Alba Grifoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2571353/publications.pdf

Version: 2024-02-01

86 papers 14,679 citations

33 h-index 85 g-index

92 all docs 92 docs citations

92 times ranked 19981 citing authors

#	Article	IF	CITATIONS
1	Characterization of SARSâ€CoVâ€2 and common cold coronavirusâ€specific Tâ€cell responses in MISâ€C and Kawasaki disease children. European Journal of Immunology, 2022, 52, 123-137.	2.9	17
2	SARS-CoV-2-specific T cell responses and immune regulation in infected pregnant women. Journal of Reproductive Immunology, 2022, 149, 103464.	1.9	8
3	Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nature Medicine, 2022, 28, 472-476.	30.7	333
4	A Population of CD4+CD8+ Double-Positive T Cells Associated with Risk of Plasma Leakage in Dengue Viral Infection. Viruses, 2022, 14, 90.	3.3	8
5	T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 2022, 603, 488-492.	27.8	430
6	Trans-ancestral fine-mapping of MHC reveals key amino acids associated with spontaneous clearance of hepatitis C in HLA-DQl²1. American Journal of Human Genetics, 2022, 109, 299-310.	6.2	6
7	Limited induction of SARS-CoV-2–specific T cell responses in children with multisystem inflammatory syndrome compared with COVID-19. JCI Insight, 2022, 7, .	5.0	17
8	Development of a TÂcell-based immunodiagnostic system to effectively distinguish SARS-CoV-2 infection and COVID-19 vaccination status. Cell Host and Microbe, 2022, 30, 388-399.e3.	11.0	26
9	Divergent SARS-CoV-2 Omicron–reactive T and B cell responses in COVID-19 vaccine recipients. Science Immunology, 2022, 7, eabo2202.	11.9	337
10	Robust T-Cell Responses in Anti-CD20-Treated Patients Following COVID-19 Vaccination: A Prospective Cohort Study. Clinical Infectious Diseases, 2022, 75, e1037-e1045.	5.8	90
11	Omicron-Specific Cytotoxic T-Cell Responses After a Third Dose of mRNA COVID-19 Vaccine Among Patients With Multiple Sclerosis Treated With Ocrelizumab. JAMA Neurology, 2022, 79, 399.	9.0	67
12	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
13	Preserved SARS-CoV-2 Vaccine Cell-Mediated Immunogenicity in Patients With Inflammatory Bowel Disease on Immune-Modulating Therapies. Clinical and Translational Gastroenterology, 2022, 13, e00484.	2.5	8
14	Observations and perspectives on adaptive immunity to SARS-CoV-2. Clinical Infectious Diseases, 2022, ,	5.8	10
15	T Cells in Multisystem Inflammatory Syndrome in Children (MIS-C) Have a Predominant CD4+ T Helper Response to SARS-CoV-2 Peptides and Numerous Virus-Specific CD4â^' CD8â^' Double-Negative T Cells. International Journal of Molecular Sciences, 2022, 23, 7219.	4.1	10
16	Evaluation of the Expression of CCR5 and CX3CR1 Receptors and Correlation with the Functionality of T Cells in Women infected with ZIKV during Pregnancy. Viruses, 2021, 13, 191.	3.3	2
17	Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, 371, .	12.6	2,268
18	A novel scoring system for TIGIT expression in classic Hodgkin lymphoma. Scientific Reports, 2021, 11, 7059.	3.3	10

