.9	6
1025	Resistometry: A new characterization technique for conducting polymers. Solid State Ionics, 1994, 70-71, 692-696.	2.7	6
1026	The Use of Cyclic Voltammetry and Principal Component Analysis for the Rapid Evaluation of Selectivity of Conductive Polymer Sensors. Electroanalysis, 2000, 12, 89-95.	2.9	6

#	Article	IF	CITATIONS
1027	Metal separation using polypyrroles containing chelating agents. Synthetic Metals, 2001, 119, 373-374.	3.9	6
1028	Directed electrochemical deposition of conducting polymer filament on screen-printed array. Synthetic Metals, 2003, 135-136, 29-30.	3.9	6
1029	Gold recovery using fabrics coated with conducting polymers. Synthetic Metals, 2003, 135-136, 35-36.	3.9	6
1030	Enhancement of polymer electronics via surface states on highly doped polymeric anodes. Journal Physics D: Applied Physics, 2004, 37, 165-170.	2.8	6
1031	Fabric-based fluid handling platform with integrated analytical capability. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6451.	0.5	6
1032	Fabrication of chemical sensors using inkjet printing and application to gas detection. , 2008, , .		6
1033	Elastic conducting carbon nanotube-laden SIBS fibers. , 2010, , .		6
1034	Measurement of Free Cu Ion Activity in Seawater Using a Passive-Equilibrium Sonic-Assisted Free Ion Recorder (SAFIR). Environmental Science & Technology, 2011, 45, 5660-5667.	10.0	6
1035	Charge storage in carbon nanotube–TiO2 hybrid nanoparticles. Synthetic Metals, 2012, 162, 650-654.	3.9	6
1036	The effect of dopant pKa and the solubility of corresponding acid on the electropolymerisation of pyrrole. Electrochimica Acta, 2013, 92, 276-284.	5.2	6
1037	Ionic Liquid Solvated Polymer Networks for Stretchable Electronics. Polymer-Plastics Technology and Engineering, 2015, 54, 310-314.	1.9	6
1038	A simple one step process for enhancement of titanium foil dye sensitised solar cell anodes. Journal of Materials Chemistry A, 2015, 3, 3266-3270.	10.3	6
1039	20 Year Review of Three-dimensional Tools in Otology: Challenges of Translation and Innovation. Otology and Neurotology, 2020, 41, 589-595.	1.3	6
1040	A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building. Materials and Design, 2021, 201, 109473.	7.0	6
1041	Hollowâ€Fiber Melt Electrowriting Using a 3Dâ€Printed Coaxial Nozzle. Advanced Engineering Materials, 2022, 24, 2100750.	3.5	6
1042	Invitro and Invivo Study of PCL-Hydrogel Scaffold to Advance Bioprinting Translation in Microtia Reconstruction. Journal of Craniofacial Surgery, 2020, Publish Ahead of Print, 1931-1936.	0.7	6
1043	Wearable Photoâ€Thermoâ€Electrochemical Cells (PTECs) Harvesting Solar Energy. Macromolecular Rapid Communications, 2022, 43, e2200001.	3.9	6
1044	Variation in Hydrogel Formation and Network Structure for Telo-, Atelo- and Methacrylated Collagens. Polymers, 2022, 14, 1775.	4.5	6

#	ARTICLE	IF	CITATIONS
1045	Chemical polymerization of 3-methylpyrrole-4-carboxylic acid. Polymer, 1993, 34, 2007-2010.	3.8	5
1046	Separation of Small Molecules in the Presence of Proteins Using Conducting Polymer Stationary Phases. Journal of Liquid Chromatography and Related Technologies, 1993, 16, 95-108.	1.0	5
1047	Flux of surface-active organic complexes of copper to the air-sea interface in coastal marine waters. Journal of Geophysical Research, 1996, 101, 12017-12026.	3.3	5
1048	Dynamic Polymeric Membrane Structures for Separation of Proteins. Journal of Intelligent Material Systems and Structures, 1997, 8, 1052-1058.	2.5	5
1049	Synthesis and Polymerization of Chiral Acrylamidosulfonic Acids. Macromolecules, 1998, 31, 8737-8743.	4.8	5
1050	Electrohydrodynamic polymerisation of water-soluble poly((4-(3-pyrrolyl))butane sulfonate). Polymer, 2000, 41, 4065-4076.	3.8	5
1051	Evaluation of solid polymer electrolytes for use in conducting polymer/nanotube actuators. , 2000, , .		5
1052	Transport of gold across composite poly(bithiophene) membranes. Synthetic Metals, 2001, 119, 357-358.	3.9	5
