
Tanja Nicole Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2575484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nature Immunology, 2007, 8, 1076-1085.	14.5	310
2	Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood, 2005, 106, 1824-1830.	1.4	275
3	Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 2003, 22, 8093-8101.	5.9	255
4	CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene, 2005, 24, 4462-4471.	5.9	249
5	A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. Journal of Leukocyte Biology, 2008, 84, 1130-1140.	3.3	191
6	CD44: More than a mere stem cell marker. International Journal of Biochemistry and Cell Biology, 2016, 81, 166-173.	2.8	186
7	Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nature Reviews Clinical Oncology, 2009, 6, 405-418.	27.6	129
8	KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene, 2005, 24, 2067-2075.	5.9	84
9	Circulating B-Cell Chronic Lymphocytic Leukemia Cells Display Impaired Migration to Lymph Nodes and Bone Marrow. Cancer Research, 2009, 69, 3121-3130.	0.9	78
10	Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. Journal of Experimental Medicine, 2018, 215, 681-697.	8.5	65
11	Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells. Oncogene, 2010, 29, 4885-4895.	5.9	63
12	Tiam1/Rac1 signals contribute to the proliferation and chemoresistance, but not motility, of chronic lymphocytic leukemia cells. Blood, 2014, 123, 2181-2188.	1.4	61
13	CCL19 is a specific ligand of the constitutively recycling atypical human chemokine receptor CRAMâ€B. Immunology, 2010, 129, 536-546.	4.4	56
14	TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncolmmunology, 2018, 7, e1371399.	4.6	55
15	Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer. British Journal of Cancer, 2009, 100, 1949-1956.	6.4	51
16	Canonical and Noncanonical Hedgehog/GLI Signaling in Hematological Malignancies. Vitamins and Hormones, 2012, 88, 25-54.	1.7	51
17	Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Oncogene, 2015, 34, 5341-5351.	5.9	51
18	Oncogenic role of <scp>miR</scp> â€155 in anaplastic large cell lymphoma lacking the t(2;5) translocation. Journal of Pathology, 2015, 236, 445-456.	4.5	49

TANJA NICOLE HARTMANN

#	Article	IF	CITATIONS
19	CD49d is overexpressed by trisomy 12 chronic lymphocytic leukemia cells: evidence for a methylation-dependent regulation mechanism. Blood, 2013, 122, 3317-3321.	1.4	48
20	Acute myeloid leukemia – strategies and challenges for targeting oncogenic Hedgehog/GLI signaling. Cell Communication and Signaling, 2017, 15, 8.	6.5	47
21	Differential Bone Marrow Homing Capacity of VLA-4 and CD38 High Expressing Chronic Lymphocytic Leukemia Cells. PLoS ONE, 2011, 6, e23758.	2.5	43
22	The pathogenic relevance of the prognostic markers CD38 and CD49d in chronic lymphocytic leukemia. Annals of Hematology, 2014, 93, 361-374.	1.8	41
23	Chronic lymphocytic leukaemia induces an exhausted T cell phenotype in the <scp>TCL</scp> 1 transgenic mouse model. British Journal of Haematology, 2015, 170, 515-522.	2.5	38
24	Chemotherapy-induced augmentation of T cells expressing inhibitory receptors is reversed by treatment with lenalidomide in chronic lymphocytic leukemia. Haematologica, 2014, 99, 67-69.	3.5	35
25	Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death and Disease, 2016, 7, e2461-e2461.	6.3	35
26	Clonal evolution in relapsed and refractory diffuse large B-cell lymphoma is characterized by high dynamics of subclones. Oncotarget, 2016, 7, 51494-51502.	1.8	35
27	CD40-Mediated Activation of Chronic Lymphocytic Leukemia Cells Promotes Their CD44-Dependent Adhesion to Hyaluronan and Restricts CCL21-Induced Motility. Cancer Research, 2013, 73, 561-570.	0.9	34
28	Reactivation of dormant anti-tumor immunity – a clinical perspective of therapeutic immune checkpoint modulation. Cell Communication and Signaling, 2017, 15, 5.	6.5	34
29	CD49d promotes disease progression in chronic lymphocytic leukemia: new insights from CD49d bimodal expression. Blood, 2020, 135, 1244-1254.	1.4	33
30	Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia. Cancer Immunology, Immunotherapy, 2011, 60, 75-85.	4.2	31
31	Targeting proliferation of chronic lymphocytic leukemia (CLL) cells through KCa3.1 blockade. Leukemia, 2014, 28, 954-958.	7.2	29
32	CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues. Blood, 2021, 138, 1067-1080.	1.4	29
33	Human B cells express the orphan chemokine receptor CRAMâ€A/B in a maturationâ€stageâ€dependent and CCL5â€modulated manner. Immunology, 2008, 125, 252-262.	4.4	28
34	Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica, 2016, 101, e99-e102.	3.5	28
35	CD18 (ITGB2) expression in chronic lymphocytic leukaemia is regulated by DNA methylationâ€dependent and â€independent mechanisms. British Journal of Haematology, 2015, 169, 286-289.	2.5	26
36	Clonal evolution and heterogeneity in metastatic head and neck cancer—An analysis of the Austrian Study Group of Medical Tumour Therapy study group. European Journal of Cancer, 2018, 93, 69-78.	2.8	25

