List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2575599/publications.pdf Version: 2024-02-01



IFFF HOLET

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Novel Role for DNA-PK in Metabolism by Regulating Glycolysis in Castration-Resistant Prostate<br>Cancer. Clinical Cancer Research, 2022, 28, 1446-1459.                                           | 7.0  | 12        |
| 2  | Zwitterionic Amino Acid-Derived Polyacrylates as Smart Materials Exhibiting Cellular Specificity and Therapeutic Activity. Biomacromolecules, 2022, 23, 2374-2387.                                  | 5.4  | 17        |
| 3  | Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene, 2022, 41, 4066-4078.                                                                                     | 5.9  | 15        |
| 4  | RB/E2F1 as a Master Regulator of Cancer Cell Metabolism in Advanced Disease. Cancer Discovery, 2021,<br>11, 2334-2353.                                                                              | 9.4  | 40        |
| 5  | Inhibition of guanosine monophosphate synthetase ( <scp>GMPS</scp> ) blocks glutamine metabolism and prostate cancer growth. Journal of Pathology, 2021, 254, 135-146.                              | 4.5  | 19        |
| 6  | Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11<br>Inhibition. Cancer Research, 2021, 81, 3461-3479.                                                | 0.9  | 62        |
| 7  | A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD)<br>drives prostate cancer growth. ELife, 2021, 10, .                                                     | 6.0  | 16        |
| 8  | TP53 Mutation Is a Prognostic Factor in Lower Grade Glioma and May Influence Chemotherapy Efficacy.<br>Cancers, 2021, 13, 5362.                                                                     | 3.7  | 13        |
| 9  | Synthesis of bilocularin A carbamate derivatives and their evaluation as leucine transport inhibitors in prostate cancer cells. Phytochemistry, 2020, 179, 112478.                                  | 2.9  | 5         |
| 10 | Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in<br>Physiology and Cancer. Neurochemical Research, 2020, 45, 1268-1286.                              | 3.3  | 40        |
| 11 | Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. ELife, 2020, 9, .                                              | 6.0  | 104       |
| 12 | EGF-activated PI3K/Akt signalling coordinates leucine uptake by regulating LAT3 expression in prostate cancer. Cell Communication and Signaling, 2019, 17, 83.                                      | 6.5  | 20        |
| 13 | ASCT2: a potential cancer drug target. Expert Opinion on Therapeutic Targets, 2019, 23, 555-558.                                                                                                    | 3.4  | 27        |
| 14 | Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4<br>Combined Therapy. Cancer Cell, 2019, 35, 238-255.e6.                                         | 16.8 | 547       |
| 15 | RAB27A promotes melanoma cell invasion and metastasis <i>via</i> regulation of proâ€invasive exosomes. International Journal of Cancer, 2019, 144, 3070-3085.                                       | 5.1  | 72        |
| 16 | DNA methylation/hydroxymethylation regulate gene expression and alternative splicing during terminal granulopoiesis. Epigenomics, 2019, 11, 95-109.                                                 | 2.1  | 18        |
| 17 | Distinct Molecular Profiles and Immunotherapy Treatment Outcomes of V600E and V600K<br><i>BRAF</i> -Mutant Melanoma. Clinical Cancer Research, 2019, 25, 1272-1279.                                 | 7.0  | 57        |
| 18 | Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells. Journal of Biological Chemistry, 2019, 294, 4012-4026. | 3.4  | 64        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Extracellular Fatty Acids Are the Major Contributor to Lipid Synthesis in Prostate Cancer. Molecular<br>Cancer Research, 2019, 17, 949-962.                                                                                           | 3.4  | 65        |
| 20 | Dihydro―β â€agarofurans from the Australian rainforest plant Denhamia celastroides that inhibit leucine<br>transport in prostate cancer cells. Magnetic Resonance in Chemistry, 2019, 57, 101-109.                                    | 1.9  | 4         |
| 21 | T-cell acute lymphoblastic leukemias express a unique truncated FAT1 isoform that cooperates with NOTCH1 in leukemia development. Haematologica, 2019, 104, e204-e207.                                                                | 3.5  | 6         |
| 22 | SAMHD1 enhances immunoglobulin hypermutation by promoting transversion mutation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4921-4926.                                               | 7.1  | 26        |
| 23 | Dihydro-β-agarofurans from the roots of the Australian endemic rainforest tree Maytenus bilocularis<br>act as leucine transport inhibitors. Phytochemistry, 2018, 148, 71-77.                                                         | 2.9  | 17        |
| 24 | Regulation of SLC1A4 and SLC1A5 in Prostate Cancer—Letter. Molecular Cancer Research, 2018, 16,<br>1809-1810.                                                                                                                         | 3.4  | 1         |
| 25 | Homology Modeling Informs Ligand Discovery for the Glutamine Transporter ASCT2. Frontiers in Chemistry, 2018, 6, 279.                                                                                                                 | 3.6  | 21        |
| 26 | Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis<br>and triggering amino acid response pathways. BMC Cancer, 2018, 18, 689.                                                         | 2.6  | 43        |
