

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2575799/publications.pdf Version: 2024-02-01



Mu GAO

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nature Communications, 2022, 13, 1744.                                                                     | 12.8 | 128       |
| 2  | The role of local versus nonlocal physicochemical restraints in determining protein native structure. Current Opinion in Structural Biology, 2021, 68, 1-8.                                            | 5.7  | 14        |
| 3  | A novel sequence alignment algorithm based on deep learning of the protein folding code.<br>Bioinformatics, 2021, 37, 490-496.                                                                         | 4.1  | 19        |
| 4  | On the emergence of homochirality and life itself. Biochemist, 2021, 43, 4-12.                                                                                                                         | 0.5  | 2         |
| 5  | A General Framework to Learn Tertiary Structure for Protein Sequence Characterization. Frontiers in Bioinformatics, 2021, 1, .                                                                         | 2.1  | 3         |
| 6  | AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein<br>Sequence, Structure, and Function. Journal of Chemical Information and Modeling, 2021, 61, 4827-4831. | 5.4  | 109       |
| 7  | High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function. , 2021, 2021, 46-57.                                                                             |      | 8         |
| 8  | Differential kinase activity of ACVR1 G328V and R206H mutations with implications to possible TβRI<br>cross-talk in diffuse intrinsic pontine glioma. Scientific Reports, 2020, 10, 6140.              | 3.3  | 5         |
| 9  | DESTINI: A deep-learning approach to contact-driven protein structure prediction. Scientific Reports, 2019, 9, 3514.                                                                                   | 3.3  | 44        |
| 10 | On the possible origin of protein homochirality, structure, and biochemical function. Proceedings of the United States of America, 2019, 116, 26571-26579.                                             | 7.1  | 30        |
| 11 | Repurposed FDA-approved drugs targeting genes influencing aging can extend lifespan and healthspan<br>in rotifers. Biogerontology, 2018, 19, 145-157.                                                  | 3.9  | 16        |
| 12 | Brain activity patterns in high-throughput electrophysiology screen predict bothÂdrug efficacies and<br>side effects. Nature Communications, 2018, 9, 219.                                             | 12.8 | 55        |
| 13 | The crystal structure of a tetrahydrofolate-bound dihydrofolate reductase reveals the origin of slow product release. Communications Biology, 2018, 1, 226.                                            | 4.4  | 23        |
| 14 | ENTPRISE-X: Predicting disease-associated frameshift and nonsense mutations. PLoS ONE, 2018, 13, e0196849.                                                                                             | 2.5  | 20        |
| 15 | Repurposing FDA-approved drugs for anti-aging therapies. Biogerontology, 2016, 17, 907-920.                                                                                                            | 3.9  | 31        |
| 16 | How special is the biochemical function of native proteins?. F1000Research, 2016, 5, 207.                                                                                                              | 1.6  | 9         |
| 17 | ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures. PLoS ONE, 2016, 11, e0150965.                          | 2.5  | 23        |
| 18 | Insights into Disease-Associated Mutations in the Human Proteome through Protein Structural<br>Analysis. Structure, 2015, 23, 1362-1369.                                                               | 3.3  | 103       |

