Martin Eilers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2574971/publications.pdf Version: 2024-02-01

MADTIN FILEDS

#	Article	IF	CITATIONS
1	The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells. Cell, 2002, 111, 241-250.	28.9	1,897
2	MYC regulates the antitumor immune response through CD47 and PD-L1. Science, 2016, 352, 227-231.	12.6	989
3	Transcriptional regulation and transformation by Myc proteins. Nature Reviews Molecular Cell Biology, 2005, 6, 635-645.	37.0	981
4	Myc's broad reach. Genes and Development, 2008, 22, 2755-2766.	5.9	826
5	Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature, 1986, 322, 228-232.	27.8	764
6	The MYC protein activates transcription of the alpha-prothymosin gene EMBO Journal, 1991, 10, 133-141.	7.8	539
7	Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biology, 2001, 3, 392-399.	10.3	504
8	Chimaeras of Myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature, 1989, 340, 66-68.	27.8	491
9	Stabilization of N-Myc Is a Critical Function of Aurora A in Human Neuroblastoma. Cancer Cell, 2009, 15, 67-78.	16.8	464
10	TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biology, 2001, 3, 400-408.	10.3	448
11	Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO Journal, 1999, 18, 5321-5333.	7.8	418
12	N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell, 2016, 30, 563-577.	16.8	394
13	Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 2014, 511, 483-487.	27.8	392
14	The ubiquitin-specific protease USP28 is required for MYC stability. Nature Cell Biology, 2007, 9, 765-774.	10.3	391
15	Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nature Genetics, 2016, 48, 398-406.	21.4	370
16	The Ubiquitin Ligase HectH9 Regulates Transcriptional Activation by Myc and Is Essential for Tumor Cell Proliferation. Cell, 2005, 123, 409-421.	28.9	358
17	An alternative pathway for gene regulation by Myc. EMBO Journal, 1997, 16, 5672-5686.	7.8	314
18	Differential modulation of cyclin gene expression by MYC Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3685-3689.	7.1	300

#	Article	IF	CITATIONS
19	Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes and Development, 2001, 15, 2042-2047.	5.9	287
20	Negative Regulation of the Mammalian UV Response by Myc through Association with Miz-1. Molecular Cell, 2002, 10, 509-521.	9.7	284
21	Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene, 2003, 22, 351-360.	5.9	277
22	Repression of cyclin D1: a novel function of MYC Molecular and Cellular Biology, 1994, 14, 4032-4043.	2.3	256
23	MYCN regulates oncogenic MicroRNAs in neuroblastoma. International Journal of Cancer, 2008, 122, 699-704.	5.1	251
24	Compassionate use of sorafenib in FLT3-ITD–positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood, 2009, 113, 6567-6571.	1.4	245
25	In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nature Medicine, 2014, 20, 1138-1146.	30.7	242
26	Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma. Cancer Cell, 2013, 24, 75-89.	16.8	240
27	The MYC protein activates transcription of the alpha-prothymosin gene. EMBO Journal, 1991, 10, 133-41.	7.8	235
28	Cell Cycle Regulation of the Murine Cyclin E Gene Depends on an E2F Binding Site in the Promoter. Molecular and Cellular Biology, 1996, 16, 3401-3409.	2.3	234
29	Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell, 1992, 71, 1103-1116.	28.9	233
30	Drugging MYCN through an Allosteric Transition in Aurora Kinase A. Cancer Cell, 2014, 26, 414-427.	16.8	231
31	Cyclin D1 expression is regulated by the retinoblastoma protein Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2945-2949.	7.1	223
32	Control of cell proliferation by Myc. Trends in Cell Biology, 1998, 8, 202-206.	7.9	222
33	Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature, 2012, 483, 608-612.	27.8	220
34	A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nature Medicine, 2016, 22, 744-753.	30.7	207
35	Protein unfolding and the energetics of protein translocation across biological membranes. Cell, 1988, 52, 481-483.	28.9	206
36	Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes EMBO Journal, 1995, 14, 4814-4826.	7.8	204