1053	<title>Electrochemically driven actuators from conducting polymers, hydrogels, and carbon nanotubes</title> . , 2001, , .		5
1054	Electroactive polymer actuator devices (EAPAD). , 2003, , .		5
1055			
	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. Journal of Geophysical Research, 2007, 112, .	3.3	5
1056	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. Journal of Geophysical Research, 2007, 112, . Platinum recovery using inherently conducting polymers and common fabrics. Fibers and Polymers, 2007, 8, 463-469.	3.3 2.1	5
1056 1057	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. Journal of Geophysical Research, 2007, 112, .Platinum recovery using inherently conducting polymers and common fabrics. Fibers and Polymers, 2007, 8, 463-469.The optimum functionalization of carbon nanotube/ferritin composites. Smart Materials and Structures, 2008, 17, 045029.	3.3 2.1 3.5	5 5 5
1056 1057 1058	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. Journal of Geophysical Research, 2007, 112, .Platinum recovery using inherently conducting polymers and common fabrics. Fibers and Polymers, 2007, 8, 463-469.The optimum functionalization of carbon nanotube/ferritin composites. Smart Materials and Structures, 2008, 17, 045029.Sensor response of polypyrrole trilayer benders as a function of geometry. Proceedings of SPIE, 2008, , .	3.3 2.1 3.5 0.8	5 5 5 5
1056 1057 1058 1059	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. Journal of Geophysical Research, 2007, 112, .Platinum recovery using inherently conducting polymers and common fabrics. Fibers and Polymers, 2007, 8, 463-469.The optimum functionalization of carbon nanotube/ferritin composites. Smart Materials and Structures, 2008, 17, 045029.Sensor response of polypyrrole trilayer benders as a function of geometry. Proceedings of SPIE, 2008, ,Direct Growth of Carbon Nanotubes onto Titanium Dioxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 955-959.	3.3 2.1 3.5 0.8 0.9	5 5 5 5 5
1056 1057 1058 1059 1060	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. Journal of Geophysical Research, 2007, 112, . Platinum recovery using inherently conducting polymers and common fabrics. Fibers and Polymers, 2007, 8, 463-469. The optimum functionalization of carbon nanotube/ferritin composites. Smart Materials and Structures, 2008, 17, 045029. Sensor response of polypyrrole trilayer benders as a function of geometry. Proceedings of SPIE, 2008, , . Direct Growth of Carbon Nanotubes onto Titanium Dioxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 955-959. <i>lin vivo</i> biocompatibility and <i>in vitro</i> biocompatibility and <i>in vitro</i> characterization of polyâ€lactideâ€ <i>co</i> â€glycolide structures containing levetiracetam, for the treatment of epilepsy. Journal of Biomedical Materials Research - Part A, 2012, 100A, 424-431.	 3.3 2.1 3.5 0.8 0.9 4.0 	5 5 5 5 5 5
1056 1057 1058 1059 1060	Summer formation of a high-nutrient low-oxygen pool in Cape Cod Bay, USA. Journal of Geophysical Research, 2007, 112, . Platinum recovery using inherently conducting polymers and common fabrics. Fibers and Polymers, 2007, 8, 463-469. The optimum functionalization of carbon nanotube/ferritin composites. Smart Materials and Structures, 2008, 17, 045029. Sensor response of polypyrrole trilayer benders as a function of geometry. Proceedings of SPIE, 2008, , Direct Growth of Carbon Nanotubes onto Titanium Dioxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 955-959. <i>\i>In vivo</i> i> biocompatibility and <i>in vitro</i> characterization of polyâ€lactideâ€ <i>co</i> â€glycolide structures containing levetiracetam, for the treatment of epilepsy. Journal of Biomedical Materials Research - Part A, 2012, 100A, 424+431. Graphene Oxide: Scalable One-Step Wet-Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles (Adv. Funct. Mater. 43/2013). Advanced Functional Materials, 2013, 23, 5344-5344.	 3.3 2.1 3.5 0.8 0.9 4.0 14.9 	5 5 5 5 5 5

