Stephen V Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2570027/publications.pdf

Version: 2024-02-01

58 papers

3,367 citations

257450 24 h-index 54 g-index

58 all docs 58 docs citations

58 times ranked 2867 citing authors

#	Article	IF	CITATIONS
1	Antigen binding by conformational selection in near-germline antibodies. Journal of Biological Chemistry, 2022, 298, 101901.	3.4	5
2	The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue. Journal of Biological Chemistry, 2022, 298, 101745.	3.4	7
3	Monoclonal antibody 7H2.2 binds the C-terminus of the cancer-oocyte antigen SAS1B through the hydrophilic face of a conserved amphipathic helix corresponding to one of only two regions predicted to be ordered. Acta Crystallographica Section D: Structural Biology, 2022, 78, 623-632.	2.3	0
4	Subtle Changes in the Combining Site of the Chlamydiaceae-Specific mAb S25-23 Increase the Antibody–Carbohydrate Binding Affinity by an Order of Magnitude. Biochemistry, 2019, 58, 714-726.	2.5	2
5	Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei. Nature Communications, 2018, 9, 3120.	12.8	27
6	Conserved residues Arg188 and Asp302 are critical for active site organization and catalysis in human ABO(H) blood group A and B glycosyltransferasesâ€. Glycobiology, 2018, 28, 624-636.	2.5	9
7	Glycosyltransfer in mutants of putative catalytic residue Glu303 of the human ABO(H) A and B blood group glycosyltransferases GTA and GTB proceeds through a labile active site. Glycobiology, 2017, 27, 370-380.	2.5	5
8	High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release. Glycobiology, 2017, 27, 966-977.	2.5	3
9	Polyspecificity of Anti-lipid A Antibodies and Its Relevance to the Development of Autoimmunity. Advances in Experimental Medicine and Biology, 2017, 966, 181-202.	1.6	4
10	The Combining Sites of Anti-lipid A Antibodies Reveal a Widely Utilized Motif Specific for Negatively Charged Groups. Journal of Biological Chemistry, 2016, 291, 10104-10118.	3.4	8
11	Molecular Basis for Recognition of the Cancer Glycobiomarker, LacdiNAc (GalNAc[β1→4]GlcNAc), by Wisteria floribunda Agglutinin. Journal of Biological Chemistry, 2016, 291, 24085-24095.	3.4	49
12	Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes $\langle i \rangle N \langle i \rangle$ -glycan phosphorylation in a branch-specific manner. Glycobiology, 2016, 26, 181-192.	2.5	8
13	Antibody recognition of carbohydrate epitopes. Glycobiology, 2015, 25, 920-952.	2.5	116
14	Structural Basis for Antibody Recognition of Lipid A. Journal of Biological Chemistry, 2015, 290, 19629-19640.	3.4	11
15	High Resolution Structures of the Human ABO(H) Blood Group Enzymes in Complex with Donor Analogs Reveal That the Enzymes Utilize Multiple Donor Conformations to Bind Substrates in a Stepwise Manner. Journal of Biological Chemistry, 2015, 290, 27040-27052.	3.4	18
16	pH-induced conformational changes in human ABO(H) blood group glycosyltransferases confirm the importance of electrostatic interactions in the formation of the semi-closed state. Glycobiology, 2014, 24, 237-246.	2.5	5
17	Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidisâ€,‡. Glycobiology, 2014, 24, 442-449.	2.5	20
18	Groove-type Recognition of Chlamydiaceae-specific Lipopolysaccharide Antigen by a Family of Antibodies Possessing an Unusual Variable Heavy Chain N-Linked Glycan. Journal of Biological Chemistry, 2014, 289, 16644-16661.	3.4	15

#	Article	IF	CITATIONS
19	The antigen-binding site of an N-propionylated polysialic acid-specific antibody protective against group B meningococci is consistent with extended epitopesâ€. Glycobiology, 2013, 23, 946-954.	2.5	10
20	Exploring the cross-reactivity of S25-2: complex with a 5,6-dehydro-Kdo disaccharide. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 2-5.	0.7	7
21	Geometric Attributes of Retaining Glycosyltransferase Enzymes Favor an Orthogonal Mechanism. PLoS ONE, 2013, 8, e71077.	2.5	27
22	Antibody WN1 222-5 mimics Toll-like receptor 4 binding in the recognition of LPS. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20877-20882.	7.1	34
23	Sequence-dependent effects of cryoprotectants on the active sites of the human ABO(H) blood group A and B glycosyltransferases. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 268-276.	2.5	10
24	Antibody Recognition of Chlamydia LPS: Structural Insights of Inherited Immune Responses. , 2012, , 75-120.		11
25	A Common NH53K Mutation in the Combining Site of Antibodies Raised against Chlamydial LPS Glycoconjugates Significantly Increases Avidity. Biochemistry, 2011, 50, 3357-3368.	2,5	25
26	Structural insights into parallel strategies for germline antibody recognition of lipopolysaccharide from Chlamydia. Glycobiology, 2011, 21, 1049-1059.	2.5	20
27	Antibody recognition of a unique tumor-specific glycopeptide antigen. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10056-10061.	7.1	77
28	Analysis of cross-reactive and specific anti-carbohydrate antibodies against lipopolysaccharide from Chlamydophila psittaci. Glycobiology, 2010, 20, 461-472.	2.5	28
29	The role of CDR H3 in antibody recognition of a synthetic analog of a lipopolysaccharide antigen. Glycobiology, 2010, 20, 138-147.	2.5	16
30	Antibodies Raised Against Chlamydial Lipopolysaccharide Antigens Reveal Convergence in Germline Gene Usage and Differential Epitope Recognition. Biochemistry, 2010, 49, 570-581.	2.5	23
31	Cysteine-to-Serine Mutants Dramatically Reorder the Active Site of Human ABO(H) Blood Group B Glycosyltransferase without Affecting Activity: Structural Insights into Cooperative Substrate Binding. Journal of Molecular Biology, 2010, 402, 399-411.	4.2	11
32	Exploration of Specificity in Germline Monoclonal Antibody Recognition of a Range of Natural and Synthetic Epitopes. Journal of Molecular Biology, 2008, 377, 450-468.	4.2	32
33	ABO(H) Blood Group A and B Glycosyltransferases Recognize Substrate via Specific Conformational Changes. Journal of Biological Chemistry, 2008, 283, 10097-10108.	3.4	78
34	Structural Effects of Naturally Occurring Human Blood Group B Galactosyltransferase Mutations Adjacent to the DXD Motif. Journal of Biological Chemistry, 2007, 282, 9564-9570.	3 . 4	19
35	The effect of heavy atoms on the conformation of the active-site polypeptide loop in human ABO(H) blood-group glycosyltransferase B. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 860-865.	2.5	12
36	Structural basis for red cell phenotypic changes in newly identified, naturally occurring subgroup mutants of the human blood group B glycosyltransferase. Transfusion, 2007, 47, 864-875.	1.6	28