#	Article	IF	CITATIONS
37	Both ATP and an energized inner membrane are required to import a purified precursor protein into mitochondria EMBO Journal, 1987, 6, 1073-1077.	7.8	192
38	Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO Journal, 2004, 23, 2830-2840.	7.8	182
39	Target gene-independent functions of MYC oncoproteins. Nature Reviews Molecular Cell Biology, 2020, 21, 255-267.	37.0	181
40	MYC and tumor metabolism: chicken and egg. EMBO Journal, 2017, 36, 3409-3420.	7.8	180
41	Unfolding and refolding of a purified precursor protein during import into isolated mitochondria EMBO Journal, 1988, 7, 1139-1145.	7.8	177
42	Transcriptional activation by Myc is under negative control by the transcription factor AP-2 EMBO Journal, 1995, 14, 1508-1519.	7.8	177
43	Transcriptional repression by Myc. Trends in Cell Biology, 2003, 13, 146-150.	7.9	174
44	The Expanding World of N-MYC–Driven Tumors. Cancer Discovery, 2018, 8, 150-163.	9.4	170
45	p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5375-5380.	7.1	159
46	Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene, 1997, 15, 2561-2576.	5.9	158
47	<scp>NOTCH</scp> , <scp>ASCL1</scp> , p53 and <scp>RB</scp> alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. International Journal of Cancer, 2016, 138, 927-938.	5.1	143
48	An E-box element localized in the first intron mediates regulation of the prothymosin alpha gene by c-myc Molecular and Cellular Biology, 1994, 14, 3853-3862.	2.3	137
49	Ubiquitylation of the amino terminus of Myc by SCFβ-TrCP antagonizes SCFFbw7-mediated turnover. Nature Cell Biology, 2010, 12, 973-981.	10.3	134
50	Repression of Cyclin D1: a Novel Function of MYC. Molecular and Cellular Biology, 1994, 14, 4032-4043.	2.3	131
51	Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13726-13731.	7.1	130
52	The MK5/PRAK Kinase and Myc Form a Negative Feedback Loop that Is Disrupted during Colorectal Tumorigenesis. Molecular Cell, 2011, 41, 445-457.	9.7	127
53	Different promoter affinities account for specificity in MYC-dependent gene regulation. ELife, 2016, 5, .	6.0	127
54	c-Myc induces cellular susceptibility to the cytotoxic action of TNF-alpha EMBO Journal, 1994, 13, 5442-5450.	7.8	126

#	Article	IF	CITATIONS
55	The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. Journal of Clinical Investigation, 2014, 124, 3407-3418.	8.2	124
56	A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer. Cancer Cell, 2015, 28, 743-757.	16.8	122
57	Loss of a FYN-regulated differentiation and growth arrest pathway in advanced stage neuroblastoma. Cancer Cell, 2002, 2, 377-386.	16.8	121
58	Taming of the beast: shaping Myc-dependent amplification. Trends in Cell Biology, 2015, 25, 241-248.	7.9	119
59	FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of <i>Arf</i> . Genes and Development, 2007, 21, 2775-2787.	5.9	116
60	Activation of cyclin-dependent kinases by Myc mediates induction of cyclin A, but not apoptosis EMBO Journal, 1996, 15, 3065-3076.	7.8	112
61	Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene, 1999, 18, 3564-3573.	5.9	109
62	Discrimination between different E-box-binding proteins at an endogenous target gene of c-myc Genes and Development, 1996, 10, 447-460.	5.9	108
63	Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. Journal of Cell Biology, 2006, 172, 139-149.	5.2	108
64	Inflammation-Induced NFATc1–STAT3 Transcription Complex Promotes Pancreatic Cancer Initiation by <i>Kras</i> G12D. Cancer Discovery, 2014, 4, 688-701.	9.4	108
65	Adriamycin, a drug interacting with acidic phospholipids, blocks import of precursor proteins by isolated yeast mitochondria. Journal of Biological Chemistry, 1989, 264, 2945-2950.	3.4	108
66	Fbw7 and Usp28 Regulate Myc Protein Stability in Response to DNA Damage. Cell Cycle, 2007, 6, 2327-2331.	2.6	107
67	Contributions of Myc to tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2002, 1602, 61-71.	7.4	106
68	Transcriptional Repression: The Dark Side of Myc. Genes and Cancer, 2010, 1, 580-586.	1.9	105
69	A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth. Nature Cell Biology, 2008, 10, 1051-1061.	10.3	100
70	The interaction between Myc and Miz1 is required to antagonize TGFÎ ² -dependent autocrine signaling during lymphoma formation and maintenance. Genes and Development, 2010, 24, 1281-1294.	5.9	97
71	Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood, 2004, 103, 3480-3489.	1.4	96
72	Adriamycin, a drug interacting with acidic phospholipids, blocks import of precursor proteins by isolated yeast mitochondria. Journal of Biological Chemistry, 1989, 264, 2945-50.	3.4	95

