John D Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2570690/publications.pdf

Version: 2024-02-01

187 papers 20,310 citations

9786 73 h-index 138 g-index

203 all docs

 $\begin{array}{c} 203 \\ \\ \text{docs citations} \end{array}$

times ranked

203

15938 citing authors

#	Article	IF	CITATIONS
1	Signaling Through Scaffold, Anchoring, and Adaptor Proteins. Science, 1997, 278, 2075-2080.	12.6	2,168
2	AKAP signalling complexes: focal points in space and time. Nature Reviews Molecular Cell Biology, 2004, 5, 959-970.	37.0	965
3	A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biology, 2000, 2, 540-547.	10.3	666
4	Protein phosphorylation in signaling – 50 years and counting. Trends in Biochemical Sciences, 2005, 30, 286-290.	7.5	597
5	Phosphorylation and Inactivation of BAD by Mitochondria-Anchored Protein Kinase A. Molecular Cell, 1999, 3, 413-422.	9.7	593
6	Cell Signaling in Space and Time: Where Proteins Come Together and When They're Apart. Science, 2009, 326, 1220-1224.	12.6	536
7	cAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits. Neuron, 1997, 19, 185-196.	8.1	487
8	Regulation of NMDA Receptors by an Associated Phosphatase-Kinase Signaling Complex. Science, 1999, 285, 93-96.	12.6	483
9	The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature, 2005, 437, 574-578.	27.8	482
10	Targeting of PKA to Glutamate Receptors through a MAGUK-AKAP Complex. Neuron, 2000, 27, 107-119.	8.1	436
11	Proteomic, Functional, and Domain-Based Analysis of In Vivo 14-3-3 Binding Proteins Involved in Cytoskeletal Regulation and Cellular Organization. Current Biology, 2004, 14, 1436-1450.	3.9	412
12	Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature, 1994, 368, 853-856.	27.8	364
13	Cyclic nucleotide-dependent protein kinases. , 1991, 50, 123-145.		358
14	Molecular Glue: Kinase Anchoring and Scaffold Proteins. Cell, 1996, 85, 9-12.	28.9	259
15	Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein. Current Biology, 1997, 7, 52-62.	3.9	247
16	Signalling scaffolds and local organization of cellular behaviour. Nature Reviews Molecular Cell Biology, 2015, 16, 232-244.	37.0	245
17	Molecular Basis of AKAP Specificity for PKA Regulatory Subunits. Molecular Cell, 2006, 24, 383-395.	9.7	237
18	AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nature Neuroscience, 2003, 6, 564-571.	14.8	219

#	Article	IF	CITATIONS
19	Regulation of GluR1 by the A-Kinase Anchoring Protein 79 (AKAP79) Signaling Complex Shares Properties with Long-Term Depression. Journal of Neuroscience, 2002, 22, 3044-3051.	3.6	214
20	Assembly of an A kinase-anchoring protein $\hat{a} \in \hat{a}^2$ 2 -adrenergic receptor complex facilitates receptor phosphorylation and signaling. Current Biology, 2000, 10, 409-412.	3.9	213
21	AKAP-Lbc Anchors Protein Kinase A and Nucleates GÎ ± 12 -selective Rho-mediated Stress Fiber Formation. Journal of Biological Chemistry, 2001, 276, 44247-44257.	3.4	213
22	Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. Journal of Cell Biology, 2002, 158, 659-668.	5.2	198
23	Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1723-1728.	7.1	194
24	A WAVE-1 and WRP Signaling Complex Regulates Spine Density, Synaptic Plasticity, and Memory. Journal of Neuroscience, 2007, 27, 355-365.	3.6	190
25	Dynamic Regulation of cAMP Synthesis through Anchored PKA-Adenylyl Cyclase V/VI Complexes. Molecular Cell, 2006, 23, 925-931.	9.7	189
26	The molecular basis for protein kinase A anchoring revealed by solution NMR. Nature Structural Biology, 1999, 6, 222-227.	9.7	181
27	Creating Order from Chaos: Cellular Regulation by Kinase Anchoring. Annual Review of Pharmacology and Toxicology, 2013, 53, 187-210.	9.4	181
28	The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nature Cell Biology, 2002, 4, 970-975.	10.3	178
29	Integrating Cardiac PIP3 and cAMP Signaling through a PKA Anchoring Function of p $110\hat{l}^3$. Molecular Cell, 2011, 42, 84-95.	9.7	174
30	An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO Journal, 2006, 25, 2051-2061.	7.8	166
31	Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nature Cell Biology, 2005, 7, 1066-1073.	10.3	165
32	Local protein kinase A action proceeds through intact holoenzymes. Science, 2017, 356, 1288-1293.	12.6	165
33	Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins. Current Opinion in Neurobiology, 1998, 8, 330-334.	4.2	159
34	AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Science Signaling, 2014, 7, ra66.	3.6	151
35	Aâ€kinase anchoring proteins: From protein complexes to physiology and disease. IUBMB Life, 2009, 61, 394-406.	3.4	150
36	Bioinformatic design of A-kinase anchoring protein-in silico: A potent and selective peptide antagonist of type II protein kinase A anchoring. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4445-4450.	7.1	149

