
Brock Grill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2576246/publications.pdf Version: 2024-02-01

RDOCK CDILL

#	Article	IF	CITATIONS
1	Genetic modeling of GNAO1 disorder delineates mechanisms of Gαo dysfunction. Human Molecular Genetics, 2022, 31, 510-522.	2.9	22
2	Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genetics, 2022, 18, e1010152.	3.5	7
3	Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Reports, 2021, 34, 108718.	6.4	48
4	Autophagy in axonal and presynaptic development. Current Opinion in Neurobiology, 2021, 69, 139-148.	4.2	10
5	O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans. PLoS ONE, 2021, 16, e0260072.	2.5	5
6	The orphan receptor GPR139 signals via Gq/11 to oppose opioid effects. Journal of Biological Chemistry, 2020, 295, 10822-10830.	3.4	20
7	Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Development, 2020, 15, 6.	2.4	28
8	An alternatively spliced, non-signaling insulin receptor modulates insulin sensitivity via insulin peptide sequestration in C. elegans. ELife, 2020, 9, .	6.0	18
9	Genetic behavioral screen identifies an orphan anti-opioid system. Science, 2019, 365, 1267-1273.	12.6	43
10	Autophagy is inhibited by ubiquitin ligase activity in the nervous system. Nature Communications, 2019, 10, 5017.	12.8	27
11	A complex containing the O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 regulates GABA neuron function. Journal of Biological Chemistry, 2019, 294, 6843-6856.	3.4	25
12	Synapse maintenance is impacted by ATAT-2 tubulin acetyltransferase activity and the RPM-1 signaling hub. ELife, 2019, 8, .	6.0	8
13	PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. FASEB Journal, 2019, 33, 465.1.	0.5	0
14	PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. Journal of Biological Chemistry, 2018, 293, 13897-13909.	3.4	31
15	Defining Minimal Binding Regions in Regulator of Presynaptic Morphology 1 (RPM-1) Using Caenorhabditis elegans Neurons Reveals Differential Signaling Complexes. Journal of Biological Chemistry, 2017, 292, 2519-2530.	3.4	7
16	The HECT Family Ubiquitin Ligase EEL-1 Regulates Neuronal Function and Development. Cell Reports, 2017, 19, 822-835.	6.4	24
17	RPM-1 regulates axon termination by affecting growth cone collapse and microtubule stability. Development (Cambridge), 2017, 144, 4658-4672.	2.5	19
18	A MIC-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning. PLoS Genetics, 2017, 13, e1007095.	3.5	18

BROCK GRILL

#	Article	IF	CITATIONS
19	The PHR proteins: intracellular signaling hubs in neuronal development and axon degeneration. Neural Development, 2016, 11, 8.	2.4	48
20	Modulating Behavior in C. elegans Using Electroshock and Antiepileptic Drugs. PLoS ONE, 2016, 11, e0163786.	2.5	24
21	Developmental Function of the PHR Protein RPM-1 Is Required for Learning in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2745-2757.	1.8	15
22	Neuronal Development in <i>Caenorhabditis elegans</i> Is Regulated by Inhibition of an MLK MAP Kinase Pathway. Genetics, 2015, 199, 151-156.	2.9	12
23	RPM-1 Uses Both Ubiquitin Ligase and Phosphatase-Based Mechanisms to Regulate DLK-1 during Neuronal Development. PLoS Genetics, 2014, 10, e1004297.	3.5	37
24	The Nesprin Family Member ANC-1 Regulates Synapse Formation and Axon Termination by Functioning in a Pathway with RPM-1 and β-Catenin. PLoS Genetics, 2014, 10, e1004481.	3.5	41
25	Identification of a Peptide Inhibitor of the RPM-1·FSN-1 Ubiquitin Ligase Complex. Journal of Biological Chemistry, 2014, 289, 34654-34666.	3.4	16
26	RPM-1 is localized to distinct subcellular compartments and regulates axon length in GABAergic motor neurons. Neural Development, 2014, 9, 10.	2.4	20
27	RAE-1, a Novel PHR Binding Protein, Is Required for Axon Termination and Synapse Formation in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2012, 32, 2628-2636.	3.6	39
28	PPM-1, a PP2Cα/β phosphatase, Regulates Axon Termination and Synapse Formation in <i>Caenorhabditis elegans</i> . Genetics, 2011, 189, 1297-1307.	2.9	21
29	Cellular and molecular determinants targeting the <i>Caenorhabditis elegans</i> PHR protein RPMâ€1 to perisynaptic regions. Developmental Dynamics, 2008, 237, 630-639.	1.8	35
30	Building a synapse: lessons on synaptic specificity and presynaptic assembly from the nematode C. elegans. Current Opinion in Neurobiology, 2008, 18, 69-76.	4.2	29
31	C. elegans RPM-1 Regulates Axon Termination and Synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron, 2007, 55, 587-601.	8.1	116
32	SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS. Nature Neuroscience, 2006, 9, 1479-1487.	14.8	187
33	Regulation of a DLK-1 and p38 MAP Kinase Pathway by the Ubiquitin Ligase RPM-1 Is Required for Presynaptic Development. Cell, 2005, 120, 407-420.	28.9	322
34	Activation/Division of Lymphocytes Results in Increased Levels of Cytoplasmic Activation/Proliferation-Associated Protein-1: Prototype of a New Family of Proteins. Journal of Immunology, 2004, 172, 2389-2400.	0.8	65
35	Kap121p-Mediated Nuclear Import Is Required for Mating and Cellular Differentiation in Yeast. Molecular and Cellular Biology, 2002, 22, 2544-2555.	2.3	43
36	Activation of Rac-1, Rac-2, and Cdc42 by hemopoietic growth factors or cross-linking of the B-lymphocyte receptor for antigen. Blood, 2002, 100, 3183-3192.	1.4	32

#	Article	IF	CITATIONS
37	Activation of small GTPases of the Ras and Rho family by growth factors active on mast cells. Molecular Immunology, 2002, 38, 1181-1186.	2.2	4