#	Article	IF	CITATIONS
1063	Development of a Coaxial Melt Extrusion Printing process for specialised composite bioscaffold fabrication. , 2013, , .		5
1064	Automated quantification of neurite outgrowth orientation distributions on patterned surfaces. Journal of Neural Engineering, 2014, 11, 046006.	3.5	5
1065	Decoloration rates of a photomerocyanine dye as a visual probe into hydrogen bonding interactions. Chemical Communications, 2015, 51, 4815-4818.	4.1	5
1066	Determination of Bleb Capsule Porosity With an Experimental Glaucoma Drainage Device and Measurement System. JAMA Ophthalmology, 2015, 133, 549.	2.5	5
1067	Correlation of impedance and effective electrode area of chondroitin sulphate doped PEDOT modified electrodes. Synthetic Metals, 2016, 222, 338-343.	3.9	5
1068	Three-dimensional neuronal cell culture: in pursuit of novel treatments for neurodegenerative disease. MRS Communications, 2017, 7, 320-331.	1.8	5
1069	Magnetorheological technology for fabricating tunable solid electrolyte with enhanced conductivity and mechanical property. Smart Materials and Structures, 2018, 27, 035022.	3.5	5
1070	Variation and Likeness in Ambient Artistic Portraiture. Perception, 2018, 47, 585-607.	1.2	5
1071	Quantitative characterisation of conductive fibers by capacitive coupling. Analyst, The, 2018, 143, 215-223.	3.5	5
1072	Mechanism and kinetics of electrocarboxylation of aromatic ketones in ionic liquid. Journal of Electroanalytical Chemistry, 2018, 819, 469-473.	3.8	5
1073	Effect of electrochemical oxidation and reduction on cell de-adhesion at the conducting polymer–live cell interface as revealed by single cell force spectroscopy. Biointerphases, 2018, 13, 041004.	1.6	5
1074	Reference Phantom Method for Ultrasonic Imaging of Thin Dynamic Constructs. Ultrasound in Medicine and Biology, 2021, 47, 2388-2403.	1.5	5
1075	Simultaneous Anodic and Cathodic Exfoliation of Graphite Electrodes in an Aqueous Solution of Inorganic Salt. ChemElectroChem, 2021, 8, 3168-3173.	3.4	5
1076	Current and future perspectives on biomaterials for segmental mandibular defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 725-737.	3.4	5
1077	Standardised quantitative ultrasound imaging approach for the contact-less three-dimensional analysis of neocartilage formation in hydrogel-based bioscaffolds. Acta Biomaterialia, 2022, 147, 129-146.	8.3	5
1078	Data on enhanced wireless cell stimulation using soft and improved bipolar electroactive conducting polymer templates. Data in Brief, 2022, 43, 108393.	1.0	5
1079	Transmission of toxoplasmosis by tachyzoites: Possibility and probability of a hypothesis. Medical Hypotheses, 1979, 5, 529-532.	1.5	4
1080	Application of pulsed photoelectrochemical detection. Journal of Electroanalytical Chemistry, 1992, 328, 195-208.	3.8	4

#	Article	IF	CITATIONS
1081	Interfacial analysis $\hat{a} \in$ " techniques for the study and characterisation of advanced materials. TrAC - Trends in Analytical Chemistry, 1993, 12, 94-100.	11.4	4
1082	Scratching the Surface of Intelligent Materials: Characterisation Methods for Conducting Polymer Films. Journal of Intelligent Material Systems and Structures, 1994, 5, 605-611.	2.5	4
1083	Novel Secondary Dopants for Camphorsulfonic Acid Doped Polyaniline Emeraldine Salts. Australian Journal of Chemistry, 2002, 55, 253.	0.9	4
1084	Bionic Ears: Their Development and Future Advances Using Neurotrophins and Inherently Conducting Polymers. Applied Bionics and Biomechanics, 2004, 1, 67-89.	1.1	4
1085	Use of inherently conducting polymers and pulsed amperometry in flow injection analysis to detect oligonucleotides. Analyst, The, 2004, 129, 585.	3.5	4
1086	Aligned/micropatterned carbon nanotube arrays: surface functionalization and electrochemical sensing. , 2005, , .		4