#	Article	IF	Citations
37	Networking with AKAPs: Context-dependent Regulation of Anchored Enzymes. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 86-97.	3.4	148
38	Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology. Gene, 2016, 577, 101-108.	2.2	145
39	Second Messengers. Cold Spring Harbor Perspectives in Biology, 2016, 8, a005926.	5. 5	138
40	Loss of AKAP150 perturbs distinct neuronal processes in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12557-12562.	7.1	137
41	Increased Coupled Gating of L-Type Ca ²⁺ Channels During Hypertension and Timothy Syndrome. Circulation Research, 2010, 106, 748-756.	4.5	134
42	Delineation of Type I Protein Kinase A-selective Signaling Events Using an RI Anchoring Disruptor. Journal of Biological Chemistry, 2006, 281, 21535-21545.	3.4	133
43	AKAP-Lbc Nucleates a Protein Kinase D Activation Scaffold. Molecular Cell, 2004, 15, 889-899.	9.7	132
44	The where's and when's of kinase anchoring. Trends in Biochemical Sciences, 2006, 31, 316-323.	7.5	132
45	Mapping the Protein Phosphatase-2B Anchoring Site on AKAP79. Journal of Biological Chemistry, 2002, 277, 48796-48802.	3.4	131
46	AKAP-Lbc Mobilizes a Cardiac Hypertrophy Signaling Pathway. Molecular Cell, 2008, 32, 169-179.	9.7	129
47	AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling. Cell Reports, 2014, 7, 1577-1588.	6.4	128
48	Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain. Current Biology, 2000, 10, 417-420.	3.9	125
49	AKAP79 and the evolution of the AKAP model. FEBS Letters, 2000, 476, 58-61.	2.8	122
50	Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Current Biology, 1999, 9, 321-324.	3.9	121
51	An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1227-35.	7.1	121
52	AKAP signaling complexes: pointing towards the next generation of therapeutic targets?. Trends in Pharmacological Sciences, 2013, 34, 648-655.	8.7	121
53	Interaction with AKAP79 Modifies the Cellular Pharmacology of PKC. Molecular Cell, 2010, 37, 541-550.	9.7	117
54	Compartmentation of Cyclic Nucleotide Signaling in the Heart. Circulation Research, 2006, 98, 993-1001.	4.5	116