Mu Gao

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Comprehensive prediction of drug-protein interactions and side effects for the human proteome.<br>Scientific Reports, 2015, 5, 11090.                                                                                                                              | 3.3  | 90        |
| 20 | Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1163-1170.                                                           | 2.2  | 27        |
| 21 | Hurt, tired and queasy: Specific variants in the ATPase domain of the TRAP1 mitochondrial chaperone<br>are associated with common, chronic "functional―symptomatology including pain, fatigue and<br>gastrointestinal dysmotility. Mitochondrion, 2015, 23, 64-70. | 3.4  | 15        |
| 22 | On the Role of Physics and Evolution in Dictating Protein Structure and Function. Israel Journal of Chemistry, 2014, 54, 1176-1188.                                                                                                                                | 2.3  | 10        |
| 23 | Are predicted protein structures of any value for binding site prediction and virtual ligand screening?. Current Opinion in Structural Biology, 2013, 23, 191-197.                                                                                                 | 5.7  | 29        |
| 24 | APoc: large-scale identification of similar protein pockets. Bioinformatics, 2013, 29, 597-604.                                                                                                                                                                    | 4.1  | 109       |
| 25 | A Comprehensive Survey of Small-Molecule Binding Pockets in Proteins. PLoS Computational Biology, 2013, 9, e1003302.                                                                                                                                               | 3.2  | 103       |
| 26 | Interplay of physics and evolution in the likely origin of protein biochemical function. Proceedings of the United States of America, 2013, 110, 9344-9349.                                                                                                        | 7.1  | 59        |
| 27 | The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3784-3789.                             | 7.1  | 82        |
| 28 | Why not consider a spherical protein? Implications of backbone hydrogen bonding for protein structure and function. Physical Chemistry Chemical Physics, 2011, 13, 17044.                                                                                          | 2.8  | 16        |
| 29 | New benchmark metrics for proteinâ€protein docking methods. Proteins: Structure, Function and<br>Bioinformatics, 2011, 79, 1623-1634.                                                                                                                              | 2.6  | 31        |
| 30 | iAlign: a method for the structural comparison of protein–protein interfaces. Bioinformatics, 2010,<br>26, 2259-2265.                                                                                                                                              | 4.1  | 81        |
| 31 | PSiFR: an integrated resource for prediction of protein structure and function. Bioinformatics, 2010, 26, 687-688.                                                                                                                                                 | 4.1  | 13        |
| 32 | Structural space of protein–protein interfaces is degenerate, close to complete, and highly<br>connected. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,<br>22517-22522.                                              | 7.1  | 133       |
| 33 | A Threading-Based Method for the Prediction of DNA-Binding Proteins with Application to the Human<br>Genome. PLoS Computational Biology, 2009, 5, e1000567.                                                                                                        | 3.2  | 74        |
| 34 | From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions.<br>PLoS Computational Biology, 2009, 5, e1000341.                                                                                                                  | 3.2  | 32        |
| 35 | DBD-Hunter: a knowledge-based method for the prediction of DNA–protein interactions. Nucleic Acids<br>Research, 2008, 36, 3978-3992.                                                                                                                               | 14.5 | 142       |
| 36 | Molecular mechanisms of cellular mechanics. Physical Chemistry Chemical Physics, 2006, 8, 3692.                                                                                                                                                                    | 2.8  | 76        |

Mu Gao

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Onset of Anthrax Toxin Pore Formation. Biophysical Journal, 2006, 90, 3267-3279.                                                                                                                                   | 0.5 | 17        |
| 38 | Mechanical Strength of the Titin Z1Z2-Telethonin Complex. Structure, 2006, 14, 497-509.                                                                                                                            | 3.3 | 70        |
| 39 | How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation.<br>Journal of Cell Biology, 2006, 175, 349-360.                                                                    | 5.2 | 181       |
| 40 | Tuning the Mechanical Stability of Fibronectin Type III Modules through Sequence Variations.<br>Structure, 2004, 12, 21-30.                                                                                        | 3.3 | 98        |
| 41 | Structural Insights into How the MIDAS Ion Stabilizes Integrin Binding to an RGD Peptide under Force.<br>Structure, 2004, 12, 2049-2058.                                                                           | 3.3 | 75        |
| 42 | Integrin Activation In Vivo and In Silico. Structure, 2004, 12, 2096-2098.                                                                                                                                         | 3.3 | 7         |
| 43 | Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100,<br>14784-14789. | 7.1 | 187       |
| 44 | Large Scale Simulation of Protein Mechanics and Function. Advances in Protein Chemistry, 2003, 66,<br>195-247.                                                                                                     | 4.4 | 31        |
| 45 | Unfolding of titin domains studied by molecular dynamics simulations. , 2003, , 513-521.                                                                                                                           |     | 1         |
| 46 | Identifying Unfolding Intermediates of FN-III10 by Steered Molecular Dynamics. Journal of Molecular<br>Biology, 2002, 323, 939-950.                                                                                | 4.2 | 159       |
| 47 | Steered Molecular Dynamics Studies of Titin I1 Domain Unfolding. Biophysical Journal, 2002, 83, 3435-3445.                                                                                                         | 0.5 | 111       |
| 48 | Unfolding of titin domains studied by molecular dynamics simulations. Journal of Muscle Research<br>and Cell Motility, 2002, 23, 513-521.                                                                          | 2.0 | 61        |
| 49 | Simulated Refolding of Stretched Titin Immunoglobulin Domains. Biophysical Journal, 2001, 81, 2268-2277.                                                                                                           | 0.5 | 48        |
| 50 | Steered molecular dynamics and mechanical functions of proteins. Current Opinion in Structural Biology, 2001, 11, 224-230.                                                                                         | 5.7 | 934       |