#	Article	IF	CITATIONS
73	Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. EMBO Journal, 2000, 19, 5813-5823.	7.8	94
74	Tumor cellâ€specific inhibition of <scp>MYC</scp> function using small molecule inhibitors of the <scp>HUWE</scp> 1 ubiquitin ligase. EMBO Molecular Medicine, 2014, 6, 1525-1541.	6.9	92
75	Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO Journal, 2008, 27, 1563-1574.	7.8	91
76	Binding of a tightly folded artificial mitochondrial precursor protein to the mitochondrial outer membrane involves a lipid-mediated conformational change. Journal of Biological Chemistry, 1989, 264, 2951-2956.	3.4	90
77	DNA Binding Cooperativity of p53 Modulates the Decision between Cell-Cycle Arrest and Apoptosis. Molecular Cell, 2010, 38, 356-368.	9.7	89
78	A SP1/MIZ1/MYCN Repression Complex Recruits HDAC1 at the <i>TRKA</i> and <i>p75NTR</i> Promoters and Affects Neuroblastoma Malignancy by Inhibiting the Cell Response to NGF. Cancer Research, 2011, 71, 404-412.	0.9	89
79	MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Molecular Cell, 2019, 74, 674-687.e11.	9.7	89
80	Facilitating replication under stress: an oncogenic function of MYC?. Nature Reviews Cancer, 2009, 9, 441-444.	28.4	87
81	Sequential Activation of NFAT and c-Myc Transcription Factors Mediates the TGF-β Switch from a Suppressor to a Promoter of Cancer Cell Proliferation. Journal of Biological Chemistry, 2010, 285, 27241-27250.	3.4	86
82	Targeting Translation Initiation Bypasses Signaling Crosstalk Mechanisms That Maintain High MYC Levels in Colorectal Cancer. Cancer Discovery, 2015, 5, 768-781.	9.4	86
83	Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation. Molecular Cell, 2016, 61, 54-67.	9.7	86
84	Expression profiling of Wilms tumors reveals new candidate genes for different clinical parameters. International Journal of Cancer, 2006, 118, 1954-1962.	5.1	85
85	Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes. EMBO Journal, 1995, 14, 4814-26.	7.8	80
86	c-MYC activation impairs the NF-κB and the interferon response: Implications for the pathogenesis of Burkitt's lymphoma. International Journal of Cancer, 2007, 120, 1387-1395.	5.1	77
87	Akt and 14-3-3η regulate Miz1 to control cell-cycle arrest after DNA damage. Nature Cell Biology, 2005, 7, 30-41.	10.3	76
88	The Role of MIZ-1 in MYC-Dependent Tumorigenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014290-a014290.	6.2	76
89	Dual Regulation of Fbw7 Function and Oncogenic Transformation by Usp28. Cell Reports, 2014, 9, 1099-1109.	6.4	76
90	Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature, 2019, 567, 545-549.	27.8	76