#	Article	IF	CITATIONS
55	Regulation of the AKAP79-Protein Kinase C Interaction by Ca2+/Calmodulin. Journal of Biological Chemistry, 1997, 272, 17038-17044.	3.4	108
56	Role for A Kinase-anchoring Proteins (AKAPS) in Glutamate Receptor Trafficking and Long Term Synaptic Depression. Journal of Biological Chemistry, 2005, 280, 16962-16968.	3.4	107
57	AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade. Nature Cell Biology, 2010, 12, 1242-1249.	10.3	107
58	Blotting and band-shifting: techniques for studying protein-protein interactions. Trends in Biochemical Sciences, 1992, 17, 246-249.	7. 5	105
59	PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochemical Journal, 2004, 381, 587-592.	3.7	104
60	Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation. ELife, 2013, 2, e01319.	6.0	104
61	A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABAA receptors by cAMP-dependent protein kinase via selective interaction with receptor \hat{l}^2 subunits. Molecular and Cellular Neurosciences, 2003, 22, 87-97.	2.2	100
62	Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95. Experimental Cell Research, 1998, 238, 305-316.	2.6	99
63	Modulation of Ion Channels. Neuron, 1999, 23, 423-426.	8.1	97
64	AKAP79 Interacts with Multiple Adenylyl Cyclase (AC) Isoforms and Scaffolds AC5 and -6 to α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) Receptors. Journal of Biological Chemistry, 2010, 285, 14450-14458.	3.4	97
65	Cloning and Characterization of a Novel A-kinase Anchoring Protein. Journal of Biological Chemistry, 1996, 271, 9460-9465.	3.4	96
66	The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13835-13840.	7.1	95
67	Restoration of Normal L-Type Ca ²⁺ Channel Function During Timothy Syndrome by Ablation of an Anchoring Protein. Circulation Research, 2011, 109, 255-261.	4.5	93
68	Organization of kinases, phosphatases, and receptor signaling complexes. Journal of Clinical Investigation, 1999, 103, 761-765.	8.2	93
69	A single step purification for recombinant proteins Characterization of a microtubule associated protein (MAP 2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Letters, 1992, 302, 274-278.	2.8	92
70	Cloning and Characterization of A-kinase Anchor Protein 100 (AKAP100). Journal of Biological Chemistry, 1995, 270, 9327-9333.	3.4	92
71	AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Remodeling in Hyperglycemia and Diabetes Mellitus. Circulation Research, 2014, 114, 607-615.	4.5	86
72	Ser <code>¹⁹²⁸</code> phosphorylation by PKA stimulates the L-type Ca <code>²⁺</code> channel Ca <code>_V</code> 1.2 and vasoconstriction during acute hyperglycemia and diabetes. Science Signaling, 2017, 10, .	3.6	85

#	Article	IF	CITATIONS
73	Alternative Splicing Regulates the Subcellular Localization of a-Kinase Anchoring Protein 18 Isoforms. Journal of Cell Biology, 1999, 147, 1481-1492.	5.2	84
74	Association of an A-Kinase-anchoring Protein Signaling Scaffold with Cadherin Adhesion Molecules in Neurons and Epithelial Cells. Molecular Biology of the Cell, 2005, 16, 3574-3590.	2.1	81
75	Mechanism of A-kinase-anchoring protein 79 (AKAP79) and protein kinase C interaction. Biochemical Journal, 1999, 343, 443-452.	3.7	78
76	Architecture and dynamics of an A-kinase anchoring protein 79 (AKAP79) signaling complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6426-6431.	7.1	78
77	Targeted Protein Kinase A and PP-2B Regulate Insulin Secretion through Reversible Phosphorylation*. Endocrinology, 2001, 142, 1218-1227.	2.8	74
78	Project ECHO: a model for complex, chronic care in the Pacific Northwest region of the United States. Journal of Telemedicine and Telecare, 2012, 18, 481-484.	2.7	74
79	Mutational Analysis of the A-Kinase Anchoring Protein (AKAP)-binding Site on RII. Journal of Biological Chemistry, 1996, 271, 29016-29022.	3.4	72
80	A-Kinase Anchoring Proteins. Circulation, 2010, 121, 1264-1271.	1.6	72
81	Anchored phosphatases modulate glucose homeostasis. EMBO Journal, 2012, 31, 3991-4004.	7.8	69
82	AKAP Signaling Islands: Venues for Precision Pharmacology. Trends in Pharmacological Sciences, 2020, 41, 933-946.	8.7	69
83	The A-kinase Anchoring Domain of Type Ilî \pm cAMP-dependent Protein Kinase Is Highly Helical. Journal of Biological Chemistry, 1997, 272, 23637-23644.	3.4	65
84	Spatial Restriction of PDK1 Activation Cascades by Anchoring to mAKAPÎ \pm . Molecular Cell, 2005, 20, 661-672.	9.7	63
85	AKAP proteins anchor cAMP-dependent protein kinase to KvLQT1/IsK channel complex. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2038-H2045.	3.2	58
86	AQP2 is a substrate for endogenous PP2B activity within an inner medullary AKAP-signaling complex. American Journal of Physiology - Renal Physiology, 2001, 281, F958-F965.	2.7	57
87	AKAP2 anchors PKA with aquaporinâ€0 to support ocular lens transparency. EMBO Molecular Medicine, 2012, 4, 15-26.	6.9	57
88	Dual Specificity A-kinase Anchoring Proteins (AKAPs) Contain an Additional Binding Region That Enhances Targeting of Protein Kinase A Type I. Journal of Biological Chemistry, 2008, 283, 33708-33718.	3.4	56
89	Targeting of Protein Kinase A by Muscle A Kinase-anchoring Protein (mAKAP) Regulates Phosphorylation and Function of the Skeletal Muscle Ryanodine Receptor. Journal of Biological Chemistry, 2003, 278, 24831-24836.	3.4	55
90	High-affinity AKAP7δ–protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides. Biochemical Journal, 2006, 396, 297-306.	3.7	55