1087	Hydrogen generation using PPy-FMS modified PVDF membrane and other substrates. Synthetic Metals, 2005, 154, 69-72.	3.9	4
1088	Electrochemical actuation properties of a novel solution-processable polythiophene. Electrochimica Acta, 2007, 53, 1830-1836.	5.2	4
1089	Electrochemical polarisation and galvanic couple behaviour of the primary phase of 55% Al–Zn coating investigated using band microelectrodes (BME) and band microelectrode arrays. Journal of Solid State Electrochemistry, 2009, 13, 619-631.	2.5	4
1090	A novel codoping approach for enhancing the performance of polypyrrole cathode in a bioelectric battery. Carbon, 2014, 80, 691-697.	10.3	4
1091	Electroâ€oxidation and reduction of H ₂ on platinum studied by scanning electrochemical microscopy for the purpose of local detection of H ₂ evolution. Surface and Interface Analysis, 2015, 47, 1187-1191.	1.8	4
1092	Dynamic Electrochemical Properties of Extremely Stretchable Electrochemical Capacitor Using Reduced Graphene Oxide/Single-Wall Carbon Nanotubes Composite. Journal of the Electrochemical Society, 2015, 162, A2351-A2355.	2.9	4
1093	Application of Conducting Polymers in Solar Water-Splitting Catalysis. , 2016, , 223-251.		4
1094	Application of terpyridyl ligands to tune the optical and electrochemical properties of a conducting polymer. RSC Advances, 2018, 8, 29505-29512.	3.6	4
1095	Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment. Journal of Bioscience and Bioengineering, 2019, 127, 114-120.	2.2	4
1096	Effect of monophasic pulsed stimulation on live single cell de-adhesion on conducting polymers with adsorbed fibronectin as revealed by single cell force spectroscopy. Biointerphases, 2019, 14, 021003.	1.6	4
1097	Polyterthiophenes Cross‣inked with Terpyridyl Metal Complexes for Molecular Architecture of Optically and Electrochemically Tunable Materials. ChemElectroChem, 2020, 7, 4453-4459.	3.4	4
1098	Fibrinogen, collagen, and transferrin adsorption to poly(3,4-ethylenedioxythiophene)-xylorhamno-uronic glycan composite conducting polymer biomaterials for wound healing applications. Biointerphases, 2021, 16, 021003.	1.6	4

#	Article	IF	CITATIONS
1099	Chemically modified electrodes. , 1988, , 132-154.		4
1100	Enhanced wireless cell stimulation using soft and improved bipolar electroactive conducting polymer templates. Applied Materials Today, 2022, 27, 101481.	4.3	4
1101	Fatal Staphylococcal Septicaemia Following Removal of Tonsils and Adenoids. BMJ: British Medical Journal, 1952, 1, 1231-1231.	2.3	3
1102	A software-controlled system for automatic background correction in inductively coupled plasma-optical emission spectrometry. Analytical Proceedings, 1986, 23, 18.	0.4	3
1103	Development of a Self Compressed Column System. Journal of Liquid Chromatography and Related Technologies, 1991, 14, 1615-1629.	1.0	3
1104	Photoelectrochemical detection of alcohols. Electroanalysis, 1992, 4, 439-445.	2.9	3
1105	Studies on Poly (3-Octadecyl Pyrrole) Modified Silica as a Reversed Phase HPLC Packing Material. Journal of Liquid Chromatography and Related Technologies, 1994, 17, 1301-1316.	1.0	3
1106	Design and evaluation of photoelectrochemical flow cells. Electroanalysis, 1994, 6, 209-215.	2.9	3
1107	Responsive systems based on conducting polymers. , 1997, , .		3
1108	<title>Development of an electronic nose</title> . , 1997, 3242, 164.		3
1109	Effective diffusion of electroactive species on hydrogel modified ultramicroelectrodes. Polymer Gels and Networks, 1998, 6, 383-391.	0.6	3
1110	Electrochemical behaviour of polypyrrole/sulfated poly(β-hydroxyether) composites. Synthetic Metals, 2002, 129, 67-71.	3.9	3
1111	Bionic ears: their development and future advances using neurotrophins and inherently conducting polymers. Applied Bionics and Biomechanics, 2004, 1, 67-89.	1.1	3
1112	In pursuit of high-force/high-stroke conducting polymer actuators (Invited Paper). , 2005, 5759, 314.		3