#	Article	IF	CITATIONS
91	Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO Journal, 1995, 14, 1508-19.	7.8	75
92	Binding of a tightly folded artificial mitochondrial precursor protein to the mitochondrial outer membrane involves a lipid-mediated conformational change. Journal of Biological Chemistry, 1989, 264, 2951-6.	3.4	75
93	Mutual requirement of CDK4 and Myc in malignant transformation: evidence for cyclin D1/CDK4 and p16INK4A as upstream regulators of Myc. Oncogene, 1997, 15, 179-192.	5.9	74
94	Transcription Factor Miz-1 Is Required to Regulate Interleukin-7 Receptor Signaling at Early Commitment Stages of B Cell Differentiation. Immunity, 2010, 33, 917-928.	14.3	74
95	OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene, 2017, 36, 1911-1924.	5.9	73
96	Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-Î′. Nature Immunology, 2013, 14, 461-469.	14.5	71
97	Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle. Cell Reports, 2017, 21, 3483-3497.	6.4	71
98	Both ATP and an energized inner membrane are required to import a purified precursor protein into mitochondria. EMBO Journal, 1987, 6, 1073-7.	7.8	71
99	Miz1 Is Required for Early Embryonic Development during Gastrulation. Molecular and Cellular Biology, 2003, 23, 7648-7657.	2.3	70
100	Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO Journal, 2008, 27, 2851-2861.	7.8	70
101	Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors. PLoS Genetics, 2012, 8, e1002728.	3.5	66
102	Mechanisms of Transcriptional Repression by Myc. , 2006, 302, 51-62.		65
103	A MYC–GCN2–elF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer. Nature Cell Biology, 2019, 21, 1413-1424.	10.3	65
104	Pontin and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-Myc and Miz-1. Mechanisms of Development, 2005, 122, 545-556.	1.7	64
105	BIM Is the Primary Mediator of MYC-Induced Apoptosis in Multiple Solid Tissues. Cell Reports, 2014, 8, 1347-1353.	6.4	64
106	The Interaction of Myc with Miz1 Defines Medulloblastoma Subgroup Identity. Cancer Cell, 2016, 29, 5-16.	16.8	63
107	Unfolding and refolding of a purified precursor protein during import into isolated mitochondria. EMBO Journal, 1988, 7, 1139-45.	7.8	63
108	A conformational switch regulates the ubiquitin ligase HUWE1. ELife, 2017, 6, .	6.0	62

#	Article	IF	CITATIONS
109	Usp28 Counteracts Fbw7 in Intestinal Homeostasis and Cancer. Cancer Research, 2015, 75, 1181-1186.	0.9	60
110	The <i>MYC</i> mRNA 3′â€UTR couples RNA polymerase II function to glutamine and ribonucleotide levels. EMBO Journal, 2017, 36, 1854-1868.	7.8	60
111	Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nature Communications, 2019, 10, 620.	12.8	60
112	Activation of c-Myc uncouples DNA replication from activation of G1-cyclin-dependent kinases. Oncogene, 1997, 15, 649-656.	5.9	59
113	Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia. Leukemia, 2006, 20, 437-443.	7.2	59
114	Modulation of cyclin gene expression by adenovirus E1A in a cell line with E1A-dependent conditional proliferation. Journal of Virology, 1994, 68, 2206-2214.	3.4	59
115	c-Myc antagonizes the effect of p53 on apoptosis and p21WAF1 transactivation in K562 leukemia cells. Oncogene, 2000, 19, 2194-2204.	5.9	58
116	Activation of cyclin-dependent kinases by Myc mediates induction of cyclin A, but not apoptosis. EMBO Journal, 1996, 15, 3065-76.	7.8	52
117	The functions of Myc proteins. Biochimica Et Biophysica Acta: Reviews on Cancer, 1992, 1114, 129-146.	7.4	51
118	Loss of Caspase-8 Expression Does Not Correlate with MYCN Amplification, Aggressive Disease, or Prognosis in Neuroblastoma. Cancer Research, 2006, 66, 10016-10023.	0.9	51
119	Myc increases self-renewal in neural progenitor cells through Miz-1. Journal of Cell Science, 2008, 121, 3941-3950.	2.0	51
120	Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules. Blood Cancer Journal, 2013, 3, e102-e102.	6.2	51
121	c-Myc induces cellular susceptibility to the cytotoxic action of TNF-alpha. EMBO Journal, 1994, 13, 5442-50.	7.8	51
122	Combined inhibition of Aurora-A and ATR kinases results in regression of MYCN-amplified neuroblastoma. Nature Cancer, 2021, 2, 312-326.	13.2	50
123	Transactivation of Prothymosin α and c-mycPromoters by Human Papillomavirus Type 16 E6 Protein. Virology, 1997, 232, 53-61.	2.4	49
124	An E-Box Element Localized in the First Intron Mediates Regulation of the Prothymosin a Gene by c- <i>myc</i> . Molecular and Cellular Biology, 1994, 14, 3853-3862.	2.3	49
125	Cyclin E-mediated elimination of p27 requires its interaction with the nuclear pore-associated protein mNPAP60. EMBO Journal, 2000, 19, 2168-2180.	7.8	48
126	Control of cell proliferation by Myc family genes. Molecules and Cells, 1999, 9, 1-6.	2.6	48