#	Article	IF	Citations
91	The virtual physical exam in the 21st century. Journal of Telemedicine and Telecare, 2021, 27, 382-392.	2.7	55
92	Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca ²⁺ -Permeable AMPA Receptors. Journal of Neuroscience, 2018, 38, 2863-2876.	3.6	54
93	E2–Ub conjugates regulate the kinase activity ofShigellaeffector OspG during pathogenesis. EMBO Journal, 2014, 33, n/a-n/a.	7.8	53
94	Multiple Interactions within the AKAP220 Signaling Complex Contribute to Protein Phosphatase 1 Regulation. Journal of Biological Chemistry, 2001, 276, 12128-12134.	3.4	52
95	High Rate of Spontaneous Negativity for Hepatitis C Virus RNA after Establishment of Chronic Infection in Alaska Natives. Clinical Infectious Diseases, 2006, 42, 945-952.	5.8	52
96	AKAP18 Contains a Phosphoesterase Domain that Binds AMP. Journal of Molecular Biology, 2008, 375, 1329-1343.	4.2	51
97	mAKAP Compartmentalizes Oxygen-Dependent Control of HIF-1α. Science Signaling, 2008, 1, ra18.	3.6	50
98	Spatial Distribution of Protein Kinase A Activity during Cell Migration Is Mediated by A-kinase Anchoring Protein AKAP Lbc. Journal of Biological Chemistry, 2009, 284, 5956-5967.	3.4	50
99	Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17099-17104.	7.1	50
100	Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatric Research, 2016, 80, 110-118.	2.3	50
101	Discovery of cellular substrates for protein kinase A using a peptide array screening protocol. Biochemical Journal, 2011, 438, 103-110.	3.7	48
102	An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma. ELife, 2019, 8 , .	6.0	48
103	Fibrolamellar Hepatocellular Carcinoma: Mechanistic Distinction From Adult Hepatocellular Carcinoma. Pediatric Blood and Cancer, 2016, 63, 1163-1167.	1.5	45
104	A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. ELife, 2015, 4, e09384.	6.0	44
105	MyRIP Anchors Protein Kinase A to the Exocyst Complex. Journal of Biological Chemistry, 2007, 282, 33155-33167.	3.4	43
106	A unique mRNA species for a regulatory subunit of cAMP-dependent protein kinase is specifically induced in haploid germ cells. FEBS Letters, 1988, 229, 391-394.	2.8	42
107	The A-kinase-anchoring protein AKAP-Lbc facilitates cardioprotective PKA phosphorylation of Hsp20 on Ser16. Biochemical Journal, 2012, 446, 437-443.	3.7	42
108	AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4328-37.	7.1	42