#	Article	IF	Citations
19	Immune Memory in Mild COVID-19 Patients and Unexposed Donors Reveals Persistent T Cell Responses After SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 636768.	4.8	41
20	Differential T-Cell Reactivity to Endemic Coronaviruses and SARS-CoV-2 in Community and Health Care Workers. Journal of Infectious Diseases, 2021, 224, 70-80.	4.0	65
21	Balanced Cellular and Humoral Immune Responses Targeting Multiple Antigens in Adults Receiving a Quadrivalent Inactivated Influenza Vaccine. Vaccines, 2021, 9, 426.	4.4	9
22	Pre-existing T Cell Memory against Zika Virus. Journal of Virology, 2021, 95, .	3.4	11
23	Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Science Immunology, 2021, 6, .	11.9	22
24	SARS-CoV-2 human TÂcell epitopes: Adaptive immune response against COVID-19. Cell Host and Microbe, 2021, 29, 1076-1092.	11.0	242
25	Profiling Human Cytomegalovirus-Specific T Cell Responses Reveals Novel Immunogenic Open Reading Frames. Journal of Virology, 2021, 95, e0094021.	3.4	9
26	PopCover-2.0. Improved Selection of Peptide Sets With Optimal HLA and Pathogen Diversity Coverage. Frontiers in Immunology, 2021, 12, 728936.	4.8	5
27	Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nature Medicine, 2021, 27, 1990-2001.	30.7	396
28	Rapid induction of antigen-specific CD4+ TÂcells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity, 2021, 54, 2133-2142.e3.	14.3	367
29	SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Science Immunology, 2021, 6, eabl9105.	11.9	147
30	Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner. Cell Host and Microbe, 2021, 29, 1611-1619.e5.	11.0	106
31	B cells modulate mouse allergen-specific T cells in nonallergic laboratory animal-care workers. JCI Insight, 2021, 6, .	5.0	0
32	Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Reports, 2021, 37, 110071.	6.4	34
33	High Frequencies of Functional Virus-Specific CD4+ T Cells in SARS-CoV-2 Subjects With Olfactory and Taste Disorders. Frontiers in Immunology, 2021, 12, 748881.	4.8	11
34	Evolution of the innate and adaptive immune response in women with acute Zika virus infection. Nature Microbiology, 2020, 5, 76-83.	13.3	20
35	Transcriptomic immune profiles of human flavivirusâ€specific Tâ€cell responses. Immunology, 2020, 160, 3-9.	4.4	18
36	Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020, 183, 996-1012.e19.	28.9	1,494

#	Article	IF	CITATIONS
37	Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in COVID-19. Cell, 2020, 183, 1340-1353.e16.	28.9	431
38	Conserved epitopes with high HLA-I population coverage are targets of CD8+ T cells associated with high IFN-Î ³ responses against all dengue virus serotypes. Scientific Reports, 2020, 10, 20497.	3.3	5
39	Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, 2020, 370, 89-94.	12.6	1,036
40	Identification and Characterization of CD4 ⁺ T Cell Epitopes after Shingrix Vaccination. Journal of Virology, 2020, 94, .	3.4	18
41	HLA tapasin independence: broader peptide repertoire and HIV control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28232-28238.	7.1	51
42	Case Report: Convalescent Plasma, a Targeted Therapy for Patients with CVID and Severe COVID-19. Frontiers in Immunology, 2020, 11, 596761.	4.8	45
43	Persistence of Varicella-Zoster Virus-Specific Plasma Cells in Adult Human Bone Marrow following Childhood Vaccination. Journal of Virology, 2020, 94, .	3.4	15
44	A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host and Microbe, 2020, 27, 671-680.e2.	11.0	893
45	T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species. Journal of Virology, 2020, 94, .	3.4	49
46	Two Is Better Than One: Evidence for T-Cell Cross-Protection Between Dengue and Zika and Implications on Vaccine Design. Frontiers in Immunology, 2020, 11, 517.	4.8	31
47	Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 2020, 181, 1489-1501.e15.	28.9	3,220
48	Phenotype and kinetics of SARS-CoV- $2\hat{a}\in$ "specific T cells in COVID-19 patients with acute respiratory distress syndrome. Science Immunology, 2020, 5, .	11.9	851
49	Single-Cell Transcriptomic Analysis of SARS-CoV-2 Reactive CD4 ⁺ T Cells. SSRN Electronic Journal, 2020, , 3641939.	0.4	31
50	Characterization of Magnitude and Antigen Specificity of HLA-DP, DQ, and DRB3/4/5 Restricted DENV-Specific CD4+ T Cell Responses. Frontiers in Immunology, 2019, 10, 1568.	4.8	35
51	A survey of known immune epitopes in the enteroviruses strains associated with acute flaccid myelitis. Human Immunology, 2019, 80, 923-929.	2.4	11
52	Human T Cell Response to Dengue Virus Infection. Frontiers in Immunology, 2019, 10, 2125.	4.8	102
53	Characterization and epitope identification of the T cell response in non-allergic individuals exposed to mouse allergen. World Allergy Organization Journal, 2019, 12, 100026.	3.5	10
54	Molecular Signatures of Dengue Virus-Specific IL-10/IFN-Î ³ Co-producing CD4ÂT Cells and Their Association with Dengue Disease. Cell Reports, 2019, 29, 4482-4495.e4.	6.4	35