#	Article	IF	CITATIONS
127	Cell growth: Downstream of Myc – to grow or to cycle?. Current Biology, 1999, 9, R936-R938.	3.9	46
128	Miz1 is required to maintain autophagic flux. Nature Communications, 2013, 4, 2535.	12.8	46
129	Association of Myc with the Zinc-finger Protein Miz-1 Defines a Novel Pathway for Gene Regulation by Myc. Current Topics in Microbiology and Immunology, 1997, 224, 137-146.	1.1	45
130	All-trans retinoic acid treatment of Wilms tumor cells reverses expression of genes associated with high risk and relapse in vivo. Oncogene, 2005, 24, 5246-5251.	5.9	44
131	Inhibitory effect of c-Myc on p53-induced apoptosis in leukemia cells. Microarray analysis reveals defective induction of p53 target genes and upregulation of chaperone genes. Oncogene, 2005, 24, 4559-4571.	5.9	43
132	Myc: a single gene controls both proliferation and apoptosis in mammalian cells. Experientia, 1996, 52, 1123-1129.	1.2	42
133	Selective Ablation of Retinoblastoma Protein Function by the RET Finger Protein. Molecular Cell, 2005, 18, 213-224.	9.7	42
134	Myc coordinates transcription and translation to enhance transformation and suppress invasiveness. EMBO Reports, 2015, 16, 1723-1736.	4.5	42
135	Targeting MYC Proteins for Tumor Therapy. Annual Review of Cancer Biology, 2020, 4, 61-75.	4.5	42
136	Accelerating drug development for neuroblastoma: Summary of the Second Neuroblastoma Drug Development Strategy forum from Innovative Therapies for Children with Cancer and International Society of Paediatric Oncology Europe Neuroblastoma. European Journal of Cancer, 2020, 136, 52-68.	2.8	42
137	Maintaining protein stability of â^†Np63 via <scp>USP</scp> 28 is required by squamous cancer cells. EMBO Molecular Medicine, 2020, 12, e11101.	6.9	42
138	Control of Cell Proliferation and Growth by Myc Proteins. , 2006, 42, 329-342.		41
139	Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. Journal of Clinical Investigation, 2020, 130, 5875-5892.	8.2	40
140	ΔNp73 can modulate the expression of various genes in a p53-independent fashion. Oncogene, 2003, 22, 8246-8254.	5.9	38
141	Design, Synthesis, and Evaluation of WD-Repeat-Containing Protein 5 (WDR5) Degraders. Journal of Medicinal Chemistry, 2021, 64, 10682-10710.	6.4	38
142	Targeted protein degradation reveals a direct role of SPT6 in RNAPII elongation and termination. Molecular Cell, 2021, 81, 3110-3127.e14.	9.7	38
143	The Arf tumor suppressor protein inhibits Miz1 to suppress cell adhesion and induce apoptosis. Journal of Cell Biology, 2010, 188, 905-918.	5.2	37
144	Nramp1-mediated Innate Resistance to Intraphagosomal Pathogens Is Regulated by IRF-8, PU.1, and Miz-1. Journal of Biological Chemistry, 2003, 278, 44025-44032.	3.4	36