#	Article	IF	CITATIONS
109	Single nucleotide polymorphisms alter kinase anchoring and the subcellular targeting of A-kinase anchoring proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11465-E11474.	7.1	41
110	Organizing signal transduction through Aâ€kinase anchoring proteins (AKAPs). FEBS Journal, 2010, 277, 4370-4375.	4.7	39
111	Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option. Annual Review of Pharmacology and Toxicology, 2021, 61, 361-379.	9.4	37
112	Gravin Is a Transitory Effector of Polo-like Kinase 1 during Cell Division. Molecular Cell, 2012, 48, 547-559.	9.7	36
113	Loss of AKAP150 promotes pathological remodelling and heart failure propensity by disrupting calcium cycling and contractile reserve. Cardiovascular Research, 2017, 113, 147-159.	3.8	36
114	AKAP220 Protein Organizes Signaling Elements That Impact Cell Migration. Journal of Biological Chemistry, 2011, 286, 39269-39281.	3.4	35
115	PKA-Type I Selective Constrained Peptide Disruptors of AKAP Complexes. ACS Chemical Biology, 2015, 10, 1502-1510.	3.4	35
116	Engineering A-kinase Anchoring Protein (AKAP)-selective Regulatory Subunits of Protein Kinase A (PKA) through Structure-based Phage Selection. Journal of Biological Chemistry, 2013, 288, 17111-17121.	3.4	34
117	MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 803-817.	4.5	34
118	Hepatitis C continuum of care and utilization of healthcare and harm reduction services among persons who inject drugs in Seattle. Drug and Alcohol Dependence, 2019, 195, 114-120.	3.2	31
119	Isoform-specific targeting of PKA to multivesicular bodies. Journal of Cell Biology, 2011, 193, 347-363.	5.2	30
120	Selective Down-regulation of KV2.1 Function Contributes to Enhanced Arterial Tone during Diabetes. Journal of Biological Chemistry, 2015, 290, 7918-7929.	3.4	30
121	Identification of cAMP-dependent protein kinase holoenzymes in preantral- and preovulatory-follicle-enriched ovaries, and their association with A-kinase-anchoring proteins. Biochemical Journal, 1999, 344, 613-623.	3.7	29
122	Age and gender-specific hepatitis C continuum of care and predictors of direct acting antiviral treatment among persons who inject drugs in Seattle, Washington. Drug and Alcohol Dependence, 2021, 220, 108525.	3.2	29
123	Chronic liver disease in Aboriginal North Americans. World Journal of Gastroenterology, 2008, 14, 4607.	3.3	29
124	Hotspots of Aberrant Enhancer Activity in Fibrolamellar Carcinoma Reveal Candidate Oncogenic Pathways and Therapeutic Vulnerabilities. Cell Reports, 2020, 31, 107509.	6.4	28
125	Selective Disruption of the AKAP Signaling Complexes. Methods in Molecular Biology, 2015, 1294, 137-150.	0.9	27
126	Hepatitis C Virus Is Infrequently Evaluated and Treated in an Urban HIV Clinic Population. AIDS Patient Care and STDs, 2009, 23, 925-929.	2.5	26

#	Article	IF	Citations
127	Anchored Protein Kinase A Recruitment of Active Rac GTPase. Journal of Biological Chemistry, 2011, 286, 22113-22121.	3.4	26
128	Implementation and evaluation of a Project ECHO telementoring program for the Namibian HIV workforce. Human Resources for Health, 2020, 18, 61.	3.1	26
129	Targeted Protein Kinase A and PP-2B Regulate Insulin Secretion through Reversible Phosphorylation. Endocrinology, 2001, 142, 1218-1227.	2.8	26
130	AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K+currents in ventricular myocytes following myocardial infarction. Cellular Signalling, 2016, 28, 733-740.	3.6	23
131	Subcellular drug targeting illuminates local kinase action. ELife, 2019, 8, .	6.0	23
132	A framework for fibrolamellar carcinoma research and clinical trials. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 328-342.	17.8	23
133	ST-11: A New Brain-Penetrant Microtubule-Destabilizing Agent with Therapeutic Potential for Glioblastoma Multiforme. Molecular Cancer Therapeutics, 2016, 15, 2018-2029.	4.1	22
134	AKAP5 complex facilitates purinergic modulation of vascular L-type Ca2+ channel CaV1.2. Nature Communications, 2020, 11, 5303.	12.8	22
135	Intrinsic disorder within AKAP79 fine-tunes anchored phosphatase activity toward substrates and drug sensitivity. ELife, 2017, 6, .	6.0	22
136	Regulation of Expression of A-Kinase Anchoring Proteins in Rat Granulosa Cells1. Biology of Reproduction, 1998, 58, 1496-1502.	2.7	21
137	Therapeutic strategies for anchored kinases and phosphatases: exploiting short linear motifs and intrinsic disorder. Frontiers in Pharmacology, 2015, 6, 158.	3.5	21
138	Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase $3\hat{l}^2$ to A-kinase Anchoring Protein 220. Journal of Biological Chemistry, 2015, 290, 19445-19457.	3.4	21
139	IL28B Genotype Effects During Early Treatment with Peginterferon and Ribavirin in Difficult-to-Treat Hepatitis C Virus Infection. Journal of Infectious Diseases, 2011, 204, 419-425.	4.0	20
140	Mislocalization of protein kinase A drives pathology in Cushing's syndrome. Cell Reports, 2022, 40, 111073.	6.4	18
141	Depletion of dAKAP1–protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. Journal of Biological Chemistry, 2019, 294, 3152-3168.	3.4	17
142	Regulation of the phosphatase PP2B by protein–protein interactions. Biochemical Society Transactions, 2016, 44, 1313-1319.	3.4	15
143	A-kinase-anchoring protein 1 (dAKAP1)-based signaling complexes coordinate local protein synthesis at the mitochondrial surface. Journal of Biological Chemistry, 2020, 295, 10749-10765.	3.4	15
144	â€Treat my whole person, not just my condition': qualitative explorations of hepatitis C care delivery preferences among people who inject drugs. Addiction Science & Elinical Practice, 2021, 16, 52.	2.6	15