| 27 | Identifying microRNA determinants of human myelopoiesis. Scientific Reports, 2018, 8, 7264.                                                                                                                                           | 3.3  | 14        |
| 28 | Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism, 2017, 5, 1.                                                       | 5.0  | 284       |
| 29 | Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nature Communications, 2017, 8, 15134.                                                                                                           | 12.8 | 92        |
| 30 | Celastrofurans A–G: Dihydro-β-agarofurans from the Australian Rainforest Vine Celastrus subspicata<br>and Their Inhibitory Effect on Leucine Transport in Prostate Cancer Cells. Journal of Natural<br>Products, 2017, 80, 1918-1925. | 3.0  | 11        |
| 31 | The antiproliferative ELF2 isoform, ELF2B, induces apoptosis in vitro and perturbs early lymphocytic development in vivo. Journal of Hematology and Oncology, 2017, 10, 75.                                                           | 17.0 | 16        |
| 32 | Heritable expansion of the genetic code in mouse and zebrafish. Cell Research, 2017, 27, 294-297.                                                                                                                                     | 12.0 | 57        |
| 33 | ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis, 2017, 6, e367-e367.                                                                                                                           | 4.9  | 57        |
| 34 | Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes<br>T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447.                                                                            | 0.9  | 52        |
| 35 | Bioactive Dihydro-β-agarofuran Sesquiterpenoids from the Australian Rainforest Plant <i>Maytenus<br/>bilocularis</i> . Journal of Natural Products, 2016, 79, 1445-1453.                                                              | 3.0  | 33        |
| 36 | LAT1 is a putative therapeutic target in endometrioid endometrial carcinoma. International Journal of<br>Cancer, 2016, 139, 2529-2539.                                                                                                | 5.1  | 36        |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Dihydro―β â€agarofurans from the Australian Endemic Rainforest Plant Denhamia pittosporoides Inhibit<br>Leucine Transport in Prostate Cancer Cells. Asian Journal of Organic Chemistry, 2016, 5, 1461-1466. | 2.7  | 10        |
| 38 | Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation. Cell Death and Disease, 2016, 7, e2252-e2252.                     | 6.3  | 33        |
| 39 | Tumourâ€specific CD4 T cells eradicate melanoma via indirect recognition of tumourâ€derived antigen.<br>Immunology and Cell Biology, 2016, 94, 593-603.                                                     | 2.3  | 34        |
| 40 | RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever. Nucleic Acids Research, 2016, 44, 2888-2897.                                         | 14.5 | 50        |
| 41 | ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene, 2016, 35, 3201-3208.                                                                        | 5.9  | 430       |
| 42 | Targeting <scp>ASCT2</scp> â€mediated glutamine uptake blocks prostate cancer growth and tumour development. Journal of Pathology, 2015, 236, 278-289.                                                      | 4.5  | 275       |
| 43 | Ligand Discovery for the Alanine-Serine-Cysteine Transporter (ASCT2, SLC1A5) from Homology<br>Modeling and Virtual Screening. PLoS Computational Biology, 2015, 11, e1004477.                               | 3.2  | 62        |
| 44 | Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer<br>cells. Oncotarget, 2015, 6, 34458-34474.                                                               | 1.8  | 17        |
| 45 | LAT Transport Inhibitors from <i>Pittosporum venulosum</i> Identified by NMR Fingerprint Analysis.<br>Journal of Natural Products, 2015, 78, 1215-1220.                                                     | 3.0  | 13        |
| 46 | p27 Kip1 signaling: Transcriptional and post-translational regulation. International Journal of<br>Biochemistry and Cell Biology, 2015, 68, 9-14.                                                           | 2.8  | 82        |
| 47 | Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget, 2015, 6, 16135-16150.                                                         | 1.8  | 66        |
| 48 | L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. American<br>Journal of Cancer Research, 2015, 5, 1281-94.                                                        | 1.4  | 115       |
| 49 | Targeting glutamine transport to suppress melanoma cell growth. International Journal of Cancer, 2014, 135, 1060-1071.                                                                                      | 5.1  | 179       |
| 50 | Monoterpene Glycoside ESK246 from <i>Pittosporum</i> Targets LAT3 Amino Acid Transport and Prostate Cancer Cell Growth. ACS Chemical Biology, 2014, 9, 1369-1376.                                           | 3.4  | 35        |
| 51 | Identification of nuclear-enriched miRNAs during mouse granulopoiesis. Journal of Hematology and<br>Oncology, 2014, 7, 42.                                                                                  | 17.0 | 29        |
| 52 | Inhibition of glutamine uptake regulates mTORC1, glutamine metabolism and cell growth in prostate cancer. Cancer & Metabolism, 2014, 2, P27.                                                                | 5.0  | 0         |