#	Article	IF	CITATIONS
145	CIP2A Influences Survival in Colon Cancer and Is Critical for Maintaining Myc Expression. PLoS ONE, 2013, 8, e75292.	2.5	36
146	PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Letters, 2011, 585, 2151-2157.	2.8	35
147	<i>UBR5</i> Is Coamplified with <i>MYC</i> in Breast Tumors and Encodes an Ubiquitin Ligase That Limits MYC-Dependent Apoptosis. Cancer Research, 2020, 80, 1414-1427.	0.9	35
148	Expression of cyclin D1 mRNA is not upregulated by Myc in rat fibroblasts. Oncogene, 1995, 11, 1893-7.	5.9	35
149	Localized Inhibition of Protein Phosphatase 1 by NUAK1 Promotes Spliceosome Activity and Reveals a MYC-Sensitive Feedback Control of Transcription. Molecular Cell, 2020, 77, 1322-1339.e11.	9.7	34
150	MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 2021, 12, 5066.	12.8	34
151	Cystathionase mediates senescence evasion in melanocytes and melanoma cells. Oncogene, 2014, 33, 771-782.	5.9	32
152	Repression of <scp>SRF</scp> target genes is critical for <scp>M</scp> ycâ€dependent apoptosis of epithelial cells. EMBO Journal, 2015, 34, 1554-1571.	7.8	30
153	Silencing of the Meiotic Genes SMC1Î ² and STAG3 in Somatic Cells by E2F6. Journal of Biological Chemistry, 2005, 280, 41380-41386.	3.4	29
154	Miz1 is required for hair follicle structure and hair morphogenesis. Journal of Cell Science, 2007, 120, 2586-2593.	2.0	29
155	Miz1 is a signal- and pathway-specific modulator or regulator (SMOR) that suppresses TNF-α-induced JNK1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18279-18284.	7.1	29
156	Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nature Microbiology, 2020, 5, 1390-1402.	13.3	29
157	Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets. Genes and Development, 2021, 35, 658-676.	5.9	29
158	Accelerating drug development for neuroblastoma - New Drug Development Strategy: an Innovative Therapies for Children with Cancer, European Network for Cancer Research in Children and Adolescents and International Society of Paediatric Oncology Europe Neuroblastoma project. Expert Opinion on Drug Discovery. 2017, 12, 1-11.	5.0	28
159	Ubiquitylation of MYC couples transcription elongation with double-strand break repair at active promoters. Molecular Cell, 2021, 81, 830-844.e13.	9.7	28
160	Oncogenic RAS Enables DNA Damage- and p53-Dependent Differentiation of Acute Myeloid Leukemia Cells in Response to Chemotherapy. PLoS ONE, 2009, 4, e7768.	2.5	28
161	The role of p53 in coordinated regulation of cyclin D1 and p21 gene expression by the adenovirus E1A and E1B oncogenes. Oncogene, 1995, 10, 2421-5.	5.9	28
162	DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene, 1999, 18, 7200-7211.	5.9	26

#	Article	IF	CITATIONS
163	Identification of a Novel Krüppel-associated Box Domain Protein, Krim-1, That Interacts with c-Myc and Inhibits Its Oncogenic Activity. Journal of Biological Chemistry, 2003, 278, 28799-28811.	3.4	25
164	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.9	25
165	MYB and MYC in the Cell Cycle. Cold Spring Harbor Symposia on Quantitative Biology, 1991, 56, 99-107.	1.1	24
166	Transcriptional control: Calling in histone deacetylase. Current Biology, 1997, 7, R505-R507.	3.9	23
167	Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2015, 79, 79-88.	1.9	23
168	Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity. EMBO Journal, 2018, 37, .	7.8	23
169	Restriction of memory B cell differentiation at the germinal center B cell positive selection stage. Journal of Experimental Medicine, 2020, 217, .	8.5	23
170	The adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation. Genes and Development, 2020, 34, 495-510.	5.9	23
171	Antagonistic activities of CDC14B and CDK1 on USP9X regulate WT1-dependent mitotic transcription and survival. Nature Communications, 2020, 11, 1268.	12.8	22
172	MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Molecular Cell, 2022, 82, 159-176.e12.	9.7	22
173	Expression of P27KIP1 is prognostic and independent ofMYCN amplification in human neuroblastoma. International Journal of Cancer, 2001, 95, 176-183.	5.1	21
174	The functions of Myc in cell cycle progression and apoptosis. , 1996, 2, 73-82.		20
175	HCT116 cells deficient in p21Waf1 are hypersensitive to tyrosine kinase inhibitors and adriamycin through a mechanism unrelated to p21 and dependent on p53. DNA Repair, 2009, 8, 390-399.	2.8	17
176	Mad1 Function in Cell Proliferation and Transcriptional Repression Is Antagonized by Cyclin E/CDK2. Journal of Biological Chemistry, 2005, 280, 15489-15492.	3.4	15
177	Miz1 Is a Critical Repressor of cdkn1a during Skin Tumorigenesis. PLoS ONE, 2012, 7, e34885.	2.5	15
178	MYC- and MIZ1-Dependent Vesicular Transport of Double-Strand RNA Controls Immune Evasion in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2021, 81, 4242-4256.	0.9	15
179	The human papillomavirus type 16 E7 oncoprotein targets Myc-interacting zinc-finger protein-1. Virology, 2012, 422, 242-253.	2.4	14
180	Ubiquitination of Myc: Proteasomal Degradation and Beyond. Ernst Schering Research Foundation Workshop, 2008, , 99-113.	0.7	13