1113	An Efficient Bifunctional Electrocatalyst of Methanol Oxidation. Organometallics, 2007, 26, 4860-4862.	2.3	3
1114	Incorporation of dye into conducting polyaniline nanoparticles. Reactive and Functional Polymers, 2007, 67, 173-183.	4.1	3
1115	Electrochemical pH Oscillations of Ethyl Viologen/Ionic Liquid. Langmuir, 2008, 24, 3562-3565.	3.5	3
1116	Molecules with Multiple Personalities: How Switchable Materials Could Revolutionize Chemical Sensing. ECS Transactions, 2009, 19, 199-210.	0.5	3

#	Article	IF	CITATIONS
1117	Nerve Repair: A Conductingâ€Polymer Platform with Biodegradable Fibers for Stimulation and Guidance of Axonal Growth (Adv. Mater. 43/2009). Advanced Materials, 2009, 21, .	21.0	3
1118	Development of electrorheological chip and conducting polymer-based sensor. Frontiers of Mechanical Engineering in China, 2009, 4, 393-396.	0.4	3
1119	Synthesis of polypyrrole–Nafion composite films by gas phase electroformation. Synthetic Metals, 2011, 161, 1682-1685.	3.9	3
1120	Microstructures of conducting polymers: Patterning and actuation study. Sensors and Actuators A: Physical, 2013, 197, 106-110.	4.1	3
1121	Integrating a Triplet-triplet Annihilation Up-conversion System to Enhance Dye-sensitized Solar Cell Response to Sub-bandgap Light. Journal of Visualized Experiments, 2014, , 52028.	0.3	3
1122	Injectable phenytoin loaded polymeric microspheres for the control of temporal lobe epilepsy in rats. Restorative Neurology and Neuroscience, 2015, 33, 823-834.	0.7	3
1123	Antiepileptic Effects of Lacosamide Loaded Polymers Implanted Subdurally in GAERS. International Journal of Polymer Science, 2016, 2016, 1-10.	2.7	3
1124	Cell compatible encapsulation of filaments into 3D hydrogels. Biofabrication, 2016, 8, 025013.	7.1	3
1125	Biodegradable Conducting Polymer Coating to Mitigate Early Stage Degradation of Magnesium in Simulated Biological Fluid: An Electrochemical Mechanistic Study. ChemElectroChem, 2019, 6, 4893-4901.	3.4	3
1126	Discussion paper on proposed new regulatory changes on 3D technology: a surgical perspective. ANZ Journal of Surgery, 2019, 89, 117-121.	0.7	3
1127	A simple technique for development of fibres with programmable microsphere concentration gradients for local protein delivery. Journal of Materials Chemistry B, 2019, 7, 556-565.	5.8	3
1128	Effects of Interfacial Layers on the Open Circuit Voltage of Polymer/Fullerene Bulk Heterojunction Devices Studied by Charge Extraction Techniques. ACS Applied Materials & Interfaces, 2019, 11, 21030-21041.	8.0	3
1129	Turning Cotton to Self-Supported Electrocatalytic Carbon Electrode for Highly Efficient Oxygen Reduction. Electrocatalysis, 2020, 11, 317-328.	3.0	3
1130	Redox Polymers for Tissue Engineering. Frontiers in Medical Technology, 2021, 3, 669763.	2.5	3
1131	The length dependent selectivity on aligned Cu nanowires for C1 products from CO2 Electroreduction. Electrochimica Acta, 2021, 394, 139099.	5.2	3
1132	Gas Phase Electroformation of Polypyrrole. Journal of Applied Sciences, 2008, 8, 2967-2974.	0.3	3
1133	A Battery Method to Enhance the Degradation of Iron Stent and Regulating the Effect on Living Cells. Small Methods, 2022, 6, .	8.6	3
1134	Modified electrodes. Analytical Proceedings, 1985, 22, 199.	0.4	2

#	Article	IF	CITATIONS
1135	Differential pulse voltammetric study of a typical anaerobic adhesive formulation coated on a glassy carbon electrode. Analytica Chimica Acta, 1989, 217, 335-341.	5.4	2
1136	Application of Modified Electrodes for Analysis in Flowing Solutions. , 1990, , 283-287.		2
1137	Development of an improved on-line chromatographic monitor with new methods for environmental and process control. Analytica Chimica Acta, 1995, 310, 79-92.	5.4	2
1138	Controlled Continuous Production of Conducting Polypyrrole Tapes I: Process Control Development. Polymers for Advanced Technologies, 1996, 7, 442-450.	3.2	2