#	Article	IF	CITATIONS
37	Differential Recognition of the Type I and II H Antigen Acceptors by the Human ABO(H) Blood Group A and B Glycosyltransferases. Journal of Biological Chemistry, 2006, 281, 3625-3632.	3.4	37
38	Glycosyltransferase Structure and Function. , 2006, , 217-257.		27
39	Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type. Journal of Chemical Education, 2005, 82, 1846.	2.3	9
40	Structural Basis for the Inactivity of Human Blood Group O2 Glycosyltransferase. Journal of Biological Chemistry, 2005, 280, 525-529.	3.4	53
41	Germline antibody recognition of distinct carbohydrate epitopes. Nature Structural and Molecular Biology, 2003, 10, 1019-1025.	8.2	107
42	A Single Point Mutation Reverses the Donor Specificity of Human Blood Group B-synthesizing Galactosyltransferase. Journal of Biological Chemistry, 2003, 278, 12403-12405.	3.4	88
43	The Influence of an Intramolecular Hydrogen Bond in Differential Recognition of Inhibitory Acceptor Analogs by Human ABO(H) Blood Group A and B Glycosyltransferases. Journal of Biological Chemistry, 2003, 278, 49191-49195.	3.4	29
44	Structure of an Anti-blood Group A Fv and Improvement of Its Binding Affinity without Loss of Specificity. Journal of Biological Chemistry, 2002, 277, 2059-2064.	3.4	30
45	The structural basis for specificity in human ABO(H) blood group biosynthesis. Nature Structural Biology, 2002, 9, 685-690.	9.7	219
46	Antibody recognition of a conformational epitope in a peptide antigen: Fv-peptide complex of an antibody fragment specific for the mutant EGF receptor, EGFRvIII. Journal of Molecular Biology, 2001, 308, 883-893.	4.2	14
47	Crystallization and preliminary X-ray diffraction analysis of two homologous antigen-binding fragments in complex with different carbohydrate antigens. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1872-1876.	2.5	6
48	Donor substrate specificity of recombinant human blood group A, B and hybrid A/B glycosyltransferases expressed in Escherichia coli. FEBS Journal, 2001, 259, 770-775.	0.2	81
49	The Role of Homophilic Binding in Anti-tumor Antibody R24 Recognition of Molecular Surfaces. Journal of Biological Chemistry, 1999, 274, 5597-5604.	3.4	35
50	Characterization of protein-glycolipid recognition at the membrane bilayer., 1999, 12, 155-168.		69
51	Production, crystallization and diffraction to atomic resolution of an antibody Fv specific for the blood-group A oligosaccharide antigen. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1456-1459.	2.5	8
52	Bifunctional fusion proteins consisting of a single-chain antibody and an engineered lanthanide-binding protein. Immunotechnology: an International Journal of Immunological Engineering, 1995, 1, 139-150.	2.4	12
53	Location of the active site of the bean \hat{l}_{\pm} -amylase inhibitor and involvement of a Trp, Arg, Tyr triad. Glycobiology, 1995, 5, 45-50.	2.5	41
54	SETOR: Hardware-lighted three-dimensional solid model representations of macromolecules. Journal of Molecular Graphics, 1993, 11, 134-138.	1.1	1,265

#	Article	IF	CITATIONS
55	Refinement of Recombinant Oncomodulin at 1·30 à Resolution. Journal of Molecular Biology, 1993, 230, 1216-1224.	4.2	46
56	High-resolution study of the three-dimensional structure of horse heart metmyoglobin. Journal of Molecular Biology, 1990, 213, 885-897.	4.2	276
57	Platinum(II) complexes of ferrocenylphosphines as hydrosilylation catalysts. Crystal structure of		