| 53 | Changes in CpG methylation marks differentiation of human myeloid progenitors to neutrophils. Stem Cell Investigation, 2014, 1, 10.                                                                         | 3.0  | 0         |
| 54 | Orchestrated Intron Retention Regulates Normal Granulocyte Differentiation. Cell, 2013, 154, 583-595.                                                                                                       | 28.9 | 408       |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Letter to the Editor. International Journal of Pharmaceutics, 2013, 455, 393.                                                                                                                                       | 5.2  | 0         |
| 56 | The cancerâ€ŧestis antigen BORIS phenocopies the tumor suppressor CTCF in normal and neoplastic cells. International Journal of Cancer, 2013, 133, 1603-1613.                                                       | 5.1  | 48        |
| 57 | Performance evaluation of the <scp>A</scp> bbott <scp>CELL</scp> â€< scp>DYN Emerald for use as a benchâ€top analyzer in a research setting. International Journal of Laboratory Hematology, 2013, 35, 447-456.     | 1.3  | 5         |
| 58 | Targeting Amino Acid Transport in Metastatic Castration-Resistant Prostate Cancer: Effects on Cell<br>Cycle, Cell Growth, and Tumor Development. Journal of the National Cancer Institute, 2013, 105,<br>1463-1473. | 6.3  | 147       |
| 59 | The Fat1 cadherin is overexpressed and an independent prognostic factor for survival in paired<br>diagnosis–relapse samples of precursor B-cell acute lymphoblastic leukemia. Leukemia, 2012, 26,<br>918-926.       | 7.2  | 73        |
| 60 | Androgen receptor and nutrient signaling pathways coordinate increased amino acid transport in prostate cancer progression. BMC Proceedings, 2012, 6, .                                                             | 1.6  | 1         |
| 61 | Intron Retention Coupled with Nonsense-Mediated Decay Determines Protein Expression and Nuclear<br>Morphology in Granulopoiesis. Blood, 2012, 120, 112-112.                                                         | 1.4  | 9         |
| 62 | Impaired Nutrient Signaling and Body Weight Control in a Na+ Neutral Amino Acid Cotransporter<br>(Slc6a19)-deficient Mouse. Journal of Biological Chemistry, 2011, 286, 26638-26651.                                | 3.4  | 76        |
| 63 | Androgen Receptor and Nutrient Signaling Pathways Coordinate the Demand for Increased Amino Acid<br>Transport during Prostate Cancer Progression. Cancer Research, 2011, 71, 7525-7536.                             | 0.9  | 145       |
| 64 | Renal imino acid and glycine transport system ontogeny and involvement in developmental<br>iminoglycinuria. Biochemical Journal, 2010, 428, 397-407.                                                                | 3.7  | 56        |
| 65 | Protein phosphatase 2A carboxymethylation and regulatory B subunits differentially regulate mast cell degranulation. Cellular Signalling, 2010, 22, 1882-1890.                                                      | 3.6  | 12        |
| 66 | Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans.<br>Nature Structural and Molecular Biology, 2010, 17, 1030-1034.                                            | 8.2  | 146       |
| 67 | Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development.<br>EMBO Journal, 2010, 29, 1285-1298.                                                                               | 7.8  | 40        |
| 68 | Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnology, 2010, 28, 1123-1128.                                                             | 17.5 | 244       |
| 69 | Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica, 2010, 95, 1325-1333.                                                                                              | 3.5  | 113       |
| 70 | Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo.<br>Molecular Cancer, 2010, 9, 299.                                                                                 | 19.2 | 77        |
| 71 | Scalable signaling mediated by T cell antigen receptor–CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nature Immunology, 2008, 9, 658-666.                                               | 14.5 | 147       |
| 72 | Rapid analysis of T-cell selection in vivo using T cell–receptor retrogenic mice. Nature Methods, 2006,<br>3, 191-197.                                                                                              | 19.0 | 141       |

| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Generation of T-cell receptor retrogenic mice. Nature Protocols, 2006, 1, 406-417.                                                                                     | 12.0 | 230       |
| 74 | The Use of Retroviral Vectors for Gene Transfer into Hematopoietic Stem Cells. Methods in Enzymology, 2006, 420, 82-100.                                               | 1.0  | 1         |
| 75 | General Nature of the STAT3-Activated Anti-Inflammatory Response. Journal of Immunology, 2006, 177, 7880-7888.                                                         | 0.8  | 197       |
| 76 | The role of serine/threonine protein phosphatases in exocytosis. Biochemical Journal, 2003, 373, 641-659.                                                              | 3.7  | 53        |
| 77 | Protein Phosphatase Translocation in RBL-2H3 Cells. Methods in Enzymology, 2003, 366, 113-124.                                                                         | 1.0  | 0         |
| 78 | Protein Phosphatases 1 and 2A Transiently Associate with Myosin during the Peak Rate of Secretion from Mast Cells. Molecular Biology of the Cell, 2002, 13, 1083-1098. | 2.1  | 30        |
| 79 | Transient Translocation and Activation of Protein Phosphatase 2A during Mast Cell Secretion.<br>Journal of Biological Chemistry, 2000, 275, 6144-6152.                 | 3.4  | 46        |