1139	Factors affecting the yield of polypyrrole colloids produced under electrohydrodynamic conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 167, 201-208.	4.7	2
1140	Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia Proceedings, 2006, 920, 1.	0.1	2
1141	Characterisation of titanium dioxide-single walled carbon nanotubes composite fibres prepared by the wet spinning technique. , 2008, , .		2
1142	Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia Proceedings, 2009, 1240, 1.	0.1	2
1143	Electrochemical AFM. Imaging & Microscopy, 2009, 11, 40-43.	0.1	2
1144	In Situ Growth of SnO ₂ on Graphene Nanosheets as Advanced Anode Materials for Rechargeable Lithium Batteries. ECS Transactions, 2010, 28, 151-156.	0.5	2
1145	Printed hydrogel materials. , 2010, , .		2
1146	Sensors: Strain-Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity (Adv. Funct. Mater. 20/2014). Advanced Functional Materials, 2014, 24, 3104-3104.	14.9	2
1147	A Method for Systematic Electrochemical and Electrophysiological Evaluation of Neural Recording Electrodes. Journal of Visualized Experiments, 2014, , .	0.3	2
1148	From nanoparticles to fibres: effect of dispersion composition on fibre properties. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	2
1149	A Comparison of Chemical and Electrochemical Synthesis of PEDOT:Dextran Sulphate for Bio-Application. Materials Research Society Symposia Proceedings, 2015, 1717, 19.	0.1	2
1150	Brain on a bench top. Materials Today, 2016, 19, 124-125.	14.2	2
1151	Real-time Analysis of Electrolytes in Sweat Through a Wearable Sensing Platform. Proceedings (mdpi), 2019, 15, 14.	0.2	2
1152	Modeling the upper airway: A precursor to personalized surgical interventions for the treatment of sleep apnea. Journal of Biomedical Materials Research - Part A, 2020, 108, 1419-1425.	4.0	2

#	Article	IF	CITATIONS
1153	Development of an In Situ Printing System With Human Platelet Lysate-Based Bio-Adhesive to Treat Corneal Perforations. Translational Vision Science and Technology, 2022, 11, 26.	2.2	2
1154	An Electrochemical Reactor for on-Line Oxidation of Chromium (III) to Chromium (VI). Analytical Letters, 1990, 23, 1477-1486.	1.8	1
1155	Corrigendum to "Pulsed amperometric detection of proteins using antibody containing conducting polymers―[Anal. Chim. Acta, 279 (1993) 209–212]. Analytica Chimica Acta, 1995, 302, 131.	5.4	1
1156	A simple electropolymerization method for the production of microarray electrodes. Electroanalysis, 1995, 7, 346-349.	2.9	1
1157	Assembly of conducting polymer networks inside hydrogel structures. , 1996, , .		1
1158	Studies of electropolymerisation of sodium 2-(3-thienyl)ethyl sulfonate. Reactive and Functional Polymers, 1997, 34, 27-36.	4.1	1
1159	<title>Applied potential limits for polypyrrole in a two-electrode device</title> . , 1999, 3669, 272.		1
1160	Pneumatic Actuator Response from Carbon Nanotube Sheets. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
1161	Using a principle of heterogeneous catalysis to achieve enzyme-like molecular catalysis. Journal of Inorganic Biochemistry, 2003, 96, 153.	3.5	1
1162	Synthesis, modeling, and characterization of conducting polymers. , 2004, 5648, 145.		1
1163	Characterization of conducting-polymer-based bimorph vibration sensors. , 2004, , .		1
1164	Wearable biofeedback systems. , 2006, , 450-470.		1
1165	Electrochemical properties of carbon nanotubes. , 2006, , 297-321.		1
1166	Polypyrrole Based Switchable Filter System. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4090-1.	0.5	1
1167	Field-Cycling NMR Relaxometry Study of Dynamic Processes in Conducting Polyaniline. Journal of Physical Chemistry C, 2008, 112, 17688-17693.	3.1	1
1168	Controlled deposition of polymer carbon Nanotube composites through inkjet printing. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	1
1169	Organic bionics. , 2010, , .		1
1170	Printing nanomaterials using non-contact printing. , 2010, , .		1