#	Article	IF	CITATIONS
145	A-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors. Journal of Biological Chemistry, 2015, 290, 14107-14119.	3.4	14
146	Retrospective Study Demonstrating High Rates of Sustained Virologic Response After Treatment With Direct-Acting Antivirals Among American Indian/Alaskan Natives. Open Forum Infectious Diseases, 2019, 6, ofz128.	0.9	13
147	What is the impact of treatment for hepatitis C virus infection?. Lancet, The, 2017, 390, 107-109.	13.7	12
148	Shedding light on local kinase activation. BMC Biology, 2012, 10, 61.	3.8	10
149	Anchoring proteins encounter mitotic kinases. Cell Cycle, 2013, 12, 863-864.	2.6	9
150	Protein kinase A activation: Something new under the sun?. Journal of Cell Biology, 2018, 217, 1895-1897.	5.2	9
151	Neurotensin as a source of cyclic AMP and co-mitogen in fibrolamellar hepatocellular carcinoma. Oncotarget, 2019, 10, 5092-5102.	1.8	9
152	ANALYSIS OF A NOVEL A-KINASE ANCHORING PROTEIN 100, (AKAP 100). Biochemical Society Transactions, 1995, 23, 268S-268S.	3.4	8
153	Sequestering Rac with PKA confers cAMP control of cytoskeletal remodeling. Small GTPases, 2011, 2, 173-176.	1.6	8
154	Peer-mediated HIV assisted partner services to identify and link to care HIV-positive and HCV-positive people who inject drugs: a cohort study protocol. BMJ Open, 2021, 11, e041083.	1.9	8
155	Influenza a pneumonia presenting as progressive focal infiltrates in a stem cell transplant recipient. Journal of Clinical Virology, 2004, 31, 96-99.	3.1	7
156	Meeting the Demands of the Affordable Care Act: Improving Access to Primary Care. Population Health Management, 2017, 20, 87-89.	1.7	7
157	Pseudoscaffolds and anchoring proteins: the difference is in the details. Biochemical Society Transactions, 2017, 45, 371-379.	3.4	6
158	CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Frontiers in Immunology, 2019, 10, 2642.	4.8	6
159	Electronic Consults for Infectious Diseases in a United States Multisite Academic Health System. Open Forum Infectious Diseases, 2020, 7, ofaa101.	0.9	6
160	Malonate in the nucleotide-binding site traps human AKAP18 $\hat{I}^{3}\hat{I}^{7}$ in a novel conformational state. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 591-597.	0.8	5
161	<p>Road map for fibrolamellar carcinoma: progress and goals of a diversified approach</p> . Journal of Hepatocellular Carcinoma, 2019, Volume 6, 41-48.	3.7	5
162	Kinase-anchoring proteins in ciliary signal transduction. Biochemical Journal, 2021, 478, 1617-1629.	3.7	5