#	Article	IF	CITATIONS
181	Transport of proteins into yeast mitochondria. Journal of Cellular Biochemistry, 1988, 36, 59-71.	2.6	12
182	<i>ZBTB17</i> (<i>MIZ1</i>) Is Important for the Cardiac Stress Response and a Novel Candidate Gene for Cardiomyopathy and Heart Failure. Circulation: Cardiovascular Genetics, 2015, 8, 643-652.	5.1	12
183	Addicted to Myc—but why?: Figure 1 Genes and Development, 2011, 25, 895-897.	5.9	10
184	Identification of an atypical interaction site in the BTB domain of the MYC-interacting zinc-finger protein 1. Structure, 2021, 29, 1230-1240.e5.	3.3	10
185	An unsteady scaffold for Myc. EMBO Journal, 2009, 28, 453-454.	7.8	9
186	TEAD activity is restrained by MYC and stratifies human breast cancer subtypes. Cell Cycle, 2016, 15, 2551-2556.	2.6	9
187	Control of Cell Proliferation by Myc Proteins. Results and Problems in Cell Differentiation, 1998, 22, 181-197.	0.7	9
188	PIM1 and MYC: a changing relationship?. Nature Cell Biology, 2007, 9, 873-875.	10.3	8
189	Drosophila HUWE1 Ubiquitin Ligase Regulates Endoreplication and Antagonizes JNK Signaling During Salivary Gland Development. Cells, 2018, 7, 151.	4.1	7
190	TGFβ-dependent gene expression shows that senescence correlates with abortive differentiation along several lineages in Myc-induced lymphomas. Cell Cycle, 2010, 9, 4622-4626.	2.6	6
191	Miz1 Deficiency in the Mammary Gland Causes a Lactation Defect by Attenuated Stat5 Expression and Phosphorylation. PLoS ONE, 2014, 9, e89187.	2.5	6
192	CIP2A regulates MYC translation (via its 5′UTR) in colorectal cancer. International Journal of Colorectal Disease, 2021, 36, 911-918.	2.2	6
193	Import of proteins into mitochondria. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1988, 319, 121-126.	2.3	4
194	MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle, 2016, 15, 316-323.	2.6	3
195	Acute systemic knockdown of <i>Atg7</i> is lethal and causes pancreatic destruction in shRNA transgenic mice. Autophagy, 2022, 18, 2880-2893.	9.1	3
196	Generation of a pooled shRNA library for functional genomics screens. STAR Protocols, 2022, 3, 101183.	1.2	1
197	Inhibition of Retinoic Acid Receptor Signaling by SKI in Acute Myeloid Leukemia Blood, 2004, 104, 1132-1132.	1.4	0
198	Knockdown of the Nuclear Oncogene SKI Inhibits Flt3-ITD Induced Signaling in 32D - Flt3-ITD Cells Blood, 2006, 108, 4491-4491.	1.4	0

#	Article	IF	CITATIONS
199	The Arf tumor suppressor protein inhibits Miz1 to suppress cell adhesion and induce apoptosis. Journal of Experimental Medicine, 2010, 207, i7-i7.	8.5	0
200	<scp>RNA</scp> polymerase I inhibition induces terminal differentiation, growth arrest, and vulnerability to senolytics in colorectal cancer cells. Molecular Oncology, 2022, 16, 2788-2809.	4.6	0