#	Article	IF	CITATIONS
55	Dengue-specific CD8+ T cell subsets display specialized transcriptomic and TCR profiles. Journal of Clinical Investigation, 2019, 129, 1727-1741.	8.2	41
56	Major Histocompatibility Complex Binding, Eluted Ligands, and Immunogenicity: Benchmark Testing and Predictions. Frontiers in Immunology, 2019, 10, 3151.	4.8	20
57	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 714 adults from Colombo, Sri Lanka. Human Immunology, 2018, 79, 87-88.	2.4	7
58	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 159 individuals from the Worcester region of the Western Cape province of South Africa. Human Immunology, 2018, 79, 143-144.	2.4	7
59	Development of a strategy and computational application to select candidate protein analogues with reduced <scp>HLA</scp> binding and immunogenicity. Immunology, 2018, 153, 118-132.	4.4	19
60	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua. Human Immunology, 2018, 79, 1-2.	2.4	8
61	Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus–Specific CD8+ T Cells. Journal of Immunology, 2018, 201, 3487-3491.	0.8	70
62	A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Frontiers in Immunology, 2018, 9, 2778.	4.8	41
63	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 496 adults from San Diego, California, USA. Human Immunology, 2018, 79, 821-822.	2.4	10
64	Predicting HLA CD4 Immunogenicity in Human Populations. Frontiers in Immunology, 2018, 9, 1369.	4.8	101
65	Development of a novel clustering tool for linear peptide sequences. Immunology, 2018, 155, 331-345.	4.4	73
66	ImmunomeBrowser: a tool to aggregate and visualize complex and heterogeneous epitopes in reference proteins. Bioinformatics, 2018, 34, 3931-3933.	4.1	37
67	Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain. Journal of Virology, 2017, 91, .	3.4	24
68	Human CD4 ⁺ T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity. Journal of Virology, 2017, 91, .	3.4	83
69	Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans. Journal of Virology, 2017, 91, .	3.4	148
70	Global Assessment of Dengue Virus-Specific CD4+ T Cell Responses in Dengue-Endemic Areas. Frontiers in Immunology, 2017, 8, 1309.	4.8	77
71	Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-na $ ilde{A}^-$ ve individual during the 2016 outbreak in Miami, FL. PLoS Neglected Tropical Diseases, 2017, 11, e0006000.	3.0	48
72	PD-1/PD-L1 expression in extra-medullary lesions of multiple myeloma. Leukemia Research, 2016, 49, 98-101.	0.8	7

#	Article	IF	Citations
73	Phylogenesys and homology modeling in Zika virus epidemic: food for thought. Pathogens and Global Health, 2016, 110, 269-274.	2.3	5
74	HLA-DRB1 Alleles Are Associated With Different Magnitudes of Dengue Virus–Specific CD4 ⁺ T-Cell Responses. Journal of Infectious Diseases, 2016, 214, 1117-1124.	4.0	88
75	Genetic diversity in Ebola virus: Phylogenetic and in silico structural studies of Ebola viral proteins. Asian Pacific Journal of Tropical Medicine, 2016, 9, 337-343.	0.8	11
76	Hepatitis E Virus Circulation in Italy: Phylogenetic and Evolutionary Analysis. Hepatitis Monthly, 2016, 16, e31951.	0.2	18
77	Structural Differences in KIR3DL1 and LILRB1 Interaction with HLA-B and the Loading Peptide Polymorphisms: <i>In Silico < /i>İi>Evidences. Computational Biology Journal, 2015, 2015, 1-10.</i>	0.6	1
78	Key role of human leukocyte antigen in modulating human immunodeficiency virus progression: An overview of the possible applications. World Journal of Virology, 2015, 4, 124.	2.9	5
79	Amino acid mutations in Ebola virus glycoprotein of the 2014 epidemic. Journal of Medical Virology, 2015, 87, 893-898.	5.0	7
80	Molecular epidemiology and phylogenetic analysis of Hepatitis B virus in a group of migrants in Italy. BMC Infectious Diseases, 2015, 15, 287.	2.9	12
81	Pan-genomic and immunomic identification of novel <i>mycobacterium tuberculosis</i> antigens for TB diagnosis., 2015,,.		0
82	Immunotherapy with an HIV-DNA Vaccine in Children and Adults. Vaccines, 2014, 2, 563-580.	4.4	10
83	Role of individual's <scp>T</scp> â€cell immunome in controlling <scp>HIV</scp> â€1 progression. Immunology, 2014, 143, 631-639.	4.4	5
84	Role of HLA-B \hat{l} ±-3 domain amino acid position 194 in HIV disease progression. Molecular Immunology, 2013, 53, 410-413.	2.2	12
85	Immunoinformatic Docking Approach for the Analysis of KIR3DL1/HLA-B Interaction. BioMed Research International, 2013, 2013, 1-5.	1.9	6
86	Ancestral SARS-CoV-2-specific T cells cross-recognize Omicron. Nature Medicine, 0, , .	30.7	14