Isabelle Sermet-Gaudelus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/257137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. Journal of Pediatrics, 2017, 181, S4-S15.e1.	1.8	572
2	Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respiratory Medicine,the, 2014, 2, 539-547.	10.7	301
3	Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Scientific Reports, 2017, 7, 7375.	3.3	134
4	Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nature Medicine, 2018, 24, 1732-1742.	30.7	117
5	Impact of COVID-19 on people with cystic fibrosis. Lancet Respiratory Medicine,the, 2020, 8, e35-e36.	10.7	114
6	Real-Life Safety and Effectiveness of Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 188-197.	5.6	95
7	Basic protocol for transepithelial nasal potential difference measurements. Journal of Cystic Fibrosis, 2004, 3, 151-155.	0.7	67
8	Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Scientific Reports, 2019, 9, 6516.	3.3	61
9	Clinical Phenotype and Genotype of Children with Borderline Sweat Test and Abnormal Nasal Epithelial Chloride Transport. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 929-936.	5.6	57
10	Predictive factors for lumacaftor/ivacaftor clinical response. Journal of Cystic Fibrosis, 2019, 18, 368-374.	0.7	56
11	An International Randomized Multicenter Comparison of Nasal Potential Difference Techniques. Chest, 2010, 138, 919-928.	0.8	50
12	Biosynthesis of cystic fibrosis transmembrane conductance regulator. International Journal of Biochemistry and Cell Biology, 2014, 52, 26-38.	2.8	46
13	Measurement of nasal potential difference in young children with an equivocal sweat test following newborn screening for cystic fibrosis. Thorax, 2010, 65, 539-544.	5.6	41
14	Modulators of CFTR. Updates on clinical development and future directions. European Journal of Medicinal Chemistry, 2021, 213, 113195.	5.5	39
15	Comparative proteomics of respiratory exosomes in cystic fibrosis, primary ciliary dyskinesia and asthma. Journal of Proteomics, 2018, 185, 1-7.	2.4	38
16	Might Brushed Nasal Cells Be a Surrogate for CFTR Modulator Clinical Response?. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 123-126.	5.6	38
17	Chloride Transport in Nasal Ciliated Cells of Cystic Fibrosis Heterozygotes. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1026-1031.	5.6	36
18	Pharmacological chaperones improve intra-domain stability and inter-domain assembly via distinct binding sites to rescue misfolded CFTR. Cellular and Molecular Life Sciences, 2021, 78, 7813-7829.	5.4	36

#	Article	IF	CITATIONS
19	Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10Âkb C-to-T splicing mutation. Journal of Cystic Fibrosis, 2021, 20, 865-875.	0.7	30
20	<i>Cis</i> variants identified in F508del complex alleles modulate CFTR channel rescue by small molecules. Human Mutation, 2018, 39, 506-514.	2.5	28
21	Clinical response to lumacaftor-ivacaftor in patients with cystic fibrosis according to baseline lung function. Journal of Cystic Fibrosis, 2021, 20, 220-227.	0.7	24
22	Lumacaftor-ivacaftor effects on cystic fibrosis-related liver involvement in adolescents with homozygous F508 del-CFTR. Journal of Cystic Fibrosis, 2022, 21, 212-219.	0.7	19
23	CFTR: New insights into structure and function and implications for modulation by small molecules. Journal of Cystic Fibrosis, 2020, 19, S19-S24.	0.7	16
24	Insights into the variability of nasal potential difference, a biomarker of CFTR activity. Journal of Cystic Fibrosis, 2020, 19, 620-626.	0.7	14
25	Correlating genotype with phenotype using CFTRâ€mediated wholeâ€cell Cl ^{â^'} currents in human nasal epithelial cells. Journal of Physiology, 2022, 600, 1515-1531.	2.9	14
26	Persistent Bordetella bronchiseptica infection in a child with cystic fibrosis: Relationship to bacterial phenotype. Journal of Cystic Fibrosis, 2015, 14, E13-E15.	0.7	13
27	Vaccine coverage in CF children: A French multicenter study. Journal of Cystic Fibrosis, 2015, 14, 615-620.	0.7	12
28	Changes of CFTR functional measurements and clinical improvements in cystic fibrosis patients with non p.Gly551Asp gating mutations treated with ivacaftor. Journal of Cystic Fibrosis, 2017, 16, 45-48.	0.7	12
29	Sweat Chloride Testing and Nasal Potential Difference (NPD) Are Primary Outcome Parameters in Treatment with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. Journal of Personalized Medicine, 2021, 11, 729.	2.5	12
30	A multiple reader scoring system for Nasal Potential Difference parameters. Journal of Cystic Fibrosis, 2017, 16, 573-578.	0.7	10
31	A Phase 3, open-label, 96-week trial to study the safety, tolerability, and efficacy of tezacaftor/ivacaftor in children ≥Â6 years of age homozygous for F508del or heterozygous for F508del and a residual function CFTR variant. Journal of Cystic Fibrosis, 2022, 21, 675-683.	0.7	10
32	Reclassifying inconclusive diagnosis after newborn screening for cystic fibrosis. Moving forward. Journal of Cystic Fibrosis, 2022, 21, 448-455.	0.7	9
33	Insights Into Patient Variability During Ivacaftor-Lumacaftor Therapy in Cystic Fibrosis. Frontiers in Pharmacology, 2021, 12, 577263.	3.5	6
34	Exon identity influences splicing induced by exonic variants and in silico prediction efficacy. Journal of Cystic Fibrosis, 2021, 20, 464-472.	0.7	5
35	Arterial abnormalities identified in kidneys transplanted into children during the COVID-19 pandemic. American Journal of Transplantation, 2021, 21, 1937-1943.	4.7	3
36	Severe COVIDâ€19 evolving towards organizing pneumonia in a pediatric lung transplant recipient. Pediatric Pulmonology, 2022, 57, 583-585.	2.0	2

#	Article	IF	CITATIONS
37	MO1039: 1-Year Follow-Up Data of Arterial Abnormalities Identified in Kidneys Transplanted into Children During the First Covid-19 Pandemic Wave. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0