#	Article	IF	CITATIONS
37	Modifying Akt Signaling in B-Cell Chronic Lymphocytic Leukemia Cells. Cancer Research, 2010, 70, 7336-7344.	0.9	24
38	Mimicking the microenvironment in chronic lymphocytic leukaemia – where does the journey go?. British Journal of Haematology, 2013, 160, 711-714.	2.5	24
39	BIRC3 Expression Predicts CLL Progression and Defines Treatment Sensitivity via Enhanced NF-κB Nuclear Translocation. Clinical Cancer Research, 2019, 25, 1901-1912.	7.0	23
40	CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity. Haematologica, 2021, 106, 2102-2113.	3.5	22
41	An Updated Perspective on Current Prognostic and Predictive Biomarkers in Chronic Lymphocytic Leukemia in the Context of Chemoimmunotherapy and Novel Targeted Therapy. Cancers, 2020, 12, 894.	3.7	22
42	The CXCR 4 and adhesion molecule expression of CD 34+ hematopoietic cells mobilized by "onâ€demand― addition of plerixafor to granulocyte–colonyâ€stimulating factor. Transfusion, 2014, 54, 2325-2335.	1.6	20
43	Microenvironment-induced CD44v6 promotes early disease progression in chronic lymphocytic leukemia. Blood, 2018, 131, 1337-1349.	1.4	18
44	VLA-4 Expression and Activation in B Cell Malignancies: Functional and Clinical Aspects. International Journal of Molecular Sciences, 2020, 21, 2206.	4.1	18
45	CXCL12-induced VLA-4 activation is impaired in trisomy 12 chronic lymphocytic leukemia cells: a role for CCL21. Oncotarget, 2015, 6, 12048-12060.	1.8	18
46	B-cell–specific IRF4 deletion accelerates chronic lymphocytic leukemia development by enhanced tumor immune evasion. Blood, 2019, 134, 1717-1729.	1.4	17
47	Overexpression of bacterial Î ³ -glutamylcysteine synthetase (GSH1) in plastids affects photosynthesis, growth and sulphur metabolism in poplar (Populus tremulaxP. alba) dependent on the resulting Î ³ -EC and GSH levels. Plant, Cell and Environment, 2010, 33, 1138-51.	5.7	16
48	The Role of CD44 in the Pathophysiology of Chronic Lymphocytic Leukemia. Frontiers in Immunology, 2015, 6, 177.	4.8	16
49	CD4+ T cells, but not non-classical monocytes, are dispensable for the development of chronic lymphocytic leukemia in the TCL1-tg murine model. Leukemia, 2016, 30, 1409-1413.	7.2	15
50	Rac GTPases in Hematological Malignancies. International Journal of Molecular Sciences, 2018, 19, 4041.	4.1	15
51	ILK Induction in Lymphoid Organs by a TNFα–NF-κB–Regulated Pathway Promotes the Development of Chronic Lymphocytic Leukemia. Cancer Research, 2016, 76, 2186-2196.	0.9	13
52	BCR and chemokine responses upon anti-IgM and anti-IgD stimulation in chronic lymphocytic leukaemia. Annals of Hematology, 2016, 95, 1979-1988.	1.8	11
53	Chemokine-dependent B cell–T cell interactions in chronic lymphocytic leukemia and multiple myeloma – targets for therapeutic intervention?. Expert Opinion on Biological Therapy, 2012, 12, 425-441.	3.1	10
54	B cell receptor usage correlates with the sensitivity to CD40 stimulation and the occurrence of CD4+ T cell clonality in chronic lymphocytic leukemia. Haematologica, 2015, 100, e307-10.	3.5	10