1170 Printing nanomaterials using non-contact printing. , 2010, , .

#	Article	IF	CITATIONS
1171	Nanostructured electrically conducting biofibres produced using a reactive wet-spinning process. , 2010, , .		1
1172	Cellsnake: A new active contour technique for cell/fibre segmentation. , 2011, , .		1
1173	Stimuli-responsive hydrogel actuators (presentation video). , 2014, , .		1
1174	Reduced Graphene Oxide Carbon Yarn Electrodes for Drug Sensing. Frontiers in Sensors, 2021, 2, .	3.3	1
1175	Interaction of graphene, MnO , and Ca2+ for enhanced biomimetic, â€`bubble-free' oxygen evolution reaction at mild pH. International Journal of Hydrogen Energy, 2021, 46, 28397-28405.	7.1	1
1176	Polypyrrole–heparin composites as stimulus-responsive substrates for endothelial cell growth. , 1999, 44, 121.		1
1177	Communicating with Responsive Intelligent Membranes. , 1995, , 709-718.		1
1178	Conducting Polymer Fibers. , 2014, , 1-27.		1
1179	Biomedical Applications of Organic Conducting Polymers. , 2019, , 783-812.		1
1180	Quinone Redox-active Ionic Liquids. Journal of the Mexican Chemical Society, 2017, 59, .	0.6	1
1181	Wearable textile biofeedback systems: are they too intelligent for the wearer?. Studies in Health Technology and Informatics, 2004, 108, 271-7.	0.3	1
1182	Students' Acceptance of Psychiatry. BMJ: British Medical Journal, 1960, 1, 1659-1659.	2.3	0
1183	Clinic Doctors. BMJ: British Medical Journal, 1961, 1, 906-906.	2.3	0
1184	Determination of complexation capacity using coulometric stripping analysis. Chemical Speciation and Bioavailability, 1992, 4, 143-147.	2.0	0
1185	Coaxing Predictable Behaviour from Unstable (Intelligent) Polymer Systems: Processing Dynamic Systems. Journal of Intelligent Material Systems and Structures, 1995, 6, 301-306.	2.5	0
1186	Dynamic polymeric membrane structures. , 1997, , .		0
1187	<title>Development of a novel type of electromembrane sensing system</title> . Proceedings of SPIE, 1997, 3242, 266.	0.8	0
1188	<title>Electroassembly of smart polymer structures (role of polyelectrolytes)</title> . , 1997, 3040, 160.		0

#	Article	IF	CITATIONS
1189	<title>Responsive systems based on conducting polymers</title> . , 1997, , .		0
1190	<title>Development of polypyrrole-based electromechanical actuators</title> ., 1999, , .		0
1191	Conducting polymer-carbon nanotubes composites. , 0, , .		0
1192	<title>Factors influencing performance of electrochemical actuators based on inherently conducting polymers (ICPs)</title> . , 2002, , .		0
1193	Carbon nanotube and polyaniline composite actuators. , 2002, 4935, 26.		0
1194	Carbon Nanotube Composites as Efficient Charge Transport Media in Organic Optoelectronic Devices. , 2003, 4876, 338.		0
1195	Gas concentration control by directly linking sensor to actuator. , 2003, 5051, 509.		0
1196	Polyaniline-nanotube multifunctional fiber: capabilities toward the manufacturing of smart fabric. , 2004, , .		0
1197	Highly processable method for the construction of miniature conducting polymer moisture sensors. , 2005, 5649, 607.		0
1198	Poly(3-methylthiophene)-based electrochemical actuators. , 2005, , .		0
1199	The use of embedded sensors for the monitoring of adhesive joints in marine environments. , 2005, , .		0