#	Article	IF	Citations
163	Bacterial spore coat protein kinases: A new twist to an old story. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6811-6812.	7.1	4
164	Gravin-associated kinase signaling networks coordinate \hat{I}^3 -tubulin organization at mitotic spindle poles. Journal of Biological Chemistry, 2020, 295, 13784-13797.	3.4	4
165	Beyond PKA: Evolutionary and structural insights that define a docking and dimerization domain superfamily. Journal of Biological Chemistry, 2021, 297, 100927.	3.4	4
166	Biochemical Analysis of AKAP-Anchored PKA Signaling Complexes. Methods in Molecular Biology, 2022, 2483, 297-317.	0.9	4
167	Co-ordinated control of the Aurora B abscission checkpoint by PKCε complex assembly, midbody recruitment and retention. Biochemical Journal, 2021, 478, 2247-2263.	3.7	3
168	Awareness and Correlates of HIV Pre-Exposure Prophylaxis (PrEP) Among HIV-negative People Who Access Syringe Services in Seattle, Washington. Substance Use and Misuse, 2022, 57, 337-343.	1.4	3
169	Diagnosis of Depression in Former Injection Drug Users With Chronic Hepatitis C. Journal of Clinical Gastroenterology, 2011, 45, 462-467.	2.2	2
170	RNAi Screening Identifies A Novel Role for A-Kinase Anchoring Protein 12 (AKAP12) in B Cell Development and Function. Blood, 2012, 120, 855-855.	1.4	2
171	Characteristics associated with HIV and hepatitis C seroprevalence among sexual and injecting partners of HIV positive persons who inject drugs in Nairobi and coastal Kenya. BMC Infectious Diseases, 2022, 22, 73.	2.9	2
172	SUBCELLULAR TARGETING OF KINASES AND PHOSPHATASES. Biochemical Society Transactions, 1996, 24, 575S-575S.	3.4	1
173	AKAP220 Links the cAMP Signaling Pathway to Cell Adhesion. FASEB Journal, 2009, 23, 530.10.	0.5	1
174	A-Kinase Anchoring Protein (AKAP). , 2016, , 1-6.		1
175	DOWN REGULATION OF CAMP-DEPENDENT PROTEIN KINASE ACTIVITY AT MITOSIS MAY INVOLVE PHOSPHORYLATION OF REGULATORY SUBUNITS BY MEMBERS OF THE CDK FAMILY. Biology of the Cell, 1996, 88, 73-73.	2.0	0
176	The Molecular Architecture of Neuronal Kinase/Phosphatase Signaling complexes. Biochemical Society Transactions, 1999, 27, A72-A72.	3.4	0
177	The molecular architecture of kinase/phosphatase signalling complexes. Biochemical Society Transactions, 2002, 30, A62-A62.	3.4	0
178	Tony Pawson 1952–2013. Nature Structural and Molecular Biology, 2013, 20, 1146-1146.	8.2	0
179	John Snow on steroids: The use of spatial epidemiology to untangle the HCV epidemic in Egypt. Hepatology, 2014, 60, 1124-1125.	7.3	0
180	Edmond Fischer (1920–2021). Science, 2021, 374, 157-157.	12.6	0

#	Article	IF	CITATIONS
181	IQGAP2 and Neurite Outgrowth: AKAP220 Tying the Knots. FASEB Journal, 2008, 22, 822.4.	0.5	O
182	The Integration of the Wnt and cAMP Signalling Pathways by AKAP220. FASEB Journal, 2008, 22, 822.2.	0.5	0
183	AKAP150 is required for NFATc3â€induced vascular BKCa channel suppression during diabetic hypertension. FASEB Journal, 2012, 26, 872.26.	0.5	0
184	AKAP150â€dependent changes in K v channel expression in ventricular myocytes following myocardial infarction. FASEB Journal, 2012, 26, 1053.9.	0.5	0
185	Investigating the role of neuronal AKAP220 signaling complexes in cytoskeletal regulation during neurite outgrowth. FASEB Journal, 2013, 27, 1036.3.	0.5	0
186	Molecular basis for a bipartite phosphatase interaction with the anchoring protein AKAP79. FASEB Journal, 2013, 27, 1043.1.	0.5	0
187	A-Kinase Anchoring Protein (AKAP). , 2018, , 261-267.		0