Tanja Nicole Hartmann

#	Article	IF	CITATIONS
55	The AKT 1 isoform plays a dominant role in the survival and chemoresistance of chronic lymphocytic leukaemia cells. British Journal of Haematology, 2016, 172, 815-819.	2.5	8
56	The sound of tumor cell-microenvironment communication – composed by the Cancer Cluster Salzburg research network. Cell Communication and Signaling, 2017, 15, 20.	6.5	8
57	Ex vivo propagation in a novel 3D high-throughput co-culture system for multiple myeloma. Journal of Cancer Research and Clinical Oncology, 2022, 148, 1045-1055.	2.5	7
58	Fludarabine and rituximab with escalating doses of lenalidomide followed by lenalidomide/rituximab maintenance in previously untreated chronic lymphocytic leukaemia (CLL): the REVLIRIT CLL-5 AGMT phase I/II study. Annals of Hematology, 2018, 97, 1825-1839.	1.8	6
59	Insights Into Bone Marrow Niche Stability: An Adhesion and Metabolism Route. Frontiers in Cell and Developmental Biology, 2021, 9, 798604.	3.7	6
60	Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers, 2022, 14, 2997.	3.7	5
61	CLL cells under flow. Blood, 2014, 123, 3533-3534.	1.4	4
62	VLA-4 and CXCR4 overexpression in bone marrow of an aleukemic B-cell acute lymphoblastic leukemia presenting with osteolytic bone lesions. Leukemia and Lymphoma, 2015, 56, 2465-2467.	1.3	4
63	Methods for Investigating VLA-4 (CD49d/CD29) Expression and Activation in Chronic Lymphocytic Leukemia and Its Clinical Applications. Methods in Molecular Biology, 2019, 1881, 101-112.	0.9	4
64	Persistent CD49d engagement in circulating CLL cells: a role for blood-borne ligands?. Leukemia, 2016, 30, 513-517.	7.2	3
65	Elastin MIcrofibriL INterfacer1 (EMILINâ€1) is an alternative prosurvival VLAâ€4 ligand in chronic lymphocytic leukemia. Hematological Oncology, 2022, 40, 181-190.	1.7	3
66	Kindlinâ€3 maintains marginal zone B cells but confines follicular B cell activation and differentiation. Journal of Leukocyte Biology, 2021, , .	3.3	3
67	Integrin Signaling Shaping BTK-Inhibitor Resistance. Cells, 2022, 11, 2235.	4.1	3
68	Remission maintenance treatment options in chronic lymphocytic leukemia. Cancer Treatment Reviews, 2018, 70, 56-66.	7.7	2
69	TCL1 transgenic mice as a model for CD49d-high chronic lymphocytic leukemia. Leukemia, 2020, 34, 2498-2502.	7.2	2
70	Novel therapeutics approaches to chronic lymphocytic leukemia based on recent biological insights. Discovery Medicine, 2009, 8, 157-64.	0.5	2
71	Editorial: Metabolism and Cell Adhesion in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 871471.	3.7	2
72	Ibrutinib Inhibits VLA-4–Dependent Adhesion in CLL—Letter. Clinical Cancer Research, 2016, 22, 3410-3411.	7.0	1

#	Article	IF	CITATIONS
73	The Importance of Tumor–Host Interactions in Adult B-Cell Leukemias and Lymphomas. International Journal of Molecular Sciences, 2020, 21, 6915.	4.1	1
74	CXCL12 Enhances CLL Cell and T-Cell Migration in a Dynamic Circulating Model of CLL That Can be Abrogated By the CXCR4 Antagonist ONO-7161. Blood, 2014, 124, 3293-3293.	1.4	0
75	The Integrin Adaptor Kindlin-3 Is Important for Development and Retention of Marginal Zone B Cells. Blood, 2020, 136, 46-47.	1.4	ο