1200	Actuation behaviour of polyaniline films and tubes prepared by phase inversion technique. , 2005, , .		0
1201	Decoration of carbon nanotubes with biological entities for electronic device applications. , 2006, , .		0
1202	An investigation into behaviour of electroactive polymers as mechanical sensors. , 2007, , .		0
1203	Time-Dependent ("Mechanicalâ€), Nonbiological Catalysis. 3. A Readily Prepared, Convergent, Oxygen-Reduction Electrocatalyst. , 0, , 319-335.		0
1204	Superior electrochemical platforms based on polymer carbon nanotube composite electrodes. , 2010, ,		0
1205	Self-Assembled Gels from Biological and Synthetic Polyelectrolytes Materials Research Society Symposia Proceedings, 2012, 1418, 51.	0.1	0
1206	Mechanism of stroke enhancement by coiling in carbon nanotube hybrid yarn artificial muscles (presentation video). , 2014, , .		0

#	Article	IF	CITATIONS
1207	Can the Wet – State Conductivity of Hydrogels be Improved by Incorporation of Spherical Conducting Nanoparticles?. Materials Research Society Symposia Proceedings, 2014, 1717, 1.	0.1	0
1208	Carbon-based torsional and tensile artificial muscles driven by thermal expansion (presentation) Tj ETQq0 0 0 rgE	BT /Overloc	:k 10 Tf 50 7
1209	Solar Rechargeable Redox Battery Based on Polysulfide Electrochemistry. ECS Transactions, 2016, 72, 23-31.	0.5	0
1210	Learning structured dictionary based on inter-class similarity and representative margins. , 2016, , .		0
1211	Wearable Sensor for Real-Time Monitoring of Electrolytes in Sweat. Proceedings (mdpi), 2017, 1, 724.	0.2	0
1212	Characterization of 3D-Printed Human Regulatory T-Cells. Transplantation, 2018, 102, S109.	1.0	0
1213	Tunable flow rate in textile-based materials utilising composite fibres. Journal of the Textile Institute, 2021, 112, 568-577.	1.9	0
1214	Smart polymer implants as an emerging technology for treating airway collapse in obstructive sleep apnea: a pilot (proof of concept) study. Journal of Clinical Sleep Medicine, 2021, 17, 315-324.	2.6	0
1215	Towards Novel Entangled Carbon Nanotube Composite Electrodes. , 2008, , .		0
1216	Conductive Polymers. , 2008, , 695-704.		0
1217	Smart Polymers for Biotechnology and Elastomers. , 2008, , .		0
1218	Performance on Demand — A New Era in Polymer Science (A Case Study Using Conducting Polymers). , 1994, , 283-293.		0
1219	Cellular communication with conducting electroactive polymers. , 1996, , 309-310.		0
1220	Communicating with the Building Blocks of Life Using Advanced Macromolecular Transducers. , 1996, , 13-17.		0
1221	Smart Membranes. , 0, , 7366-7374.		0
1222	Conducting Polymers. , 0, , 1962-1971.		0
1223	Unzipping Chemical Bonds of Non-Layered Bulk Structures to Form Ultrathin Nanocrystals. SSRN Electronic Journal, 0, , .	0.4	0

1224 Earth-abundant electrocatalysts for sustainable energy conversion. , 2022, , 131-168.

#	Article	IF	CITATIONS
1225	The Australian National Fabrication Facility: Micro/nanotechnologies from Concept to Translation to End Users. Advanced Functional Materials, 2022, 32, .	14.9	0
1226	Nanostructured Electrodes : New Bionic Interfaces. , 2007, , 8-8.		0
1227	Sensing and Stimulating Electrodes for Electroceuticals. Frontiers in Sensors, 2022, 3, .	3.3	0